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When the coarse-resolution observations used in the first step of multiscale and multistep variational data assimilation become
increasingly nonuniform and/or sparse, the error variance of the first-step analysis tends to have increasingly large spatial variations.
However, the analysis error variance computed from the previously developed spectral formulations is constant and thus limited
to represent only the spatially averaged error variance. To overcome this limitation, analytic formulations are constructed to
efficiently estimate the spatial variation of analysis error variance and associated spatial variation in analysis error covariance.
First, a suite of formulations is constructed to efficiently estimate the error variance reduction produced by analyzing the coarse-
resolution observations in one- and two-dimensional spaces with increased complexity and generality (from uniformly distributed
observations with periodic extension to nonuniformly distributed observations without periodic extension). Then, three different
formulations are constructed for using the estimated analysis error variance tomodify the analysis error covariance computed from
the spectral formulations.The successively improved accuracies of these three formulations and their increasingly positive impacts
on the two-step variational analysis (or multistep variational analysis in first two steps) are demonstrated by idealized experiments.

1. Introduction

Multiple Gaussians with different decorrelation length scales
have been used at NCEP to model the background error
covariance in variational data assimilation (Wu et al. [1],
Purser et al. [2]), but mesoscale features are still poorly
resolved in the analyzed incremental fields even in areas
covered by remotely sensed high-resolution observations,
such as those from operational weather radars (Liu et al.
[3]). This problem is common for the widely adopted single-
step approach in operational variational data assimilation,
especially when patchy high-resolution observations, such
as those remotely sensed from radars and satellites, are
assimilated together with coarse-resolution observations into
a high-resolution model. To solve this problem, multiscale
and multistep approaches were explored and proposed by
several authors (Xie et al. [4], Gao et al. [5], Li et al. [6], and
Xu et al. [7, 8]). For a two-step approach (or the first two

steps of a multistep approach) in which broadly distributed
coarse-resolution observations are analyzed first and then
locally distributed high-resolution observations are analyzed
in the second step, an important issue is how to objectively
estimate or efficiently compute the analysis error covariance
for the analyzed field that is obtained in the first step and
used to update the background field in the second step. To
address this issue, spectral formulationswere derived byXu et
al. [8] for estimating the analysis error covariance. As shown
in Xu et al. [8], the analysis error covariance can be computed
very efficiently from the spectral formulations with very (or
fairly) good approximations for uniformly (or nonuniformly)
distributed coarse-resolution observations and, by using the
approximately computed analysis error covariance, the two-
step analysis can outperform the single-step analysis under
the same computational constraint (that mimics the opera-
tional situation).
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The analysis error covariance functions computed from
the spectral formulations in Xu et al. [8] are spatially
homogeneous, so their associated error variances are spatially
constant. Although such a constant error variance can rep-
resent the spatial averaged value of the true analysis error
variance, it cannot capture the spatial variation in the true
analysis error variance. The true analysis error variance can
have significant spatial variations, especially when the coarse-
resolution observations become increasingly nonuniform
and/or sparse. In this case, the spatial variation of analysis
error variance and associated spatial variation in analysis
error covariance need to be estimated based on the spatial
distribution of the coarse-resolution observations in order
to further improve the two-step analysis. This paper aims to
explore and address this issue beyond the preliminary study
reported in Xu andWei [9]. In particular, as will be shown in
this paper, analytic formulations for efficiently estimating the
spatial variation of analysis error variance can be constructed
by properly combining the error variance reduction produced
by analyzing each and every coarse-resolution observation
as a single observation, and the estimated analysis error
variance can be used to further estimate the related variation
in analysis error covariance. The detailed formulations are
presented for one-dimensional cases first in the next section
and then extended to two-dimensional cases in Section 3.
Idealized numerical experiments are performed for one-
dimensional cases in Section 4 and for two-dimensional cases
in Section 5 to show the effectiveness of these formulations
for improving the two-step analysis. Conclusions follow in
Section 6.

2. Analysis Error Variance Formulations for
One-Dimensional Cases

2.1. Error Variance Reduction Produced by a Single Observa-
tion. When observations are optimally analyzed in terms of
the Bayesian estimation (see chapter 7 of Jazwinski [10]), the
background state vector b is updated to the analysis state
vector a with the following analysis increment:

Δa ≡ a − b = BHT (HBHT + R)−1 d, (1a)

and the background error covariance matrix B is updated to
the analysis error covariance matrix A according to

A = B − BHT (HBHT + R)−1HB, (1b)

where R is the observation error covariance matrix, d = y −
h(b) is the innovation vector (observationminus background
in the observation space), y is the observation vector, h()
denotes the observation operator, andH is the linearized h().
For a single observation, say, at 𝑥𝑚 in the one-dimensional
space of 𝑥, the inverse matrix (HBHT + R)−1 reduces to
(𝜎2𝑏 + 𝜎2𝑜)−1, so the 𝑖th diagonal element of A in (1b) is simply
given by

𝜎2𝑚 (𝑥𝑖) ≡ 𝜎2𝑏 − 𝛾𝑏 [𝜎𝑏𝐶𝑏 (𝑥𝑖 − 𝑥𝑚)]2 , (2)

where 𝛾𝑏 = 𝜎2𝑏/(𝜎2𝑏 + 𝜎2𝑜), 𝜎2𝑏 (or 𝜎2𝑜) is the background
(or observation) error variance, 𝐶𝑏(𝑥) is the background
error correlation function, 𝑥𝑖 denotes the 𝑖th point in the
discretized analysis space 𝑅𝑁, and 𝑁 is the number of grid
points over the analysis domain. The length of the analysis
domain is 𝐷 = 𝑁Δ𝑥, where Δ𝑥 is the analysis grid spacing
and 𝐷 is assumed to be much larger than the background
error decorrelation length scale 𝐿.

Note that 𝐶𝑏(𝑥) is a continuous function of 𝑥, so (2) can
be written into 𝜎2𝑚(𝑥) ≡ 𝜎2𝑏 − Δ𝜎2𝑚(𝑥) also as a continuous
function of 𝑥, where

Δ𝜎2𝑚 (𝑥) ≡ 𝛾𝑏 [𝜎𝑏𝐶𝑏 (𝑥𝑖 − 𝑥𝑚)]2 (3)

is the error variance reduction produced by analyzing a single
observation at 𝑥 = 𝑥𝑚. The error variance reduction in
(3) decreases rapidly as |𝑥 − 𝑥𝑚| increases, and it becomes
much smaller than it peak value of 𝛾𝑏𝜎2𝑏C2𝑏 at 𝑥 = 𝑥𝑚 as|𝑥 − 𝑥𝑚| increases to 𝐿. This implies that the error variance
reduction produced by analyzing 𝑀 sparsely distributed
coarse-resolution observations can be estimated by properly
combining the error variance reduction computed by (3) for
each coarse-resolution observation as a single observation.
This idea is explored in the following three subsections
for one-dimensional cases with successively increased com-
plexity and generality: from uniformly distributed coarse-
resolution observations with periodic extension to nonuni-
formly distributed coarse-resolution observations without
periodic extension.

2.2. Uniform Coarse-Resolution Observations with Periodic
Extension. Consider that there are 𝑀 coarse-resolution
observations uniformly distributed in the above analysis
domain of length 𝐷 with periodic extension, so their res-
olution is Δ𝑥co ≡ 𝐷/𝑀. In this case, the error variance
reduction produced by each observation can be considered
as an additional reduction to the reduction produced by its
neighboring observations, and this additional reduction is
always smaller than the reduction produced by the same
observation but treated as a single observation. This implies
that the error variance reduction produced by analyzing the
𝑀 coarse-resolution observations, denoted by Δ𝜎2𝑀(𝑥), is
bounded above by ∑𝑚 Δ𝜎2𝑚(𝑥); that is,

Δ𝜎2𝑀 (𝑥) ≤ ∑
𝑚

Δ𝜎2𝑚 (𝑥) , (4)

where∑𝑚 denotes the summation over𝑚 for the𝑀 observa-
tions. The equality in (4) is for the limiting case of Δ𝑥co/𝐿 →∞ only. The inequality in (4) implies that the domain-
averaged value of∑𝑚 Δ𝜎2𝑚(𝑥) is larger than the true averaged
reduction estimated by Δ𝜎2𝑏𝑒 ≡ 𝜎2𝑏 − 𝜎2𝑒 , where 𝜎2𝑒 is the
domain-averaged analysis error variance estimated by the
spectral formulation for one-dimensional cases in Section 2.2
of Xu et al. [8].
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The domain-averaged value of ∑𝑚 Δ𝜎2𝑚(𝑥) can be com-
puted by

Δ𝜎2𝑏𝑠 ≡ ∫
𝐷
𝑑𝑥∑𝑚 Δ𝜎2𝑚 (𝑥)

𝐷
= 𝛾𝑏𝜎2𝑏 ∑𝑚 ∫𝐷 𝑑𝑥𝐶2𝑏 (𝑥 − 𝑥𝑚)

𝐷
≈ 𝛾𝑏𝜎2𝑏 ∑𝑚∑𝑖 𝐶2𝑏 (𝑥𝑖 − 𝑥𝑚)𝑁 ,

(5a)

where ∫
𝐷
𝑑𝑥 denotes the integration over the analysis

domain, ∑𝑖 denotes the summation over 𝑖 for the 𝑁 grid
points, and 𝐷 = 𝑁Δ𝑥 is used in the last step. By extending𝐶2𝑏(𝑥 − 𝑥𝑚) with the analysis domain periodically, Δ𝜎2𝑏𝑠 can
be also estimated analytically as follows:

Δ𝜎2𝑏𝑠 ≡ ∫
𝐷
𝑑𝑥∑𝑚 Δ𝜎2𝑚 (𝑥)

𝐷
= 𝛾𝑏𝜎2𝑏 ∑𝑚∑𝑘 ∫𝐷 𝑑𝑥𝐶2𝑏 (𝑥 − 𝑥𝑚 − 𝑘𝐷)

𝐷
= 𝛾𝑏𝜎2𝑏𝑀∫𝑑𝑥𝐶2𝑏 (𝑥)𝐷 = 𝛾𝑏𝜎2𝑏𝐼1𝐿Δ𝑥co

,

(5b)

where ∫𝑑𝑥 denotes the integration over the infinite space
of 𝑥, ∑𝑚∑𝑘 ∫𝐷 𝑑𝑥𝐶2𝑏(𝑥 − 𝑥𝑚 − 𝑘𝐷) = ∑𝑚 ∫𝑑𝑥𝐶2𝑏(𝑥 − 𝑥𝑚)
= ∑𝑚 ∫𝑑𝑥𝐶2𝑏(𝑥) = 𝑀∫𝑑𝑥𝐶2𝑏(𝑥) is used in the second to
last step, and 𝐼1 ≡ ∫𝐶2𝑏(𝑥)𝑑𝑥/𝐿 is used with Δ𝑥co ≡𝐷/𝑀 in the last step. For the double-Gaussian form of𝐶𝑏(𝑥) = 0.6 exp(−𝑥2/2𝐿2) + 0.4 exp(−2𝑥2/𝐿2) used in (5)
of Xu et al. [8], we have 𝐼1 = (2𝜋)1/2(0.44/21/2 + 0.48/51/2).
The analytically derived value in (5b) is very close to (slightly
larger than) the numerically computed value from (5a). With
the domain-averaged value of∑𝑚 Δ𝜎2𝑚(𝑥) adjusted fromΔ𝜎2𝑏𝑠
to Δ𝜎2𝑏𝑒, Δ𝜎2𝑀(𝑥) can be estimated by

Δ𝜎2𝑀 (𝑥) = ∑
𝑚

Δ𝜎2𝑚 (𝑥) − Δ𝜎2𝑏𝑠 + Δ𝜎2𝑏𝑒. (6)

The analysis error variance, 𝜎2𝑎(𝑥), is then estimated by

𝜎2𝑎 (𝑥) ≈ 𝜎2𝑎∗ (𝑥) ≡ 𝜎2𝑏 − Δ𝜎2𝑀 (𝑥) . (7)

As shown by the example in Figure 1 (in which 𝐷 =
110.4 km and 𝑀 = 10 so Δ𝑥co = 𝐷/𝑀 = 11.04 km
is close to 𝐿 = 10 km), the estimated 𝜎2𝑎∗(𝑥) in (7) has
nearly the same spatial variation as the benchmark 𝜎2𝑎(𝑥)
that is computed precisely from (1b), although the amplitude
of spatial variation of 𝜎2𝑎∗(𝑥), defined by max 𝜎2𝑎∗(𝑥) −
min𝜎2𝑎∗(𝑥), is slightly smaller than that of the true 𝜎2𝑎(𝑥),
defined by max 𝜎2𝑎(𝑥) −min𝜎2𝑎(𝑥). As shown in Figure 2, the
amplitude of spatial variation of benchmark 𝜎2𝑎(𝑥) decreases
rapidly to virtually zero and then exactly zero (or increases
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Figure 1: Benchmark analysis error variance 𝜎2𝑎(𝑥) plotted by red
solid curve and estimated analysis error variance 𝜎2𝑎∗ (𝑥) in (7)
plotted by blue dotted curve. The green dashed line shows the
constant analysis error variance 𝜎2𝑒 estimated from the spectral
formulation.The purple + signs show the observation error variance
(𝜎2𝑜 = 2.52m2s−2) at the locations of 𝑀 (=10) uniformly distributed
coarse-resolution observations with Δ𝑥co = 𝐷/𝑀 (=11.04 km). The
background error covariance𝜎2𝑏𝐶𝑏(𝑥) has the double-Gaussian form
with 𝐶𝑏(𝑥) = 0.6 exp(−𝑥2/2𝐿2) + 0.4 exp(−2𝑥2/𝐿2), 𝜎2𝑏 = 52m2s−2
and 𝐿 = 10 km.The analysis domain length is𝐷 = 𝑁Δ𝑥 = 110.4 km
with 𝑁 = 260 and Δ𝑥 = 0.24 km, and the number of coarse-
resolution observations is𝑀 = 10.

monotonically toward its asymptotic upper limit of 𝛾𝑏𝜎2𝑏 =
20m2 s−2) as Δ𝑥co/𝐿 decreases to 0.5 and then to Δ𝑥/𝐿 = 0.1
(or increases toward∞), and this decrease (or increase) of the
amplitude of spatial variation of 𝜎2𝑎(𝑥) with Δ𝑥co/𝐿 is closely
captured by the amplitude of spatial variation of the estimated𝜎2𝑎∗(𝑥) as a function of Δ𝑥co/𝐿.

Using the estimated 𝜎𝑎∗(𝑥) in (7), the previously esti-
mated analysis error covariance matrix, denoted by A𝑒 with
its 𝑖𝑗th element 𝐴𝑒𝑖𝑗 ≡ 𝜎2𝑒𝐶𝑎(𝑥𝑖 − 𝑥𝑗) obtained from the
spectral formulations, can bemodified intoA𝑎,A𝑏, orA𝑐 with
its 𝑖𝑗th element given by

𝐴𝑎𝑖𝑗 ≡ 𝜎𝑎∗ (𝑥𝑖) 𝜎𝑎∗ (𝑥𝑗) 𝐶𝑎 (𝑥𝑖 − 𝑥𝑗)
= 𝐴𝑒𝑖𝑗

+ [𝜎𝑎∗ (𝑥𝑖) 𝜎𝑎∗ (𝑥𝑗) − 𝜎2𝑒 ] 𝐶𝑎 (𝑥𝑖 − 𝑥𝑗) ,
(8a)

𝐴𝑏𝑖𝑗 ≡ 𝐴𝑒𝑖𝑗 + {𝜎2𝑎∗ (𝑥𝑖2 + 𝑥𝑗
2 ) − 𝜎2𝑒}𝐶𝑎 (𝑥𝑖 − 𝑥𝑗)

= 𝜎2𝑎∗ (𝑥𝑖2 + 𝑥𝑗
2 )𝐶𝑎 (𝑥𝑖 − 𝑥𝑗) ,

(8b)

or 𝐴𝑐𝑖𝑗 ≡ 𝐴𝑒𝑖𝑗 + {𝜎2𝑎∗ (𝑥𝑖2 + 𝑥𝑗
2 ) − 𝜎2𝑒}𝐶𝑏 (𝑥𝑖 − 𝑥𝑗) . (8c)
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Figure 2: Amplitude of spatial variation of benchmark 𝜎2𝑎(𝑥),
defined by max𝜎2𝑎(𝑥) − min𝜎2𝑎(𝑥), plotted by red solid curve as
a function of Δ𝑥co/𝐿. Amplitude of spatial variation of estimated𝜎2𝑎∗ (𝑥), defined by max 𝜎2𝑎∗ (𝑥) − min𝜎2𝑎∗ (𝑥) and plotted by blue
dotted curve as a function of Δ𝑥co/𝐿.
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Figure 3: Structure of benchmarkA plotted by color contours every
1m2s−2 for the case in Figure 1.

The formulation in (8a) is conventional, as in (2.1) of Purser
et al. [2] or originally (11) of Rutherford [11], in which the
covariance is modified by applying 𝜎𝑎∗(𝑥) separately to each
entry (indexed by 𝑖 and 𝑗) of 𝐶𝑎(𝑥𝑖 − 𝑥𝑗) to retain the
self-adjointness. The second equation in (8a) shows that the
conventional approach can be viewed alternatively as 𝐴𝑒𝑖𝑗
plus a correction term, the last term in (8a). Ideally, the
correction term should completely offset the deviation of𝐴𝑒𝑖𝑗
from the true covariance, but the correction term in (8a)
offsets only a part of the deviation.

For the case in Figure 1, the benchmark analysis error
covariance matrix, denoted byA, is computed precisely from
(1b) and is plotted in Figure 3, while the deviations of A𝑒, A𝑎,
A𝑏, andA𝑐 from the benchmarkA are shown in Figures 4(a),

4(b), 4(c), and 4(d), respectively. As shown, the deviation
becomes increasingly small whenA𝑒 is modified successively
to A𝑎, A𝑏, and A𝑐. Note that the correction term in (8a) is𝐶𝑎(𝑥𝑖−𝑥𝑗)modulated by𝜎𝑎∗(𝑥𝑖)𝜎𝑎∗(𝑥𝑗)−𝜎2𝑒 .Thismodulation
has a chessboard structure, while the desired modulation
revealed by the to-be-corrected deviation ofA𝑐 in Figure 4(a)
has a banded structure (along the direction of 𝑥𝑖 + 𝑥𝑗 =
constant, perpendicular to the diagonal line). This explains
why the correction term in (8a) offsets only a part of the
deviation as revealed by the deviation of A𝑎 in Figure 4(b).
On the other hand, the correction term in (8b) is modulated
by 𝜎2𝑎∗(𝑥𝑖/2+𝑥𝑗/2)−𝜎2𝑒 .This modulation not only retains the
self-adjointness but also has the desired banded structure, so
the correction term in (8b) is an improvement over that in
(8a), as shownby the deviation ofA𝑏 in Figure 4(c) versus that
of A𝑎 in Figure 4(b). However, as revealed by Figure 4(c), the
deviation of A𝑏 still has two significant maxima (or minima)
along each band on the two sides of the diagonal line of 𝑥𝑖 =𝑥𝑗, while the to-be-corrected deviation of A𝑒 in Figure 4(a)
has a single maximum (or minimum) along each band. This
implies that the function form of𝐶𝑎(𝑥𝑖−𝑥𝑗) is not sufficiently
wide for the correction. As a further improvement, this
function form is widened to 𝐶𝑏(𝑥𝑖 − 𝑥𝑗) for the correction
term in (8c), so the deviation of A𝑐 in Figure 4(d) is further
reduced from that of A𝑏 in Figure 4(c).

When an estimated A is used to update the background
error covariance in the second step for analyzing the high-
resolution observations in the nested domain, the accuracy of
the second-step analysis depends not only, to a certain extent,
on the number of iterations performed by the minimization
algorithm but also on the accuracy of the estimated A over
the nested domain plus its extended vicinities within the
distance of 2𝐿𝑎 outside the nested domain. Here, 𝐿𝑎 is
the decorrelation length scale of 𝐶𝑎(𝑥) defined by 𝐿2𝑎 ≡
[−𝐶𝑎(𝑥)/𝑑2𝑥𝐶𝑎(𝑥)]|𝑥=0 according to (4.3.10) of Daley [12], and𝐿𝑎 (=4.45 km for the case in Figures 1 and 3) can be easily
computed as a by-product from the spectral formulation.
Over this extended nested domain, the relative error (RE)
of the estimated A𝑒 with respect to the benchmark A can be
measured by

RE (A𝑒) ≡
󵄩󵄩󵄩󵄩I𝑠 (A𝑒 − A) I𝑠󵄩󵄩󵄩󵄩𝐹󵄩󵄩󵄩󵄩I𝑠AI𝑠󵄩󵄩󵄩󵄩𝐹 , (9)

where I𝑠 denotes the unit matrix in the subspace associated
with the grid points in the extended nested domain and
thus I𝑠(A𝑒 − A)I𝑠 (or I𝑠AI𝑠) is the submatrix of A𝑒 − A
(or A) associated only with the grid points in the extended
nested domain and ‖()‖𝐹 denotes the Frobenius norm of
() defined by the square root of the sum of the squared
absolute values of the elements of the matrix in () according
to (2.2–4) of Golub and Van Loan [13]. The REs of A𝑎, A𝑏,
andA𝑐 can bemeasured by the same form of Frobenius norm
ratio as that defined for A𝑒 in (9). The REs of A𝑒, A𝑎, A𝑏,
and A𝑐 are computed for the case in Figure 1 and listed in
the first column of Table 1. As shown by the listed values,
the RE becomes increasingly small when A𝑒 is modified
successively toA𝑎,A𝑏, andA𝑐, and this is consistent with and
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Figure 4: (a) Deviation of A𝑒 from benchmark A in Figure 3 plotted by color contours every 0.5m2s−2. Deviations of A𝑎, A𝑏, and A𝑐 from
benchmarkA are plotted by color contours every 0.2m2s−2 in panels (b), (c), and (d), respectively. Here,A𝑒 is the previously estimated analysis
error covariance matrix with its 𝑖𝑗th element𝐴 𝑒𝑖𝑗 ≡ 𝜎2𝑒𝐶𝑎(𝑥𝑖 −𝑥𝑗) obtained from the spectral formulation, whileA𝑎,A𝑏, andA𝑐 are the newly
modified estimates of A as shown in (8a), (8b), and (8c), respectively.

also quantifies the successively reduced deviation shown in
Figures 4(a)–4(d).

2.3. Nonuniform Coarse-Resolution Observations with Peri-
odic Extension. Consider that the𝑀 coarse-resolution obser-
vations are now nonuniformly distributed in the analysis
domain of length𝐷with periodic extension, so their averaged
resolution can be defined by Δ𝑥co ≡ 𝐷/𝑀. The spacing
of a concerned coarse-resolution observation, say the 𝑚th
observation, from its right (or left) adjacent observation can
be denoted by Δ𝑥co𝑚+ (or Δ𝑥co𝑚−). Now we can consider the
following two limiting cases.

First, we consider the case of Δ𝑥co𝑚+ → 0 with Δ𝑥co𝑚− =Δ𝑥co (or Δ𝑥co𝑚− → 0 with Δ𝑥co𝑚+ = Δ𝑥co). In this
case, the concerned𝑚th observation collapses onto the same
point with its right (or left) adjacent observation, that is, the(𝑚 + 1)th [or (𝑚 − 1)th] observation. The two collapsed
observations should be combined into one superobservation
with a reduced error variance from 𝜎2𝑜 to 𝜎2𝑜/2. The error
variance reduction produced by this superobservation still
can be estimated by (3) but with

𝛾𝑏 = 𝜎2𝑏(𝜎2
𝑏
+ 𝜎2𝑜/2) . (10a)
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Table 1: Entire-domain averaged RMS errors (in ms−1) for the analysis increments obtained from SE, TEe, TEa, TEb, and TEc applied to the
first set of innovations with periodic extension and consecutively increased 𝑛, where 𝑛 is the number of iterations. All the RMS errors are
evaluated with respect to the benchmark analysis increment. The relative error (RE) of the estimated analysis error covariance for updating
the background error covariance in the second step of the two-step analysis is listed with the experiment name in the first column for each
two-step experiment.

Experiment 𝑛 = 20 𝑛 = 50 𝑛 = 100 Final
SE 0.671 0.365 0.187 0.013 at 𝑛 = 481
TEe with RE(A𝑒) = 0.229 0.171 0.150 0.142 0.135 at 𝑛 = 210
TEa with RE(A𝑎) = 0.156 0.169 0.142 0.144 0.144 at 𝑛 = 116
TEb with RE(A𝑏) = 0.101 0.147 0.098 0.090 at 𝑛 = 67
TEc with RE(A𝑐) = 0.042 0.145 0.063 0.062 0.032 at 𝑛 = 176

On the other hand, without super-Obbing, the error variance
reduction produced by the two collapsed observations will be
overestimated by (3) with

𝛾𝑏 = 2𝜎2𝑏(𝜎2
𝑏
+ 𝜎2𝑜) = 𝜎2𝑏(𝜎2

𝑏
/2 + 𝜎2𝑜/2) . (10b)

By comparing (10b) with (10a), it is easy to see that this
overestimation can be corrected if the error variance is
inflated from 𝜎2𝑜 to 𝜎2𝑜 + 𝜎2𝑏 for each of the two collapsed
observations.

Then, we consider the case of Δ𝑥co𝑚+ → 0 and Δ𝑥co𝑚− →0. In this case, the concerned𝑚th observation collapses with
its two adjacent observations, that is, the (𝑚 + 1)th and (𝑚 −1)th observations. The three collapsed observations should
be combined into one superobservation with a reduced error
variance from 𝜎2𝑜 to 𝜎2𝑜/3. The error variance reduction
produced by this superobservation still can be estimated by
(3) but with

𝛾𝑏 = 𝜎2𝑏(𝜎2
𝑏
+ 𝜎2𝑜/3) . (10c)

On the other hand, without super-Obbing, the error variance
reduction produced by the three collapsed observations will
be overestimated by (3) with

𝛾𝑏 = 3𝜎2𝑏(𝜎2
𝑏
+ 𝜎2𝑜) = 𝜎2𝑏(𝜎2

𝑏
/3 + 𝜎2𝑜/3) . (10d)

By comparing (10d) with (10c), it is easy to see that this
overestimation can be corrected if the error variance is
inflated from 𝜎2𝑜 to 𝜎2𝑜 + 2𝜎2𝑏 for each of the three collapsed
observations.

Based on the above analyses, when the error variance
reduction produced by the 𝑚th observation is estimated by
(3), the error variance should be adjusted for this observation
unless Δ𝑥co𝑚+ = Δ𝑥co𝑚− = Δ𝑥co. In particular, its error
variance can be adjusted from 𝜎2𝑜 to 𝜎2𝑜𝑚 = 𝜎2𝑜 + 𝛽𝑚𝜎2𝑏 with𝛽𝑚 given empirically by

𝛽𝑚 = [𝐶2𝑏 (Δ𝑥co𝑚+) + 𝐶2𝑏 (Δ𝑥co𝑚−) − 2𝐶2𝑏 (Δ𝑥co)]
[1 − 𝐶2

𝑏
(Δ𝑥co)] . (11a)

Note that 𝛽𝑚 = 2 for Δ𝑥co𝑚+ = Δ𝑥co𝑚− = 0, so the
adjusted error variance is 𝜎2𝑜𝑚 = 𝜎2𝑜 + 2𝜎2𝑏 which recovers

the result derived from (10c)-(10d). Note also that 𝛽𝑚 = 1
for Δ𝑥co𝑚+ = 0 and Δ𝑥co𝑚− = Δ𝑥co (or Δ𝑥co𝑚− = 0 andΔ𝑥co𝑚+ = Δ𝑥co), so the adjusted error variance is 𝜎2𝑜𝑚 =
𝜎2𝑜 + 𝜎2𝑏 which recovers the result derived from (10a)-(10b).
Clearly, for Δ𝑥co𝑚− = Δ𝑥co𝑚+ = Δ𝑥co, 𝛽𝑚 = 0, so 𝜎2𝑜 is not
adjusted which recovers the result for uniformly distributed
coarse-resolution observations.

The above results suggest that 𝛾𝑏 = 𝜎2𝑏/(𝜎2𝑏 + 𝜎2𝑜 ) should
be modified into

𝛾𝑚 = 𝜎2𝑏(𝜎2
𝑏
+ 𝛽𝑚𝜎2𝑏 + 𝜎2𝑜)

for the definition of Δ𝜎2𝑚 (𝑥) in (3) .
(11b)

This modification can improve the similarity of the spatial
variation of ∑𝑚 Δ𝜎2𝑚(𝑥) to that of the true error variance
reduction, denoted by Δ𝜎2𝑏𝑎(𝑥) ≡ 𝜎2𝑏 − 𝜎2𝑎(𝑥), but the
maximum (or minimum) of ∑𝑚 Δ𝜎2𝑚(𝑥), denoted by Δ𝜎2emx
(or Δ𝜎2emn), is usually not very close to that of Δ𝜎2𝑏𝑎(𝑥).
The maximum (or minimum) of Δ𝜎2𝑏𝑎(𝑥) can be closely
estimated by Δ𝜎2mx (or Δ𝜎2mn), the maximum (or minimum)
of Δ𝜎2𝑀(𝑥) computed by (6) for uniform coarse-resolution
observations but with Δ𝑥co decreased to Δ𝑥omn (or increased
toΔ𝑥omx), whereΔ𝑥omn (orΔ𝑥omx) is theminimum (ormax-
imum) spacing between two adjacent observations among all
nonuniformly distributed coarse-resolution observations in
the one-dimension analysis domain. By adjusting Δ𝜎2emx to
Δ𝜎2mx and Δ𝜎2emn to Δ𝜎2mn, the error variance reduction can
be estimated by

Δ𝜎2𝑀 (𝑥) = 𝐹 (𝑥) ≡ [∑
𝑚

Δ𝜎2𝑚 (𝑥) − Δ𝜎2emn] 𝜌 + Δ𝜎2mn, (12a)

where 𝜌 = [Δ𝜎2mx − Δ𝜎2mn]/[Δ𝜎2emx − Δ𝜎2emn].
The analysis error variance is then estimated by 𝜎2𝑎(𝑥) ≈

𝜎2𝑎∗(𝑥) ≡ 𝜎2𝑏 − Δ𝜎2𝑀(𝑥) as in (7), except that Δ𝜎2𝑀(𝑥) is
computed by (12a) instead of (6). As shown by the example
in Figure 5, the estimated 𝜎2𝑎∗(𝑥) captures closely not only
the maximum and minimum but also the spatial variation
of the benchmark 𝜎2𝑎(𝑥) computed from (1b). Using this
estimated 𝜎𝑎∗(𝑥), the previously estimated A𝑒 from the
spectral formulation can be modified into A𝑎, A𝑏, or A𝑐 with
its 𝑖𝑗th element given by the same formulation as shown in
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Figure 5: As in Figure 1 but for 𝑀 (=10) nonuniformly distributed
coarse-resolution observations.

−200

−150

−100

j

−50

0

50

100

150

200

−150 −100 −50 0 50 100 150 200−200

i

Figure 6: As in Figure 3 but for the case in Figure 5.

(8a), (8b), or (8c). For the case in Figure 5, the benchmark
A is plotted in Figure 6, while the deviations of A𝑒, A𝑎, A𝑏,
and A𝑐 from the benchmark A are shown in Figures 7(a),
7(b), 7(c), and 7(d), respectively. As shown, the deviation
becomes increasingly small when the estimated analysis error
covariance matrix is modified successively to A𝑎, A𝑏, and A𝑐.

As explained in Section 2.2, the accuracy of the second-
step analysis depends on the accuracy of the estimatedA over
the extended nested domain (i.e., the nested domain plus its
extended vicinities within the distance of 2𝐿𝑎 on each side
outside the nested domain), while the latter can be measured
by the smallness of the RE of the estimated A with respect to
the benchmarkA, as defined forA𝑒 in (9).The REs ofA𝑒,A𝑎,
A𝑏, and A𝑐 computed for the case in Figure 5 are listed in the
first column of Table 2. As listed, the RE becomes increasingly

small when A𝑒 is modified successively to A𝑎, A𝑏, and A𝑐,
which quantifies the successively reduced deviation shown in
Figures 7(a)–7(d).

2.4. Nonuniform Coarse-Resolution Observations without
Periodic Extension. Consider that the 𝑀 coarse-resolution
observations are still nonuniformly distributed in the one-
dimensional analysis domain of length 𝐷 but without peri-
odic extension. In this case, their produced error variance
reduction Δ𝜎2𝑀(𝑥) still can be estimated by (12a) except for
the following three modifications.

(i) The maximum (or minimum) of ∑𝑚 Δ𝜎2𝑚(𝑥), that is,Δ𝜎2emx (or Δ𝜎2emn), should be found in the interior domain
between the leftist and rightist observation points.

(ii) For the leftist (or rightist) observation that has
only one adjacent observation to its right (or left) in the
one-dimensional analysis domain, its error variance is still
adjusted from 𝜎2𝑜 to 𝜎2𝑜𝑚 = 𝜎2𝑜 + 𝛽𝑚𝜎2𝑏 but 𝛽𝑚 is calculated
by setting 𝐶2𝑏(Δ𝑥co𝑚−) = 0 [or 𝐶2𝑏(Δ𝑥co𝑚+) = 0] in (11a) for
calculating 𝛾𝑚 in (11b).

(iii) Note from (12a) that ∑𝑚 Δ𝜎2𝑚(𝑥) → 0 and thus
𝐹(𝑥) → Δ𝜎2mn−𝜌Δ𝜎2emn as𝑥moves outward far away from the
leftist (or rightist) measurement point and thus far away from
all the observations points. In this case, if Δ𝜎2mn −𝜌Δ𝜎2emn < 0
(as for the case in this section), then Δ𝜎2𝑀(𝑥) estimated by𝐹(𝑥) in (12a) may become unrealistically negative as 𝑥moves
outward beyond the leftist (or rightist) measurement point,
denoted by 𝑥𝑚𝑏. To avoid this problem, (12a) is modified into

Δ𝜎2𝑀 (𝑥) = 𝐹 (𝑥𝑚𝑏) − [𝐹 (𝑥𝑚𝑏) − 𝐹 (𝑥)] 𝑅1
for 𝑥 beyond 𝑥𝑚𝑏, (12b)

where 𝑅1 is a factor defined by

𝑅1 = min{1, 𝐹 (𝑥𝑚𝑏)[𝐹 (𝑥𝑚𝑏) + 𝜌Δ𝜎2emn − Δ𝜎2mn]} . (13)

It is easy to see from (12b) that for Δ𝜎2mn − 𝜌Δ𝜎2emn < 0 and
thus 𝑅1 = 1, Δ𝜎2𝑀(𝑥) = 𝐹(𝑥𝑚𝑏) − [𝐹(𝑥𝑚𝑏) − 𝐹(𝑥)]𝑅1 → 0 as
|𝑥| → ∞, so the estimatedΔ𝜎2𝑀(𝑥) in (12b) can never become
unrealistically negative.

The analysis error variance is estimated by 𝜎2𝑎(𝑥) ≈
𝜎2𝑎∗(𝑥) ≡ 𝜎2𝑏 − Δ𝜎2𝑀(𝑥) as in (7), except that Δ𝜎2𝑀(𝑥) is
computed by (12a) [or (12b)] for 𝑥 within (or beyond) the
interior domain. As shown by the example in Figure 8, the
estimated 𝜎2𝑎∗(𝑥) captures closely the spatial variation of the
benchmark𝜎2𝑎(𝑥)not onlywithin but also beyond the interior
domain. Using this estimated 𝜎𝑎∗(𝑥), A𝑒 can be modified
into A𝑎, A𝑏, or A𝑐 with its 𝑖𝑗th element given by the same
formulation as shown in (8a), (8b), or (8c). For the case in
Figure 8, the benchmarkA (not shown) has the same interior
structure (for interior grid points 𝑖 and 𝑗) as that for the case
with periodic extension in Figure 6, but significant differences
are seen in the following two aspects around the four corners
(similar to those seen from Figures 7(a) and 11(a) of Xu et
al. [8]). (i) The element value becomes large toward the two
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Figure 7: As in Figure 4 but for the case in Figure 5.

corners along the diagonal line (which is consistent with the
increased analysis error variance toward the two ends of the
analysis domain as shown in Figure 8 in comparison with
that in Figure 5). (ii) The element value becomes virtually
zero toward the two off-diagonal corners (because there is
no periodic extension). The deviations of A𝑒, A𝑎, A𝑏, and A𝑐
from the benchmark A are shown in Figures 9(a), 9(b), 9(c),
and 9(d), respectively, for the case in Figure 8. As shown,
the deviation becomes increasingly small when the estimated
analysis error covariance matrix is modified successively to
A𝑎,A𝑏, andA𝑐.The REs ofA𝑒,A𝑎,A𝑏, andA𝑐 are listed in the
first column of Table 3. As listed, the RE becomes increasingly
small when A𝑒 is modified successively to A𝑎, A𝑏, and A𝑐,
which quantifies the successively reduced deviation shown in
Figures 9(a)–9(d).

3. Analysis Error Variance Formulations for
Two-Dimensional Cases

3.1. Error Variance Reduction Produced by a Single Obser-
vation. For a single observation, say, at x𝑚 ≡ (𝑥𝑚, 𝑦𝑚) in
the two-dimensional space of x = (𝑥, 𝑦), the inverse matrix
(HBH𝑇 + R)−1 in (1b) also reduces to (𝜎2𝑏 + 𝜎2𝑜)−1, so the 𝑖th
diagonal element of A is given by the same formulation as
in (2) except that 𝑥𝑖 (or 𝑥𝑚) is replaced by x𝑖 (or x𝑚). Here,
x𝑖 denotes the 𝑖th point in the discretized analysis space 𝑅𝑁
with 𝑁 = 𝑁𝑥𝑁𝑦, 𝑁𝑥 (or 𝑁𝑦) is the number of analysis grid
points along the 𝑥 (or 𝑦) direction in the two-dimensional
analysis domain.The length (or width) of the analysis domain
is 𝐷𝑥 = 𝑁𝑥Δ𝑥 (or 𝐷𝑦 = 𝑁𝑦Δ𝑦) and is assumed to be much
larger than the background error decorrelation length scale
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Figure 8: As in Figure 5 but without periodic extension.

𝐿 in x, where Δ𝑥 (or Δ𝑦) is the grid spacing in the 𝑥 (or 𝑦)
direction and Δ𝑥 = Δ𝑦 is assumed for simplicity.

Since 𝐶𝑏(x) is a continuous function of x, the aforemen-
tioned formulation for the 𝑖th diagonal element of A can
be written into 𝜎2𝑚(x) ≡ 𝜎2𝑏 − Δ𝜎2𝑚(x) also as a continuous
function of x, where

Δ𝜎2𝑚 (x) ≡ 𝛾𝑏 [𝜎𝑏𝐶𝑏 (x − x𝑚)]2 (14)

is the error variance reduction produced by analyzing a single
observation at x = x𝑚. This reduction decreases rapidly and
becomes much smaller than it peak value of 𝛾𝑏𝜎2𝑏𝐶2𝑏 at x = x𝑚
as |x − x𝑚| increases to 𝐿 and beyond.

3.2. Uniform Coarse-Resolution Observations with Periodic
Extension. Consider that there are 𝑀 coarse-resolution
observations uniformly distributed in the above analysis
domain of length 𝐷𝑥 and width 𝐷𝑦 with periodic extension
along 𝑥 and 𝑦, so their resolution is Δ𝑥co ≡ (𝐷𝑥𝐷𝑦)1/2/𝑀1/2,
where 𝑀 = 𝑀𝑥𝑀𝑦, 𝑀𝑥 (or 𝑀𝑦) denotes the number of
observations uniformly distributed along the 𝑥 (or 𝑦) direc-
tion in the two-dimensional analysis domain, and 𝐷𝑥/𝑀𝑥 =𝐷𝑦/𝑀𝑦 is assumed (so Δ𝑥co = 𝐷𝑥/𝑀𝑥 = 𝐷𝑦/𝑀𝑦). In this
case, as explained for the one-dimensional case in Section 2.2,
the error variance reduction produced by each observation
can be considered as an additional reduction to the reduction
produced by its neighboring observations. This additional
reduction is smaller than the reduction produced by a single
observation, so the error variance reduction produced by
analyzing the 𝑀 coarse-resolution observations is bounded
above by ∑𝑚 Δ𝜎2𝑚(x), which is similar to that for the one-
dimensional case in (4). For the same reason as explained
for the one-dimensional case in (4), this implies that the
domain-averaged value of ∑𝑚 Δ𝜎2𝑚(x) is larger than the true
averaged reduction estimated by Δ𝜎2𝑏𝑒 ≡ 𝜎2𝑏 − 𝜎2𝑒 , where 𝜎2𝑒 is
the domain-averaged analysis error variance estimated by the

spectral formulation for two-dimensional cases in Section 2.3
of Xu et al. [8].

The domain-averaged value of ∑𝑚 Δ𝜎2𝑚(x) can be com-
puted by

Δ𝜎2𝑏𝑠 ≡ ∬
𝐷
𝑑x∑𝑚 Δ𝜎2𝑚 (x)
(𝐷𝑥𝐷𝑦)

= 𝛾𝑏𝜎2𝑏 ∑𝑚∬𝐷𝑑x𝐶2𝑏 (x − x𝑚)
(𝐷𝑥𝐷𝑦)

≈ 𝛾𝑏𝜎2𝑏 ∑𝑚∑𝑖 𝐶2𝑏 (x𝑖 − x𝑚)𝑁 ,

(15a)

where ∬
𝐷
𝑑x denotes the integration over the two-

dimensional analysis domain, ∑𝑖 denotes the summation
over 𝑖 for the 𝑁 grid points, and 𝐷𝑥𝐷𝑦 = 𝑁𝑥Δ𝑥𝑁𝑦Δ𝑦 =
𝑁Δ𝑥Δ𝑦 is used in the last step. By extending 𝐶2𝑏(x − x𝑚)
with the analysis domain periodically in both the 𝑥 and 𝑦
directions, Δ𝜎2𝑏𝑠 can be estimated analytically as follows:

Δ𝜎2𝑏𝑠 ≡ ∬
𝐷
𝑑x∑𝑚 Δ𝜎2𝑚 (x)
(𝐷𝑥𝐷𝑦)

= 𝛾𝑏𝜎2𝑏 ∑𝑚∑𝑝∑𝑞∬𝐷𝑑𝑥 𝑑𝑦𝐶2𝑏 (𝑥 − 𝑥𝑚 − 𝑝𝐷𝑥, 𝑦 − 𝑦𝑚 − 𝑞𝐷𝑦)
(𝐷𝑥𝐷𝑦)

= 𝛾𝑏𝜎2𝑏𝑀∬𝑑x𝐶2𝑏 (x)
(𝐷𝑥𝐷𝑦) = 𝛾𝑏𝜎2𝑏𝐼2𝐿2Δ𝑥2co ,

(15b)

where ∬𝑑x = ∬𝑑𝑥𝑑𝑦 denotes the integration over the
entire space of x, ∑𝑚∑𝑝∑𝑞∬𝐷𝐶2𝑏(𝑥 − 𝑥𝑚 − 𝑝𝐷𝑥, 𝑦 −
𝑦𝑚 − 𝑞𝐷𝑦) = ∑𝑚∬𝑑x𝐶2𝑏(x − x𝑚) = ∑𝑚∬𝑑x𝐶2𝑏(x) =
𝑀∬𝑑x𝐶2𝑏(x) is used in the second to last step, and
𝐼2 ≡ ∬𝑑x𝐶𝑏(x)/𝐿2 is used with Δ𝑥2co ≡ 𝐷𝑥𝐷𝑦/𝑀 in
the last step. For the double-Gaussian form of 𝐶𝑏(x) =0.6 exp(−|x|2/2𝐿2) + 0.4 exp(−2|x|2/𝐿2) used in Section 4 of
Xu et al. [8], we have 𝐼2 = 2𝜋(0.2 + 0.48/5). The derived value
in (15b) is very close to the numerically computed value from
(15a).

With the domain-averaged value adjusted from Δ𝜎2𝑏𝑠 toΔ𝜎2𝑏𝑒, Δ𝜎2𝑀(x) can be estimated by the same formulation as in
(6) except that 𝑥 is replaced by x. The analysis error variance
is then estimated by

𝜎2𝑎 (x) ≈ 𝜎2𝑎∗ (x) ≡ 𝜎2𝑏 − Δ𝜎2𝑀 (x) . (16)

As shown by the example in Figure 10, the estimated 𝜎2𝑎∗(x) in
(16) is very close to the benchmark 𝜎2𝑎(x) computed precisely
from (1b), and the deviation of 𝜎2𝑎∗(x) from the benchmark
𝜎2𝑎(x) is within (−0.21, 0.35)m2s−2. On the other hand, the
constant analysis error variance (𝜎2𝑒 = 6.7m2s−2) estimated by
the spectral formulation deviates from the benchmark 𝜎2𝑎(x)
widely from −1.91 to 2.22m2s−2.

Using the estimated 𝜎𝑎∗(x) in (16), the previously esti-
mated analysis error covariance matrix, denoted by A𝑒 with
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Figure 9: As in Figure 7 but for the case in Figure 8.

its 𝑖𝑗th element 𝐴𝑒𝑖𝑗 ≡ 𝜎2𝑒𝐶𝑎(x𝑖 − x𝑗) obtained from the
spectral formulation, can be modified into A𝑎, A𝑏, or A𝑐
with its 𝑖𝑗th element given by the same formulation as in
(8a), (8b), or (8c) except that 𝑥𝑖 (or 𝑥𝑗) is replaced by
x𝑖 (or x𝑗). Again, as explained in Section 2.2 but for the
two-dimensional case here, the accuracy of the second-step
analysis depends on the accuracy of the estimated A over
the extended nested domain, that is, the nested domain plus
its extended vicinities within the distance of 2𝐿𝑎 outside the
nested domain. Here, 𝐿𝑎 is the decorrelation length scale
of 𝐶𝑎(x) defined by 𝐿2𝑎 ≡ [−2𝐶𝑎(x)/∇2𝐶𝑎(x)]|x=0 according
to (4.3.12) of Daley [12], and 𝐿𝑎 (=4.52 km for the case in
Figure 10) can be easily computed as a by-product from the
spectral formulation. Over this extended nested domain, the
relative error (RE) of each estimated A with respect to the

benchmark A computed precisely from (1b) can be defined
in the same way as that forA𝑒 in (9), except that the extended
nested domain is two-dimensional here. The REs of A𝑒, A𝑎,
A𝑏, andA𝑐 computed for the case in Figure 10 are listed in the
first column of Table 4. As listed, the RE becomes increasingly
small when A𝑒 is modified successively to A𝑎, A𝑏, and
A𝑐.

3.3. Nonuniform Coarse-Resolution Observations with Peri-
odic Extension. Consider that the𝑀 coarse-resolution obser-
vations are now nonuniformly distributed in the analy-
sis domain of length 𝐷𝑥 and width 𝐷𝑦 with periodic
extension, so their averaged resolution can be defined by
Δ𝑥co ≡ (𝐷𝑥𝐷𝑦)1/2/𝑀1/2. The spacing of a concerned coarse-
resolution observation, say the 𝑚th observation, from its
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Figure 10: (a) Benchmark analysis error variance 𝜎2𝑎(x) plotted by red contours of every 2m2s−2 and estimated analysis error variance 𝜎2𝑎∗ (x)
in (16) plotted by blue contours. (b) Deviation of 𝜎2𝑎∗ (x) from 𝜎2𝑎(x) plotted by colored contours of every 0.2m2s−2. The black + signs show the
locations of 𝑀 (=MxMy = 12 × 6) uniformly distributed coarse-resolution observations with periodic extension along 𝑥 and 𝑦. The coarse-
resolution observation resolution is Δ𝑥co = 𝐷𝑥/𝑀𝑥 =𝐷𝑦/𝑀𝑦 = 10 km, and the observation error variance is 𝜎2𝑜 = 2.52m2s−2.The background
error covariance 𝜎2𝑏𝐶𝑏(x) has the double-Gaussian form with 𝐶𝑏(x) = 0.6 exp(−|x|2/2𝐿2) + 0.4 exp(−2|x|2/𝐿2), 𝜎2𝑏 = 52m2s−2, and 𝐿 = 10 km.
The analysis domain length (or width) is𝐷𝑥 = 𝑁𝑥Δ𝑥 = 120 km (or𝐷𝑦 = 𝑁𝑦Δ𝑦 = 60 km), and the number of coarse-resolution observations
isM =MxMy = 12 × 6.

𝑘th adjacent observation (among the total 4 adjacent obser-
vations), can be denoted by Δ𝑥co𝑚𝑘. Now we can consider
the limiting case of Δ𝑥co𝑚𝑘 → 0 for 𝐾 (≤4) adjacent
observations with Δ𝑥co𝑚𝑘 = Δ𝑥co for the remaining 4 − 𝐾
(≥0) adjacent observations. In this case, the concerned 𝑚th
observation collapses onto the same point with its𝐾 adjacent
observations. The 𝐾 + 1 collapsed observations should be
combined into one superobservation with a reduced error
variance from 𝜎2𝑜 to 𝜎2𝑜/(𝐾 + 1). The error variance reduction
produced by this superobservation still can be estimated by
(14) but with

𝛾𝑏 = 𝜎2𝑏[𝜎2
𝑏
+ 𝜎2𝑜/ (𝐾 + 1)] . (17a)

On the other hand, without super-Obbing, the error variance
reduction produced by the 𝐾 + 1 collapsed observations will
be overestimated by (14) with

𝛾𝑏 = (𝐾 + 1) 𝜎2𝑏(𝜎2
𝑏
+ 𝜎2𝑜) = 𝜎2𝑏[𝜎2

𝑏
/ (𝐾 + 1) + 𝜎2𝑜/ (𝐾 + 1)] . (17b)

By comparing (17b) with (17a), it is easy to see that this
overestimation can be corrected if the error variance is
inflated from 𝜎2𝑜 to 𝜎2𝑜𝑚 = 𝜎2𝑜 + 𝐾𝜎2𝑏 for each of the (𝐾 + 1)
collapsed observations.

Based on the above analyses, when the error variance
reduction produced by the concerned 𝑚th observation is
estimated by (14), the error variance should be adjusted for
this observation unless Δ𝑥co𝑚𝑘 = Δ𝑥co for 𝑘 = 1, 2, 3, and 4.
In particular, 𝜎2𝑜 can be adjusted to 𝜎2𝑜𝑚 = 𝜎2𝑜 + 𝛽𝑚𝜎2𝑏 with 𝛽𝑚
given empirically by

𝛽𝑚 = [∑𝑘 𝐶2𝑏 (Δ𝑥co𝑚𝑘) − 4𝐶2𝑏 (Δ𝑥co)]
[1 − 𝐶2

𝑏
(Δ𝑥co)] , (18a)

where∑𝑘 denotes the summation over 𝑘 for the four adjacent
observations nearest to the concerned𝑚th observation.With𝛽𝑚 given by (18a), the adjusted 𝜎2𝑜𝑚 = 𝜎2𝑜 + 𝛽𝑚𝜎2𝑏 recovers
not only the inflated observation error variance derived above
for each limiting case [with Δ𝑥co𝑘 → 0 for 𝑘 = 1, 2, . . . , 𝐾
(≤4) and Δ𝑥co𝑘 = Δ𝑥co for the remaining 4 − 𝐾 (≥0)
observations] but also the original observation error variance𝜎2𝑜 for uniformly distributed coarse-resolution observations.

The above results suggest that 𝛾𝑏 = 𝜎2𝑏/(𝜎2𝑏 + 𝜎2𝑜 ) should
be modified into

𝛾𝑚 = 𝜎2𝑏(𝜎2
𝑏
+ 𝛽𝑚𝜎2𝑏 + 𝜎2𝑜)

for the definition of Δ𝜎2𝑚 (x) in (14) .
(18b)

This modification can improve the similarity of the spatial
variation of ∑𝑚 Δ𝜎2𝑚(x) to that of the true error variance
reduction, denoted by Δ𝜎2𝑏𝑎(x) ≡ 𝜎2𝑏 − 𝜎2𝑎(x), but the
maximum (or minimum) of ∑𝑚 Δ𝜎2𝑚(x), denoted by Δ𝜎2emx
(or Δ𝜎2emn), is usually not very close to that of Δ𝜎2𝑏𝑎(x). The
maximum (or minimum) of Δ𝜎2𝑏𝑎(x) can be estimated by
Δ𝜎2mx (or Δ𝜎2mn), the maximum (or minimum) of Δ𝜎2𝑀(x)
computed for uniformly distributed observations but withΔ𝑥co decreased to Δ𝑥omn (or increased to Δ𝑥omx), whereΔ𝑥omn (or Δ𝑥omx) is the minimum (or maximum) spacing
of adjacent observations among all nonuniformly distributed
coarse-resolution observations in the two-dimension analysis
domain. Specifically, Δ𝑥omn (or Δ𝑥omx) is estimated by
min𝑚(∑𝑘 |x𝑚 − x𝑚𝑘|)/𝐾 with 𝐾 = 2 and Δ𝑥omx is estimated
by max𝑚(∑𝑘 |x𝑚 − x𝑚𝑘|)/𝐾 with 𝐾 = 4, where x𝑚 denotes
the𝑚th observation point, x𝑚𝑘 denotes the observation point
that is 𝑘th nearest to x𝑚, minm (or maxm) denotes the
minimum (or maximum) over index 𝑚 for all the coarse-
resolution observation points in the two-dimension analysis
domain, ∑𝑘 denotes the summation over 𝑘 from 1 to 𝐾, and



12 Advances in Meteorology

−40 −20 0 20 40 60−60

x (km)

−30

−20

−10

0

10

20

30
y

(k
m

)

(a)

0 20 40 60−20−40−60

x (km)

−30

−20

−10

0

10

20

30

y
(k

m
)

(b)

Figure 11: As in Figure 10 but for the second set of innovations with nonuniformly distributed coarse-resolution observations, and the colored
contours are plotted every 1m2s−2 for the deviation of 𝜎2𝑎∗ (x) from 𝜎2𝑎(x) in panel (b).

𝐾 is the total number of adjacent observation points (nearest
to x𝑚) used for estimating Δ𝑥omn (with 𝐾 = 2) or Δ𝑥omx (or𝐾 = 4). By adjusting Δ𝜎2emx to Δ𝜎2mx and Δ𝜎2emn to Δ𝜎2mn, the
error variance reduction can be estimated by

Δ𝜎2𝑀 (x) = 𝐹 (x) ≡ [∑
𝑚

Δ𝜎2𝑚 (x) − Δ𝜎2emn] 𝜌 + Δ𝜎2mn, (19a)

where 𝜌 = [Δ𝜎2mx − Δ𝜎2mn]/[Δ𝜎2emx − Δ𝜎2emn].
The analysis error variance is then estimated by 𝜎2𝑎(x) ≈

𝜎2𝑎∗(x) ≡ 𝜎2𝑏 − Δ𝜎2𝑀(x) as in (16), except that Δ𝜎2𝑀(x) is
computed by (19a). As shown by the example in Figure 11,
the estimated 𝜎2𝑎∗(x) is fairly close to the benchmark 𝜎2𝑎(x),
and the deviation of 𝜎2𝑎∗(x) from the benchmark 𝜎2𝑎(x) is
within (−2.40, 4.20)m2s−2. On the other hand, the constant
analysis error variance (𝜎2𝑒 = 6.7m2s−2) estimated by the
spectral formulation deviates from the benchmark 𝜎2𝑎(x)
widely from −9.98 to 3.83m2s−2. Using this estimated 𝜎𝑎∗(x),
the previously estimatedA𝑒 from the spectral formulation can
be modified into A𝑎, A𝑏, or A𝑐 with its 𝑖𝑗th element given
by the same two-dimensional version of (8a), (8b), or (8c)
as explained in Section 3.2. The REs of A𝑒, A𝑎, A𝑏, and A𝑐
computed for the case in Figure 11 are listed in the first column
of Table 5. As listed, the RE becomes increasingly small when
A𝑒 is modified successively to A𝑎, A𝑏, and A𝑐.

3.4. Nonuniform Coarse-Resolution Observations without
Periodic Extension. Consider that the 𝑀 coarse-resolution
observations are still nonuniformly distributed in the analysis
domain of length 𝐷𝑥 and width 𝐷𝑦 but without periodic
extension. In this case, their averaged resolution is still
defined by Δ𝑥co ≡ (𝐷𝑥𝐷𝑦/𝑀)1/2. To estimate their produced
error variance reduction, we need tomodify the formulations
constructed in the previous subsection with the following
preparations. First, we need to identify four near-corner
observations among all the coarse-resolution observations.
Each near-corner observation is defined as the one that near-
est to one of the four corners of the analysis domain. Then,
we need to identify𝑀𝑥 −2 (or𝑀𝑦 −2) near-boundary obser-
vations associated with each 𝑥-boundary (or 𝑦-boundary),

where 𝑀𝑥 (or 𝑀𝑦) is estimated by the nearest integer to𝐷𝑥/Δ𝑥co (or 𝐷𝑦/Δ𝑥co). The total number of near-boundary
observations is thus given by 2(𝑀𝑥 + 𝑀𝑦) − 8. To identify
these near-boundary observations, we need to divide the 2D
domain uniformly along the 𝑥-direction and 𝑦-direction into𝑀𝑥𝑀𝑦 boxes, so there are 2(𝑀𝑥 + 𝑀𝑦) − 8 boundary boxes
(not including the four corner boxes). If a boundary box
contains no coarse-resolution observation, then it is an empty
box and should be substituted by its adjacent interior box (as
a substituted boundary box). From each nonempty boundary
box (including substituted boundary box), we can find one
near-boundary observation that is nearest to the associated
boundary. A closed loop of observation boundary can be
constructed by piece-wise linear segments with every two
neighboring near-boundary observation points connected by
a linear segment andwith each near-corner observation point
connected by a linear segment to each of its two neighboring
near-boundary observation points.

After the above preparations, the error variance reductionΔ𝜎2𝑀(x) can be estimated by (19a) with the following three
modifications:

(i) The maximum (or minimum) of ∑𝑚 Δ𝜎2𝑚(x), that is,Δ𝜎2emx (or Δ𝜎2emn) should be found in the interior domain of|𝑥| < 𝐷𝑥/2 − Δ𝑥co and |𝑦| < 𝐷𝑦/2 − Δ𝑥co.
(ii) For each above defined near-boundary (or near-

corner) observation that has only three (or two) adjacent
observations, its error variance is still adjusted from 𝜎2𝑜 to𝜎2𝑜 + 𝛽𝑚𝜎2𝑏 but 𝛽𝑚 is calculated by setting 𝐶2𝑏(Δ𝑥co𝑘) = 0 in
(18a) for 𝑘 = 4 (or 𝑘 = 3 and 4).

(iii) Note from (19a) that ∑𝑚 Δ𝜎2𝑚(x) → 0 and thus
Δ𝜎2𝑀(x) → Δ𝜎2mn − 𝜌Δ𝜎2emn < 0 as x moves outward far
away from all the observations points. In this case, if Δ𝜎2mn −
𝜌Δ𝜎2emn < 0 (as for the case in this section), then Δ𝜎2𝑀(x)
estimated by (19a) may become unrealistically negative as x
moves outward beyond the above constructed observation
boundary loop. To avoid this problem, (19a) is modified into

Δ𝜎2𝑀 (x) = 𝐹 (x𝑚𝑏) − [𝐹 (x𝑚𝑏) − 𝐹 (x)] 𝑅2
for x outside the observation boundary loop, (19b)
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Figure 12: As in Figure 11 but without periodic extension.

where 𝑅2 is a factor defined by

𝑅2 = min{1, 𝐹 (x𝑚𝑏)[𝐹 (x𝑚𝑏) + 𝜌Δ𝜎2emn − Δ𝜎2mn]} , (20)

x𝑚𝑏 is the projection of x on the observation boundary loop
and the projection from x is along the direction normal to
the x-associated domain boundary (nearest to x). However, if
x is closer to a corner observation point than the remaining
part of the observation boundary loop, then x𝑚𝑏 is simply that
near-corner observation point. It is easy to see from (19b)
that, for Δ𝜎2mn − 𝜌Δ𝜎2emn < 0 and thus 𝑅2 = 1, Δ𝜎2𝑀(x) =𝐹(x𝑚𝑏)−[𝐹(x𝑚𝑏)−𝐹(x)]𝑅2 = 𝐹(x𝑚𝑏) → 0 as |x| → −∞, so the
estimated Δ𝜎2𝑀(x) in (19b) can never become unrealistically
negative.

The analysis error variance is estimated by 𝜎2𝑎(x) ≈
𝜎2𝑎∗(x) ≡ 𝜎2𝑏 − Δ𝜎2𝑀(x) as in (16), except that Δ𝜎2𝑀(x) is com-
puted by (19a) [or (19b)] for x inside (or outside) the closed
observation boundary loop. As shown by the example in
Figure 12, the estimated𝜎2𝑎∗(x) is fairly close to the benchmark
𝜎2𝑎(x), and the deviation of 𝜎2𝑎∗(x) from the benchmark 𝜎2𝑎(x)
is within (−4.08, 5.54)m2s−2. On the other hand, the constant
analysis error variance (𝜎2𝑒 = 6.7m2s−2) estimated by the
spectral formulation deviates from the benchmark 𝜎2𝑎(x) very
widely from −16.1 to 3.82m2s−2. Using the estimated 𝜎𝑎∗(x),
the previously estimated A𝑒 from the spectral formulation
can be modified into A𝑎, A𝑏, or A𝑐 with its 𝑖𝑗th element
given by the same two-dimensional version of (8a), (8b), or
(8c) as explained in Section 3.2. The REs of A𝑒, A𝑎, A𝑏, and
A𝑐 computed for the case in Figure 12 are listed in the first
column of Table 6. As listed, the RE becomes increasingly
small when A𝑒 is modified successively to A𝑎, A𝑏, and A𝑐.

4. Numerical Experiments for
One-Dimensional Cases

4.1. Experiment Design and Innovation Data. In this sec-
tion, idealized one-dimensional experiments are designed
and performed to examine to what extent the successively
improved estimate of A in (8a), (8b), and (8c) can improve the
two-step analysis. In particular, four types of two-step exper-
iments, named TEe, TEa, TEb, and TEc, are designed for

analyzing the high-resolution innovations in the second step
with the background error covariance updated byA𝑒,A𝑎,A𝑏,
and A𝑐, respectively, after the coarse-resolution innovations
are analyzed in the first step.TheTEe is similar to the first type
of two-step experiment (named TEA) in Xu et al. [8], but the
TEa, TEb, and TEc are new here. As in Xu et al. [8], a single-
step experiment, named SE, is also designed for analyzing
all the innovations in a single step. In each of the above five
types of experiments, the analysis increment is obtained by
using the standard conjugate gradient descent algorithm to
minimize the cost-function (formulated as in (7) of Xu et al.
[8]) with the number of iterations limited to 𝑛 = 20, 50, or 100
before the final convergence to mimic the computationally
constrained situations in operational data assimilation.Three
sets of simulated innovations are generated for the above
five types of experiments. The first set consists of 𝑀 (=10)
uniformly distributed coarse-resolution innovations over the
analysis domain (see Figure 1) with periodic extension and𝑀󸀠 (=74) high-resolution innovations in the nested domain
of length 𝐷/6 (similar to those shown by the purple × signs
in Figure 1 of Xu et al. [8] but generated at the grid points
not covered by the coarse-resolution innovations within the
nested domain). The second (or third) set is the same as
the first set except that the coarse-resolution innovations
are nonuniformly distributed with (or without) periodic
extension as shown in Figure 5 (or Figure 8). All the innova-
tions are generated by simulated observation errors subtract-
ing simulated background errors at observation locations.
Observation errors are sampled from computer-generated
uncorrelated Gaussian random numbers with 𝜎𝑜 = 2.5ms−1
for both coarse-resolution and high-resolution observations.
Background errors are sampled from computer-generated
spatially correlated Gaussian random fields with 𝜎𝑏 = 5ms−1
and 𝐶𝑏(𝑥) modeled by the double-Gaussian form given in
Section 2.2 (also see the caption of Figure 1). The coarse-
resolution innovations in the first, second, and third sets are
thus generated in consistency with the three cases in Figures
1, 5, and 8, respectively.

4.2. Results from the First Set of Innovations. The first set of
innovations is used here to perform each of the five types
of experiments with the number of iterations limited to
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Table 2: As in Table 1 but for the second set of innovations with periodic extension.

Experiment 𝑛 = 20 𝑛 = 50 𝑛 = 100 Final
SE 0.711 0.334 0.276 0.018 at 𝑛 = 404
TEe with RE(A𝑒) = 0.355 0.482 0.439 0.442 at 𝑛 = 76
TEa with RE(A𝑎) = 0.238 0.418 0.388 0.348 0.353 at 𝑛 = 108
TEb with RE(A𝑏) = 0.197 0.318 0.288 0.257 0.243 at 𝑛 = 179
TEc with RE(A𝑐) = 0.148 0.213 0.151 0.155 at 𝑛 = 52

Table 3: As in Table 2 but for the third set of innovations without periodic extension.

Experiment 𝑛 = 20 𝑛 = 50 𝑛 = 100 Final
SE 0.499 0.328 0.194 0.012 at 𝑛 = 451
TEe with RE(A𝑒) = 0.355 0.463 0.424 0.399 at 𝑛 = 73
TEa with RE(A𝑎) = 0.238 0.394 0.358 0.385 at 𝑛 = 54
TEb with RE(A𝑏) = 0.196 0.281 0.273 0.248 at 𝑛 = 77
TEc with RE(A𝑐) = 0.147 0.215 0.149 0.123 at 𝑛 = 77

𝑛 = 20, 50, or 100 before the final convergence. The accuracy
of the analysis increment obtained from each experiment
with each limited 𝑛 is measured by its domain-averaged RMS
error (called RMS error for short hereafter) with respect to
the benchmark analysis increment computed precisely from
(1a). Table 1 lists the RMS errors of the analysis increments
obtained from the SE, TEe, TEa, TEb, and TEc with the
number of iterations increased from 𝑛 = 20 to 50, 100, and/or
the final convergence.

As shown in Table 1, the TEe outperforms SE for 𝑛 = 20,
50, and 100 but not for 𝑛 increased to the final convergence.
The improved performance of TEe over SE is similar to but
less significant than that of TEA over SE in Table 1 of Xu et al.
[8].The reduced improvement can be largely explained by the
fact that the coarse-resolution innovations are generated here
more sparsely and the deviation of A𝑒 from the benchmark
A is thus increased (as seen from Figure 4(a) in comparison
with Figure 5(b) of Xu et al. [8]). The TEa outperforms TEe
for 𝑛 = 20 and 50 before 𝑛 increased to 100 (which is very
close to the final convergence at 𝑛 = 116 for TEa). The
improvement of TEa over TEe is consistent with and can be
largely explained by the improved accuracy of A𝑎 [RE(A𝑎) =0.156] over A𝑒 [RE(A𝑒) = 0.229]. The TEb outperforms
TEa for 𝑛 = 20 and 50 (before the final convergence at𝑛 = 67). The improvement of TEb over TEa is consistent
with the improved accuracy of A𝑏 [RE(A𝑏) = 0.101] over
A𝑎. The TEc outperforms TEb for each listed value of 𝑛, and
the improvement is consistent with the improved accuracy of
A𝑐 [with RE(A𝑐) = 0.042] over A𝑏.
4.3. Results from the Second Set of Innovations. Thesecond set
of innovations is used here to perform each of the five types of
experiments with the number of iterations limited to 𝑛 = 20,
50, or 100 before the final convergence.The domain-averaged
RMS errors of the analysis increments obtained from the four
two-step experiments are shown in Table 2 versus those from
the SE. As shown, the TEe outperforms SE for 𝑛 = 20 but not
so for 𝑛 = 50. The improvement of TEe over SE is similar to

but much less significant than that of TEA over SE in Table
2 of Xu et al. [8]. This reduced improvement can be largely
explained by the fact that the coarse-resolution innovations
are generated here not only more sparsely but also more
nonuniformly than those in Section 3.3 of Xu et al. [8] and
the deviation of A𝑒 from the benchmark A becomes much
larger in Figure 7(a) here than that in Figure 7(b) of Xu et
al. [8]. The TEa outperforms TEe for 𝑛 = 20 and 50 but
still underperforms SE for 𝑛 increased to 50 and beyond.The
improvement of TEa overTEe is consistentwith the improved
accuracy of A𝑎 [RE(A𝑎) = 0.238] over A𝑒 [RE(A𝑒) = 0.355].
The TEb outperforms TEa for each listed value of 𝑛 and
also outperforms SE for 𝑛 up to 100. The improvement of
TEb over TEa is consistent with the improved accuracy of
A𝑏 [RE(A𝑏) = 0.197] over A𝑎. The TEc outperforms TEb
for each listed value of 𝑛, and the improvement is consistent
with the improved accuracy of A𝑐 [RE(A𝑐) = 0.148]
over A𝑏.

4.4. Results from theThird Set of Innovations. The third set of
innovations is used here to perform each of the five types of
experiments with the number of iterations limited to 𝑛 = 20,
50, or 100 before the final convergence.The domain-averaged
RMS errors of the analysis increments obtained from the four
two-step experiments are shown in Table 3 versus those from
the SE. As shown, the TEe outperforms SE for 𝑛 = 20 but not
so for 𝑛 = 50. The improvement of TEe over SE is much less
significant than that of TEA over SE in Table 3 of Xu et al. [8],
and this reduced improvement can be explained by the same
fact as stated for the previous case in Section 4.3. The TEa
outperforms TEe for 𝑛 = 20 and 50, and the improvement
is consistent with the improved accuracy of A𝑎 [RE(A𝑎) =0.238] over A𝑒 [RE(A𝑒) = 0.355]. The TEb outperforms
TEa for each listed value of 𝑛, which is consistent with the
improved accuracy ofA𝑏 [RE(A𝑏) = 0.196] overA𝑎.The TEc
outperformsTEb for each listed value of 𝑛, which is consistent
with the improved accuracy of A𝑐 [RE(A𝑐) = 0.147]
over A𝑏.
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Table 4: As in Table 1 but for the two-dimensional case in Figure 10 in which the first set of two-dimensional innovations is used with periodic
extension.

Experiment 𝑛 = 20 𝑛 = 50 𝑛 = 100 Final
SE 0.742 0.364 0.154 0.071 at 𝑛 = 201
TEe with RE(A𝑒) = 0.233 0.394 0.185 0.108 0.104 at 𝑛 = 140
TEa with RE(A𝑎) = 0.181 0.397 0.186 0.102 0.097 at 𝑛 = 145
TEb with RE(A𝑏) = 0.130 0.403 0.183 0.089 0.085 at 𝑛 = 133
TEc with RE(A𝑐) = 0.038 0.397 0.160 0.064 0.059 at 𝑛 = 183

Table 5: As in Table 4 but for the two-dimensional case in Figure 11 where the second set of innovations is used with periodic extension.

Experiment 𝑛 = 20 𝑛 = 50 𝑛 = 100 Final
SE 0.757 0.364 0.175 0.069 at 𝑛 = 241
TEe with RE(A𝑒) = 0.462 0.416 0.202 0.149 0.144 at 𝑛 = 140
TEa with RE(A𝑎) = 0.274 0.411 0.202 0.143 0.144 at 𝑛 = 215
TEb with RE(A𝑏) = 0.244 0.402 0.195 0.136 0.132 at 𝑛 = 191
TEc with RE(A𝑐) = 0.165 0.403 0.179 0.106 0.103 at 𝑛 = 287

5. Numerical Experiments for
Two-Dimensional Cases

5.1. Experiment Design and Innovation Data. In this section,
idealized two-dimensional experiments are designed and
named similarly to those in Section 4 except that simu-
lated innovations are generated in three sets for the two-
dimensional cases in Figures 10, 11, and 12, respectively.
In particular, the first set consists of 𝑀 (= MxMy = 12× 6) uniformly distributed coarse-resolution innovations
over the periodic analysis domain (as shown in Figure 10)
and 𝑀󸀠 (=66) high-resolution innovations generated at the
grid points not covered by the coarse-resolution innovations
within the nested domain.The nested domain (𝐷𝑥/6 = 20 km
long and 𝐷𝑦/6 = 10 km wide) is the same as that shown
in Figure 16 of Xu et al. [8]. Again, all the innovations
are generated by simulated observation errors subtract-
ing simulated background errors at observation locations.
Observation errors are sampled from computer-generated
uncorrelated Gaussian random numbers with 𝜎𝑜 = 2.5ms−1
for both coarse-resolution and high-resolution observations.
Background errors are sampled from computer-generated
spatially correlated Gaussian random fields with 𝜎𝑏 = 5ms−1
and 𝐶𝑏(x) modeled by the double-Gaussian form given in
Section 3.2 (also see the caption of Figure 10). The second
(or third) set is the same as the first set except that the
coarse-resolution innovations are nonuniformly distributed
with (or without) periodic extension as shown in Figure 11
(or Figure 12).

5.2. Results from the First Set of Innovations. The first set of
innovations is used here to perform each of the five types of
experiments with the number of iterations limited to 𝑛 = 20,
50, or 100 before the final convergence.The domain-averaged
RMS errors of the analysis increments obtained from the four
two-step experiments are shown in Table 4 versus those from
the SE. As shown, the TEe outperforms SE for each listed

value of 𝑛 before the final convergence, which is similar to
the improved performance of TEA over SE shown in Table 4
of Xu et al. [8].The TEa outperforms TEe as 𝑛 increases to 100
and beyond, which is consistent with the improved accuracy
of A𝑎 [RE(A𝑎) = 0.181] over A𝑒 [RE(A𝑒) = 0.233]. The
TEb outperforms TEa as 𝑛 increases to 50 and beyond, which
is consistent with the improved accuracy of A𝑏 [RE(A𝑏) =0.130] over A𝑎. The TEc outperforms TEb for each listed
value of 𝑛, which is consistent with the improved accuracy
of A𝑐 [RE(A𝑐) = 0.038] over A𝑏.
5.3. Results from the Second Set of Innovations. The second
set of innovations is used here to perform each of the five
types of experiments with the number of iterations limited to𝑛 = 20, 50, or 100 before the final convergence. The domain-
averaged RMS errors of the analysis increments obtained
from the four two-step experiments are shown in Table 5
versus those from the SE. As shown, the TEe outperforms SE
for each listed value of 𝑛 before the final convergence. The
TEaoutperformsTEe slightly, and the improved performance
is consistent with the improved accuracy of A𝑎 [RE(A𝑎) =0.274] over A𝑒 [RE(A𝑒) = 0.462]. The TEb outperforms
TEA for each listed value of 𝑛, which is consistent with the
improved accuracy ofA𝑏 [RE(A𝑏) = 0.244] overA𝑎.The TEc
outperforms TEb for 𝑛 > 20, and the improved performance
is consistent with the improved accuracy of A𝑐 [RE(A𝑐) =0.165] over A𝑏.
5.4. Results from theThird Set of Innovations. The third set of
innovations is used here to perform each of the five types of
experiments with the number of iterations limited to 𝑛 = 20,
50, or 100 before the final convergence.The domain-averaged
RMS errors of the analysis increments obtained from the
four two-step experiments are shown in Table 6 versus those
from the SE. As shown, the TEe outperforms SE for each
listed value of 𝑛 before the final convergence. The improved
performance of TEe over SE is similar to but less significant
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Table 6: As in Table 5 but for the two-dimensional case in Figure 12 where the third set of innovations is used without periodic extension.

Experiment 𝑛 = 20 𝑛 = 50 𝑛 = 100 Final
SE 0.808 0.453 0.176 0.078 at 𝑛 = 235
TEe with RE(A𝑒) = 0.462 0.509 0.179 0.136 0.134 at 𝑛 = 161
TEa with RE(A𝑎) = 0.305 0.497 0.184 0.146 0.140 at 𝑛 = 213
TEb with RE(A𝑏) = 0.258 0.495 0.179 0.135 0.127 at 𝑛 = 170
TEc with RE(A𝑐) = 0.240 0.473 0.157 0.103 0.101 at 𝑛 = 201

than that of TEA over SE in Table 5 of Xu et al. [8], and the
reason is mainly because the coarse-resolution innovations
are generated more sparsely and nonuniformly than those
in Section 4.3 of Xu et al. [8]. The TEa outperforms TEe
for 𝑛 = 20 but not so as 𝑛 increases to 50 and beyond,
although A𝑎 has an improved accuracy [RE(A𝑎) = 0.305]
over A𝑒 [RE(A𝑒) = 0.462]. The TEb outperforms TEa for
each listed value of 𝑛, and the improved performance is
consistent with the improved accuracy of A𝑏 [RE(A𝑏) =0.258] over A𝑎. The TEc outperforms TEb for each listed
value of 𝑛, which is consistent with the improved accuracy
of A𝑐 [RE(A𝑐) = 0.240] over A𝑏.
6. Conclusions

In this paper, the two-step variational method developed
in Xu et al. [8] for analyzing observations of different
spatial resolutions is improved by considering and efficiently
estimating the spatial variation of analysis error variance
produced by analyzing coarse-resolution observations in the
first step.The constant analysis error variance computed from
the spectral formulations in Xu et al. [8] can represent the
spatial averaged value of the true analysis error variance but
it cannot capture the spatial variation in the true analysis
error variance. As revealed by the examples presented in
this paper (see Figures 1, 2, 5, and 8 for one-dimensional
cases and Figures 10–12 for two-dimensional cases), the true
analysis error variance tends to have increasingly large spatial
variations when the coarse-resolution observations become
increasingly nonuniform and/or sparse, and this is especially
true and serious when the separation distances between
neighboring coarse-resolution observations become close to
or even locally larger than the background error decorrelation
length scale. In this case, the spatial variation of analysis error
variance and associated spatial variation in analysis error
covariance need to be considered and estimated efficiently in
order to further improve the two-step analysis.

The analysis error variance can be viewed equivalently
and conveniently as the background error variance minus
the total error variance reduction produced by analyzing all
the coarse-resolution observations. To efficiently estimate the
latter, analytic formulations are constructed for three types of
coarse-resolution observations in one- and two-dimensional
spaces with successively increased complexity and generality.
The main results and major findings are summarized below
for each type of coarse-resolution observations:

(i)The first type consists of uniformly distributed coarse-
resolution observations with periodic extension. For this

simplest type, the total error variance reduction is estimated
in two steps. First, the error variance reduction produced
by analyzing each coarse-resolution observation as a single
observation is equally weighted and combined into the total.
Then, the combined total error variance reduction is adjusted
by a constant to match to the domain-averaged total error
variance reduction estimated by the spectral formulation
[see (5a), (5b), (15a), and (15b)]. The estimated analysis
error variance (i.e., the background error variance minus the
adjusted total error variance reduction) captures not only the
domain-averaged value but also the spatial variation of the
benchmark truth (see Figures 1, 2, and 10).

(ii)The second type consists of nonuniformly distributed
coarse-resolution observations with periodic extension. For
this more general type, the total error variance reduction
is also estimated in two steps: The first step is similar to
that for the first type but the combination into the total is
weighted based on the averaged spacing of each concerned
observation from its neighboring observations [see (11a),
(11b), (18a), and (18b)]. In the second step, the combined
total error variance reduction is adjusted and scaled to
match the maximum and minimum of the true total error
variance reduction estimated from the spectral formulation
for uniformly distributed coarse-resolution observations but
with the observation resolutions set, respectively, to the
minimum spacing and maximum spacing of the nonuni-
formly distributed coarse-resolution observations [see (12a)
and (19a)]. The estimated analysis error variance captures
not only the maximum and minimum but also the spatial
variation of the benchmark truth (see Figures 5 and 11).

(iii) The third type consists of nonuniformly distributed
coarse-resolution observations without periodic extension.
For this most general type, the total error variance reduction
is estimated with the same two steps as for the second type,
except that three modifications are made to improve the
estimation near and at the domain boundaries [see (i)–(iii)
in Sections 2.4 and 3.4]. The analysis error variance finally
estimated captures the spatial variation of the benchmark
truth not only in the interior domain but also near and at the
domain boundaries (see Figures 8 and 12).

The above estimated spatially varying analysis error
variance is used to modify the analysis error covariance
computed from the spectral formulations of Xu et al. [8]
in three different forms [see (8a), (8b), and (8c)]. The
first is a conventional formulation in which the covariance
is modulated by the spatially varying standard deviation
separately via each entry of the covariance to retain the
self-adjointness. This modulation has a chessboard structure
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but the desired modulation has a banded structure (along
the direction perpendicular to the diagonal line) as revealed
by the to-be-corrected deviation from the benchmark truth
(see Figure 4(a)), so the deviation is only partially reduced
(see Figure 4(b)). The second formulation is new, in which
the modulation is realigned to capture the desired banded
structure and yet still retain the self-adjointness. The devia-
tion from the benchmark truth is thus further reduced (see
Figure 4(c)), but the deviation is reduced not broadly enough
along each band. By properly broadening the reduction
distribution in the third formulation, the deviation is much
further reduced (see Figure 4(d)).

The successive improvements made by the above three
formulations are demonstrated for all the three types of
coarse-resolution observations in one- and two-dimensional
spaces. The improvements are quantified by the successively
reduced relative errors [REs, measured by the Frobenius
norm defined in (9)] of their modified analysis error covari-
ance matrices with respect to the benchmark truths (see
REs listed in the first columns of Tables 1–6). The impacts
of the improved accuracies of the modified analysis error
covariance matrices on the two-step analyses are examined
with idealized experiments that are similar to but extend
those in Xu et al. [8]. As expected, the impacts are found
to be mostly positive (especially for the third formulation)
and largely in consistency with the improved accuracies of
the modified analysis error covariance matrices (see Tables
1–6). As new improvements to the conventional formulation,
the second and third formulations may also be useful in
constructing covariancematrices with nonconstant variances
for general applications beyond this paper.

The formulations constructed in this paper for estimating
the spatial variation of analysis error variance and associated
spatial variation in analysis error covariance are effective for
further improving the two-step variational method devel-
oped in Xu et al. [8], especially when the coarse-resolution
observations become increasingly nonuniform and/or sparse.
These formulations will be extended together with the spec-
tral formulations of Xu et al. [8] for real-data applications
in three-dimensional space with the variational data assim-
ilation system of Gao et al. [5], in which the analyses are
univariate and performed in two steps. Such an extension is
currently being developed.
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