Stock Assessment Terms of Reference for SAW/SARC-66, Nov. 27-30, 2018

(file vers.: 1/16/2018)
The stock assessments for SAW/SARC66 require new calibrated catch and effort data from the Marine Recreational Information Program (MRIP). For these assessments to happen, the assessment scientists need the new MRIP data in a form ready for analysis by July 1, 2018.

A. Summer flounder

1. Estimate catch from all sources, including landings and discards. Describe the spatial and temporal distribution of landings, discards, and fishing effort. Characterize the uncertainty in these sources of data. Compare previous recreational data to re-estimated Marine Recreational Information Program (MRIP) data (if available).
2. Present the survey data available, and describe the basis for inclusion or exclusion of those data in the assessment (e.g., indices of relative or absolute abundance, recruitment, state surveys, age-length data, etc.). Investigate the utility of commercial or recreational LPUE as a measure of relative abundance. Characterize the uncertainty and any bias in these sources of data.
3. Describe life history characteristics and the stock's spatial distribution (for both juveniles and adults), including any changes over time. Describe factors related to productivity of the stock and any ecosystem factors influencing recruitment. If possible, integrate the results into the stock assessment.
4. Estimate annual fishing mortality, recruitment and stock biomass (both total and spawning stock) for the time series, and estimate their uncertainty. Include retrospective analyses (both historical and withinmodel) to allow a comparison with previous assessment results and projections, and to examine model fit. Examine sensitivity of model results to changes in re-estimated recreational data.
5. State the existing stock status definitions for "overfished" and "overfishing". Then update or redefine biological reference points (BRPs; point estimates or proxies for $\mathrm{B}_{\text {MSY }}, \mathrm{B}_{\text {THRESHOLD }}, \mathrm{F}_{\text {MSY }}$ and MSY) and provide estimates of their uncertainty. If analytic model-based estimates are unavailable, consider recommending alternative measurable proxies for BRPs. Comment on the scientific adequacy of existing BRPs and the "new" (i.e., updated, redefined, or alternative) BRPs.
6. Make a recommendation ${ }^{\mathbf{a}}$ about what stock status appears to be, based on the existing model (i.e., model from previous peer reviewed accepted assessment) and with respect to a new modeling approach(-es) developed for this peer review.
a. Update the existing model with new data and make a stock status recommendation (about overfished and overfishing) with respect to the existing BRP estimates.
b. Then use the newly proposed modeling approach(-es) and make a stock status recommendation with respect to "new" BRPs and their estimates (from TOR-5).
c. Include descriptions of stock status based on simple indicators/metrics (e.g., age- and sizestructure, temporal trends in population size or recruitment indices, etc).
7. Develop approaches and apply them to conduct stock projections.
a. Provide numerical annual projections (5 years) and the statistical distribution (i.e., probability density function) of the catch at $\mathrm{F}_{\text {MSY }}$ or an $\mathrm{F}_{\text {MSY }}$ proxy (i.e. the overfishing level, OFL) (see Appendix to the SAW TORs). Each projection should estimate and report annual probabilities of exceeding threshold BRPs for F , and probabilities of falling below threshold BRPs for biomass.

Use a sensitivity analysis approach in which a range of assumptions about the most important uncertainties in the assessment are considered (e.g., terminal year abundance, variability in recruitment).
b. Comment on which projections seem most realistic. Consider the major uncertainties in the assessment as well as sensitivity of the projections to various assumptions. Identify reasonable projection parameters (recruitment, weight-at-age, retrospective adjustments, etc.) to use when setting specifications.
c. Describe this stock's vulnerability (see "Appendix to the SAW TORs") to becoming overfished, and how this could affect the choice of ABC.
8. Review, evaluate and report on the status of the SARC and Working Group research recommendations listed in most recent SARC reviewed assessment and review panel reports and MAFMC SSC reports. Identify new research recommendations.
${ }^{\mathbf{a}}$ NOAA Fisheries has final responsibility for making the stock status determination for this stock based on best available scientific information.

B. Striped bass

1. Investigate all fisheries independent and dependent data sets, including life history, indices of abundance, and tagging data. Discuss strengths and weaknesses of the data sources.
2. Estimate commercial and recreational landings and discards. Characterize the uncertainty in the data and spatial distribution of the fisheries. Review new MRIP estimates of catch, effort and the calibration method, if available.
3. Use an age-based model to estimate annual fishing mortality, recruitment, total abundance and stock biomass (total and spawning stock) for the time series and estimate their uncertainty. Provide retrospective analysis of the model results and historical retrospective. Provide estimates of exploitation by stock component and sex, where possible, and for total stock complex.
4. Use tagging data to estimate mortality and abundance, and provide suggestions for further development.
5. Update or redefine biological reference points (BRPs; point estimates or proxies for BMSY, SSBMSY, FMSY, MSY) for each stock component where possible and for the total stock complex. Make a stock status determination based on BRPs by stock component, where possible, and for the total stock complex.
6. Provide annual projections of catch and biomass under alternative harvest scenarios. Projections should estimate and report annual probabilities of exceeding threshold BRPs for F and probabilities of falling below threshold BRPs for biomass.
7. Review and evaluate the status of the Technical Committee research recommendations listed in the most recent SARC report. Identify new research recommendations. Recommend timing and frequency of future assessment updates and benchmark assessments.

Appendix to the SAW Assessment TORs:

Clarification of Terms used in the SAW/SARC Terms of Reference

On "Acceptable Biological Catch" (DOC Nat. Stand. Guidel. Fed. Reg., v. 74, no. 11, 1-16-2009):
Acceptable biological catch ($A B C$) is a level of a stock or stock complex's annual catch that accounts for the scientific uncertainty in the estimate of Overfishing Limit (OFL) and any other scientific uncertainty..." (p. 3208) [In other words, $O F L \geq A B C$.]

ABC for overfished stocks. For overfished stocks and stock complexes, a rebuilding ABC must be set to reflect the annual catch that is consistent with the schedule of fishing mortality rates in the rebuilding plan. (p. 3209)

NMFS expects that in most cases ABC will be reduced from OFL to reduce the probability that overfishing might occur in a year. (p. 3180)

ABC refers to a level of "catch’’ that is "acceptable" given the ' biological"' characteristics of the stock or stock complex. As such, Optimal Yield (OY) does not equate with ABC. The specification of OY is required to consider a variety of factors, including social and economic factors, and the protection of marine ecosystems, which are not part of the ABC concept. (p. 3189)

On "Vulnerability" (DOC Natl. Stand. Guidelines. Fed. Reg., v. 74, no. 11, 1-16-2009):
"Vulnerability. A stock's vulnerability is a combination of its productivity, which depends upon its life history characteristics, and its susceptibility to the fishery. Productivity refers to the capacity of the stock to produce Maximum Sustainable Yield (MSY) and to recover if the population is depleted, and susceptibility is the potential for the stock to be impacted by the fishery, which includes direct captures, as well as indirect impacts to the fishery (e.g., loss of habitat quality)." (p. 3205)

Participation among members of a Stock Assessment Working Group:

Anyone participating in SAW meetings that will be running or presenting results from an assessment model is expected to supply the source code, a compiled executable, an input file with the proposed configuration, and a detailed model description in advance of the model meeting. Source code for NOAA Toolbox programs is available on request. These measures allow transparency and a fair evaluation of differences that emerge between models.

Guidance to SAW WG about "Number of Models to include in the Assessment Report":
In general, for any TOR in which one or more models are explored by the WG, give a detailed presentation of the "best" model, including inputs, outputs, diagnostics of model adequacy, and sensitivity analyses that evaluate robustness of model results to the assumptions. In less detail, describe other models that were evaluated by the WG and explain their strengths, weaknesses and results in relation to the "best" model. If selection of a "best" model is not possible, present alternative models in detail, and summarize the relative utility each model, including a comparison of results. It should be highlighted whether any models represent a minority opinion.

