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The Joint Effort for Data 
Assimilation Integration (JEDI)
Data Assimilation Challenges
All partners of the Joint Center for Satellite Data Assimilation (JCSDA) run data assimilation 
algorithms applied to their own models and applications. In 2001, the JCSDA was created to 
accelerate and improve the use of new satellite observing systems into each member’s data 
assimilation system. As Earth-observing systems constantly evolve and new systems are 
launched, continuous scientific developments for exploiting the full potential of the data are 
necessary. Given the cost and limited lifetime of new observing systems, it is important that 
this process happens quickly. This effort has been successful and continues to be; but, as the 
context evolves, new challenges emerge.

Data assimilation algorithms are evolving and progressing to better exploit all information 
available. It can be argued that improvements in data assimilation methodology have 
contributed more to the improvements of forecast skill than the improvements in the 
quantity or quality of observations (Dee et al., 2014). Thus, better use of new observing 
systems does require access to worldwide state-of-the-art data assimilation algorithms.

Furthermore, as weather and environmental forecasting progresses, more subtle processes 
are taken into account. In this context, forecast models are evolving towards a more 
comprehensive representation of the Earth system and coupling between its components. 
Coupled data assimilation is desirable to better initialize coupled models, but better use 
of observations can also benefit from a coupled data assimilation system. The primary use 
case of relevance for JCSDA are the many satellite observations that are sensitive to the 
meteorological state of the atmosphere but also to the underlying surfaces, whether land or 
sea, and to the aerosols and chemical species present in the atmosphere.

Finally, models’ resolutions and observation data volumes keep increasing with time, 
requiring more and more computationally efficient data assimilation codes. At the same 
time, the supercomputers where data assimilation systems are run are becoming more 
complex, with more and possibly heterogeneous processing elements. Using them efficiently 
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is a growing concern in the community, with 
leading centers exploring ways to improve 
scalability of their forecasting models and 
data assimilation systems (Bauer et al., 2020). 
The JEDI structure evolved from the Object 
Oriented Prediction System (OOPS) started 
at The European Centre for Medium-Range 
Weather Forecasts (ECMWF) in the context 
of the scalability programme.

Data Assimilation Integration
Addressing all the challenges above, 
in a manner that is generic and usable 
by all JCSDA partners, requires a new 
development approach. Current operational 
data assimilation systems were developed 
20 or 30 years ago (Kleist et al., 2009, Daley 
et al., 2001, Lorenc et al., 2000, Rabier et 
al., 2000). During that time, the fields of 
computing and software development 
have evolved tremendously, from pioneers 
working in laboratories or their garage 
to a mature industry dominating the 
economy. The JEDI project leverages the 
tools and methodologies commonly used 
in the software industry to address the next 
generation data assimilation challenges. 

The first technologies leveraged by OOPS 
and JEDI relate to code design. Object 
oriented and generic programming are used 
extensively to separate the many aspects 
that constitute a modern data assimilation 
system. The key concept in modern software 
development for complex systems is 
separation of concerns. In a well-designed 
architecture, teams can develop different 
aspects in parallel without interfering 
with other work and without breaking 
the components they are not working on. 
Scientists can be more efficient focusing on 
their area of expertise without having to 
understand all aspects of the system. This 

is similar to the concept of modularity. 
However, modern techniques (such as 
Object Oriented programming) extend this 
concept and, just as importantly, enforce it 
throughout the code. 

Data assimilation scientific papers describe 
algorithms with high-level notations that 
represent a forecast model, observation 
operators, or covariances matrices without 
relying on the implementation details of 
those operators. The OOPS code takes the 
same approach, defines abstract interfaces 
for the operators mentioned above, 
and implements the data assimilation 
algorithms using those interfaces. This 
provides separation of concerns where data 
assimilation specialists can focus on data 
assimilation algorithms without requiring a 
full knowledge of all underlying codes.

Separating concerns makes the data 
assimilation code independent from the 
model; it also means that it becomes 
generic and can be used with different 
models. This is the base for sharing data 
assimilation algorithms between JCSDA 
partners, significantly reducing duplication 
of effort. Furthermore, nothing in the OOPS 
code limits its application to atmospheric 
applications. Applications for ocean, land 
surface, or atmospheric chemistry can also 
be interfaced into OOPS. The framework 
caters to all components of the Earth system, 
enabling the evolution towards fully-
coupled Earth system data assimilation.

In addition to the data assimilation 
algorithms, the project also makes the 
observation operators more generic so they 
can also be shared between different models 
through its Unified Forward Operator 
(UFO) and Interface for Observation Data 
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Access (IODA) components. As a result, any 
improvement in observation operators by 
JCSDA or any partner can immediately be 
shared with the other partners, without any 
porting or recoding. UFO and IODA make 
it easier and more valuable to invest into 
operators that will be used widely.

Joint Effort
Developing a data assimilation system 
for all the partners of a Joint Center, like 
JCSDA is necessarily a Joint Effort involving 
JCSDA core staff and all the partners. 
For collaborative work, such as code 
design, the software industry has matured 
tremendously. In this domain as well, the 
JEDI project makes use of modern tools and 
methodologies.

JEDI software development is based on 
an Agile approach. The principle is that 
development happens in small increments 
that are continuously integrated in the 
code. This is not common in numerical 
weather prediction or related applications 
but is the most common practice in the 
software industry as can be experienced 
every day with frequent updates of apps on 
smartphones or personal computers. The 
Agile approach has a number of advantages 
over the traditional, and dreaded, once-a-
year merging of all contributions. 

The most obvious advantage of working 
in small code changes that are merged 
quickly is that all developers can see and 
review the code as it is being developed. 
As a result, errors can be identified and 
corrected immediately and easily (it is 
always more difficult, even for the most 
experienced developers, to fix code written 
up to two years before than code written just 
a few days before). Potential conflicts with 

other developments can also be identified, 
discussed, and addressed early in the 
development phase rather than after the fact. 

A very visible difference between JEDI 
and most projects in the field of weather 
forecasting is the level of interaction between 
all parties involved. The project is centered 
around a core team at JCSDA, with additional 
active in-kind contribution from partner 
agencies. As a result, the project team is 
geographically distributed. Communication 
technologies have progressed to a level 
where working on the same project across 
the country has become common practice 
in the software industry. Video-conferences 
involving all developers take place 
regularly, focusing on concrete development 
questions and issues. Several other working 
practices and cloud-based tools are used 
to facilitate collaborative work, including 
source code version control, issue tracking, 
continuous integration (automated testing), 
code reviews, and utilities for exchanging 
information and discussion. This is essential 
for working across agencies, possibly in 
different parts of the country, and will be 
used both for initial development and long-
term evolution and maintenance.

Because of the distributed nature of the 
project, and of the future use by all partners, 
portability is a constant concern at every 
step. All JEDI code is tested automatically 
and with several compilers for every pull 
request and regularly for more extensive 
and expensive tests. Container technology 
(e.g., Docker, Singularity, Charliecloud) is 
used for testing and development work. 
Performance evaluation of code running in 
containers is on-going for possible use in 
production runs in the future, which would 
ease maintenance across organizations. This 
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effort towards portability has already been 
beneficial for the project: JEDI software 
was “ported” to cloud computing in about 
20 minutes, to be contrasted with external 
libraries or existing models that might 
require months of work.

Managing a large system like JEDI with 
all the models from the partners, all the 
observation operators for all Earth system 
components, and all data assimilation 
algorithms would be impossible in a 
traditional monolithic code. The JEDI code is 
divided into components, each managed in 
its own repository. A flexible build system 
gathers the code from multiple repositories 
as needed by applications and builds it.

The goal of the JEDI project is to develop a 
worldwide state-of-the-art data assimilation 
system that meets operational requirements 
from the JCSDA partners and to make it 
available for research. For that purpose, the 
code will be released under an open source 
license (Apache-2). To support transition to 
operations and to the research community, 
training sessions (“JEDI Academies”) are 
regularly organized, initially focusing on 
project developers and JCSDA partner 
agencies, progressively extending to 
the wider data assimilation community. 
Documentation is being written as the 
project progresses, and tutorials will be 
provided in the future.

The project includes the development of all 
the generic data assimilation components 
and in collaboration with the partner 
agencies to interface their respective 
models to the system. It also includes the 
development and maintenance of the tools 
necessary to develop, test, and validate 
the system in a collaborative environment. 

This will be achieved through specific tools 
and, where possible, the use of open source 
software compatible with the license of the 
JEDI software.

JEDI Evolution
The system includes existing leading 
operational data assimilation algorithms 
and facilitates exploration of new data 
assimilation science across domains and 
applications. Contrary to data assimilation 
projects in the past, such as GSI, DART, 
NAVDAS, or the IFS, JEDI is not centered 
around one single data assimilation method 
that would be imposed on all partners. 
A unified system does not mean a single 
configuration, and each agency will be able 
to use different applications and different 
data assimilation algorithms. It also means 
that JEDI will be a base for developing new 
data assimilation algorithms in the future 
and address new challenges as they arise. 

Areas where all partners will benefit from 
JEDI improvements include, for example, 
efficiency and scalability on new computer 
architectures. Improvements in data 
assimilation methodology will improve 
the use of observations. Two foreseeable 
directions for research in that area are the 
evolution towards a fully-coupled Earth 
system, and the methods that can always 
make use of all the most recent observations 
available for any given forecast, regardless 
of their order of arrival through a more 
continuous data assimilation process. Finally, 
the JEDI UFO will encourage the common 
development and sharing of observation 
operators between the partners, collectively 
paving the way for the use of more 
observation types than any center on its own 
could achieve. Development of new data 
assimilation algorithms and improvement 
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of existing algorithms aiming at improving 
forecast skills will benefit JCSDA partners 
while also avoiding duplication of effort.

Final Comments
The series of articles about JEDI in this 
newsletter covers in more detail the main 
aspects of the project. The next articles 
explains the structure of the OOPS-JEDI 
code (Trémolet, 2020, this issue), followed 
by an article describing the interfacing 
with the models (Holdaway et al., 2020, 
this issue) and another one describing the 
interfacing with observations through 
UFO and IODA (Honeyager et al., 2020, 
this issue). The last article in the series 
describes the methodology and tools used 
in JEDI (Abdi-Oskouei et al., 2020, this 
issue). The goals of the JEDI project are very 
ambitious. Together, the modern practices 
and technologies described in these articles 
make the goals set forward feasible.

Authors
Yannick Trémolet (JCSDA) 
Thomas Auligné (JCSDA)
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Joint Effort for Data Assimilation 
Integration (JEDI) Design and 
Structure
Introduction
Data assimilation is an essential component of any forecasting system. It aims at determining 
the best estimate of the state of a system given observations of the system and a previous 
estimate of the state of the system for use as initial condition for an ensuing forecast. It 
also requires error estimates of the input quantities, usually covariances matrices and bias 
estimates, and uses operators, such as the forecast model and observation operators.

The JEDI data assimilation system is centered around the Object Oriented Prediction 
System (OOPS) that defines abstract representations of the quantities and operators used 
in data assimilation, with the various operations that can be performed with them. This 
abstract interface layer is implemented in C++ using templates. Different implementations 
are chosen at compile time during template instantiation and provide genericity across 
models. Adding a new model or system to JEDI means implementing the classes defined in 
the abstract layer for that model or system. On the other side, adding or modifying a data 
assimilation algorithm is done through the interface layer so that all code at high level is 
model independent (Figure 1).

The main components of the JEDI system are described below. The description is not 
exhaustive and is not intended as a full technical documentation. It describes the key 
components and general principles behind the design. It should serve as an introduction 
before going deeper into the system and code.

The next section describes the abstract interfaces OOPS expects for a given model or system 
for which data assimilation is to be implemented. The following section shows where 

Figure 1. OOPS generic design 
and separation of concerns. 
Applications are written in 
a generic layer (blue) using 
abstract building blocks (green), 
which correspond to scientific 
elements. Each model (red) 
implements the abstract elements.
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generic components can be used, and the 
last section gives some information about 
data assimilation algorithms and high-level 
applications.

OOPS Abstract Interfaces
Model Space Interfaces

In the scientific literature, high-level data 
assimilation algorithms are described in 
terms of a state variable x, without any 
reference to the specific nature of the 
fields in x or the geometry of their discrete 
representation. All such details should be 
encapsulated inside a state class and not 
be visible from high-level algorithms. In a 
similar way, forecast models, often denoted 
M(x), are used to evolve the state of the 
system of interest forward in time, but the 
details of how this is done are not required 
in order to define a data assimilation or other 
high-level algorithms, thus such details 
should not be apparent in high level parts of 
the code.

The following classes provide high-level 
access to model states and state related actions 
required by data assimilation algorithms. All 
assimilation algorithms refer to model space 
entities only through these high-level classes. 
The actual implementation of the classes in 
model space are of course model specific.

Geometry

The state of the system is obviously 
an important piece of data in any data 
assimilation and forecasting system. 
In meteorology and oceanography, it 
is represented by a collection of fields 
representing the values of the variables of the 
problem. For computational purposes, fields 
are discretized and a finite set of values are 
stored and manipulated. This set of values is 
distributed on a model-dependent geometry 

that can be relatively simple, such as regular 
grids, more complex, such as cubed-sphere 
or reduced Gaussian grids, or more abstract, 
such as spectral representations. The 
Geometry class is dedicated to holding this 
information in OOPS. It will typically contain 
the definition of the model grid, resolution, 
and distribution across processors. OOPS 
creates Geometry objects and passes them 
to lower level code where necessary, 
typically to constructors of other model 
space objects. Passing the same Geometry 
to the constructors ensures consistency in 
resolution and distribution across processors 
between the objects involved.

State and Increment

The State class is the fundamental class 
giving access to operations on model states 
in OOPS. It holds and encapsulates data that 
define the state of the system and the date 
and time for which it is valid. In addition to 
encapsulating data, the State class provides 
operations associated with that state, such as 
basic utility functions (read, write, diagnostic 
prints), and a method (getValues) to provide 
access to state values where necessary.

The Increment class is very similar to the 
State class except for the fact that it handles 
perturbations to the state. It provides a 
method to compute an increment as the 
difference between two states, to add an 
Increment to a State, and a set of basic linear 
algebra operators, which are legitimate 
operations for increments but not for states.

Model

The main responsibility of the Model class is 
to hold the forecast model configuration data 
and to provide the ability to evolve a State in 
time. Its main method is the forecast method, 
which is coded in the OOPS layer and 
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relies on specific model implementations to 
provide three lower level methods: initialize, 
step, and finalize. For a given model, 
these three methods contain respectively 
everything that happens before the loop 
over time steps, inside the loop, and after 
the loop. Although these do not necessarily 
exist as such in every model, they are fairly 
easy to create by wrapping existing code. 
For improved efficiency in the case several 
calls to the forecast are made in the same 
executable, code that should be executed 
only once should be in the constructor of the 
Model, while code that needs executing at 
the beginning of each integration should be 
in the initialize method.

The reason for this design of the abstract 
interface for the model is that 4D 
assimilation methods require access to the 
model state throughout the assimilation 
window. The volume of data that would 
represent far exceeds the amount of 
memory available on supercomputers, so it 
is not possible to store it in memory. For the 
same reason, I/O would be prohibitively 
expensive. These four-dimensional 
computations have to happen while 
the model is running. Some algorithms 
also require running the forecast and 
computations needed for data assimilation 
repeatedly in an iterative process. The 
level at which the interface between the 
model and the data assimilation is written 
in OOPS is the highest level possible that 
meets those requirements while remaining 
generic. Applying the same object-oriented 
approach deeper into the models would be 
possible, and possibly desirable in terms 
of code design for the future, but it is not 
needed for data assimilation and is not in 
the scope of OOPS or JEDI.

PostProcessors

In addition to the initial condition and length 
of the required forecast, a PostProcessor 
object is passed to the Model’s forecast 
method. The PostProcessor class is a very 
generalized form of post-processing used to 
handle all output a forecast should produce 
while running. The goal of that class is to 
isolate all the auxiliary code that should be 
called during the integration of the forecast 
model but is not strictly part of the model 
(enforcing separation of concerns).

PostProcessors derive from a base class that 
controls when each processor will be called 
during the forecast execution based on the 
configuration passed as an argument to its 
constructor. This relieves both the forecast 
model and the actual processor from that 
responsibility, allowing them (and more 
importantly, developers) to focus on their 
responsibilities, which are to produce 
respectively a forecast and some output given 
the model state generated by the forecast.

Concrete post processors define a process 
method taking a State or Increment as 
unique argument that cannot be modified. 
In addition to this, each processor class can 
implement complex constructors and/or 
destructors or other methods to be called 
before and/or after the forecast run as 
necessary. For simple cases, this will not 
be useful (for example, to print norms to 
a log file or to save the forecast to files). 
In other cases, complex operations can 
be implemented, for example setting-up 
observations operators before the forecast 
starts in the processor’s constructor, calling 
them during the forecast integration 
from the mandatory process method and 
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collecting observation equivalents after the 
forecast has completed in a specific method. 
Storing the “trajectory” for tangent linear 
and adjoint models is also the responsibility 
of a dedicated post-processor.

In variational data assimilation, this 
approach is important as all the contributions 
to various terms of the cost function need to 
be collected in the same model run while 
keeping a lot of flexibility in implementing 
new terms, and keeping the data assimilation 
code isolated from the model code. 

Other Classes in Model Space

A few other interface classes exist in model 
space; for example, auxiliary classes for 
state augmentation for applications such 
as parameter or model bias estimation. A 
LinearModel class also exists to hold tangent 
linear and adjoint models.

Observations Space Interfaces

In the scientific literature, high-level data 
assimilation algorithms are described in 
terms of a vector of observations, usually 
denoted y, without any reference to the 
specific nature of the observations in y or 
their distribution in space and time. All such 
details should thus be encapsulated inside 
an Observations class and not be visible 
from high-level algorithms. In a similar way, 
observation operators, often denoted H(x), 
are used to simulate the observations given 
the state of the system x, but the details of 
how this is done are not required in order to 
define a data assimilation or other high-level 
algorithms; thus, such details should not be 
apparent in high-level parts of the code.

The following classes provide high-level 
access to observations and observation-
related actions required by data assimilation 

algorithms. All assimilation algorithms 
refer to observation space entities only 
through these high-level classes. The actual 
implementation of the classes in observation 
space are specific to each observation type.

Observations and Departures

The Observations class holds and 
encapsulates observations (often denoted 
y in the scientific literature) and associated 
operations. The Departures class is the 
mirror in observation space of the Increment 
class. It represents differences between, or 
perturbations to, observations. It is very 
similar to the Observations class except for 
the fact that it provides an additional set of 
linear algebra operators. 

For data assimilation applications, there 
is one object of class Observations per 
observation type. There is no strong 
constraint in the system about what 
constitutes an observation type other 
than the fact that the same observation 
operator, quality control procedures, and 
bias correction method will be applied to all 
observations in a given type.

The Observations and Departures classes are 
implemented in OOPS and are not part of the 
interface to the actual model implementation. 
Internally, Observations and Departures 
objects each contain a vector of values 
(ObsVector) to which methods are delegated.

ObsSpace and ObsVector

The concept of geometry from the model 
space is transposed to the observation space 
with the ObsSpace class. This class defines 
the distribution of observations in space, 
as the Geometry would for model space 
entities. However, the ObsSpace class also 
gives access to all metadata associated with 
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the observations, including time, some 
instrument dependent metadata, quality 
control information, and to the actual 
observation values themselves.

The ObsVector class is used to hold values in 
observation space. Like State and Increment 
are always defined with a Geometry, 
ObsVectors always refer to an ObsSpace. 
The values in an ObsVector can be read from 
the ObsSpace, for example, the observations 
values, or can be local variables computed 
within the data assimilation process, for 
example H(x). In that case, the values in the 
ObsVector can be saved in the ObsSpace for 
later diagnostics or can be deallocated like 
any other local variable. 

Optimisation of data access, for example, 
according to frequent access patterns 
or according to specific observation 
distributions across processors, are left to the 
lower-level implementation of each model, 
as it is impossible to define optimisations 
that would suit all possible applications.

ObsOperator

The computation of a simulated observation 
given a model state comprises two steps: 
the interpolation of the model variables 
to the observation locations, and the 
computation of the observation equivalent 
from these interpolated model variables. It 
is the responsibility of the state to provide 
the values of its variables (or fields) at the 
requested locations through the getValues 
method, which isolates the observation part 
of the code from the internal geometry of the 
model being used. 

The ObsOperator class define the actual 
computation of observation equivalents 
given model state values at the observations’ 

locations for a given observation type 
(method simulateObs). This step can be 
extremely simple if the quantity being 
measured is a variable of the model (a 
temperature or wind measure for example), 
or very complex in the case of radiance 
observations from satellites involving a 
radiative transfer model. In any case, this 
class encapsulates the science related to 
the observation type and isolates it from 
the technical details related to the forecast 
model.

The LinearObsOperator class also exists and 
holds the tangent linear and adjoint of the 
observation operator. 

Other Classes in Observation Space

An auxiliary observation control variable 
and the corresponding increment are defined 
in the interface directory. This is intended 
for applications that require control of 
parameters in the observation operators or for 
estimation of observation bias. A covariance 
matrix for these parameters is required.

Error Covariances

Background Errors

Modelling background error statistics is 
an essential part of a data assimilation 
system and a key element to the quality 
of the analysis and ensuing forecast. The 
design of the interfaces for background 
error covariance matrices is, however, very 
simple. In addition to a constructor, the 
ErrorCovariance class requires a method 
to multiply an increment by the covariance 
matrix and another one to multiply an 
increment by the inverse of the covariance 
matrix. In real cases, this inverse is often very 
ill conditioned, the variational algorithms 
in OOPS only use it for diagnostics. Some 
applications require a method to generate a 
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random increment according to the statistic 
distribution described by the covariance 
matrix, this is particularly useful for testing. 

OOPS implements a factory that lets users 
choose a given covariance model at run 
time. Generic background error covariance 
implementations are implemented in 
the System Agnostic Background Error 
Representation (SABER) repository. 

Observation Errors

Just like the background errors, the definition 
of observation errors is key to the quality of 
the analysis, but the interface to the covariance 
matrix is simple and mimics that of the 
background error covariance. The type of 
observation error covariance is configurable at 
run time, although initially only the diagonal 
observation error covariance is implemented. 
More generic covariance models will be 
developed. For example, generic components 
developed in the context of background 
error covariance modeling to represent 
correlations on unstructured grids open the 
possibilities for more advanced observation 
error correlations representations.

Other Interface Classes

Locations

The Locations class is one of the links 
between the observation and the model parts 
of the code. It is used to specify the locations 
where model fields values are needed by 

the observation operators and passed to the 
getValues method of the state. OOPS only 
passes Locations objects between methods 
associated with other classes and makes 
no assumption regarding the interface of 
that class. Different applications can use 
that flexibility to implement very different 
coordinate systems and specific methods.

GeoVaLs

The GeoVaLs (Geophysical Values at 
Locations) class is used to pass the model 
values interpolated to the required locations 
to the ObsOperator (Figure 2). The GeoVaLs 
class is the other link between the model 
and the observation parts of the code. The 
only use of this class in OOPS is to pass 
the model fields values at the locations of 
observations from the getValues method to 
the observation equivalent computation. As 
a result, there are no constraints regarding 
the interface of this class in a given system.

Traits

The set of classes that represents the system of 
interest is gathered as a list of aliases (typedef 
in C++) that define the concrete class that 
corresponds to each abstract class expected 
by OOPS. This list takes the form of a C++ 
class called a trait. The OOPS code is generic 
and templated on this trait. At compile time, 
through template instantiation, the compiler 
replaces the generic classes in OOPS by the 
specific classes defined in the trait. This 

Figure 2. Interactions between 
models and observations in 
JEDI. The GeoVaLs class is 
used to handle the state values 
evaluated at the locations of 
the observations.
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defines a generic data assimilation system 
that can be used with many models without 
re-writing any code.

Templates do not exist in Fortran and no 
equivalent functionality is expected in the 
future. It is this functionality, more than 
the object-oriented aspects, that drove the 
choice of C++ as a programming language 
for OOPS and JEDI.

Comments About Interface  

Classes Design

In model space, the State and Increments 
are the classes that make the interface 
between the abstract layer and the 
concrete implementation. In observation 
space, Observations and Departures are 
implemented in OOPS, it is the lower level 
ObsVector that constitute the interface. A 
similar approach could have been chosen in 
model space with a concept such as Fields for 
example. However, fields in model space are 
a representation of a continuous reality, for 
which the concepts of resolution and change 
of resolution exist. Even more than that, 
fields can be represented in different spaces 
(grid point, spectral, finite volume, spectral 
elements, etc.). Even in the same system, 
a linear model can be used jointly with a 
nonlinear model that does not use the same 
representation for fields (perturbation forecast 
model). In observation space, the observations 
are discrete and their number finite. There is 
no concept of change of resolution or different 
representation. Thus, it is reasonable to have 
only one data structure and only one class to 
interface; whereas, this would have limited 
possibilities in model space.

The classes that define a specific system in a 
given trait are wrapped in an interface layer 
in OOPS. This is not mandatory and was 

not done in earlier versions of the code. This 
interface layer was added to help readability. 
In particular, when adding a new model into 
the system, this layer provides a single point 
where all interfaces are visible. Without it, 
one would have to scan all the code to see 
where the classes in the trait are used to 
have a complete list of methods and their 
interfaces for each class. Such a list could be 
maintained in the documentation but would 
inevitably go out of date. By being part of 
the code, it is permanently checked by the 
compiler and cannot go out of date. It is a case 
where the code really is the documentation. 
The interface layer is also used to instrument 
the code. It contains utilities for tracing and 
timing the execution of the code. Such tools 
could be extended in the future.

Generic Components
Each model interfaced with OOPS requires 
its own trait with a complete set of consistent 
classes matching the expected abstract 
interfaces. However, a given concrete class 
can be used in more than one trait. This opens 
possibilities for sharing more code across 
different models than just the high-level data 
assimilation code, increasing collaboration 
and reducing duplication of effort even 
further. This is where JEDI extends OOPS 
with more generic components (Figure 3) in 
UFO, IODA and SABER.

The observation-related generic layer (UFO 
and IODA) reduces code duplication for 
observation handling and functionality 
that is common to all observation types, 
including quality control procedures and 
bias correction. While the UFO and IODA 
classes are specified in the OOPS trait and 
chosen at compile time, specific operators 
within UFO are chosen at run time, bringing 
another level of flexibility to the system.
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UFO

The Unified Forward Operator (UFO) is 
at the heart of JCSDA’s mission and is the 
other major component of JEDI after OOPS. 
It implements generic observation operators. 
The key elements that make the observation 
operators generic are the classes that make 
the connection between the model space and 
the observation space. As described above, 
these classes are Locations and GeoVaLs. 
Thus, UFO includes implementations of 
these two classes in addition to a collection 
of observation operators that users can 
leverage. The same UFO operators can be 
used in conjunction with several models 
regardless of the models’ internal geometries.

In addition to the observation operators 
themselves, UFO also implements generic 
tools for quality control and variational bias 
correction, which are extremely important 
for operational centers. These aspects 
represent a large fraction of the work related 
to observation in operational centers and 
thus have a lot of potential for reduction of 
duplication of work. Once a UFO generic 
operator has been validated, including it 
in any JEDI-compliant system should be as 
easy as installing a new app on a smartphone 

from an App store. Generic operators will be 
provided with default settings that can be 
fine-tuned for each application.

IODA

The Interface for Observation Data Access 
(IODA) is developed with the UFO to 
handle observation data. It provides 
functionality for I/O of observation data 
and in memory access. In the interface layer 
and traits, it implements the ObsSpace and 
ObsVector classes.

IODA will facilitate the implementation 
of UFO. It will also facilitate the exchange 
of observations between centers for 
experimental studies, comparisons, or 
potentially for reanalyses. Data assimilation 
diagnostics will also be developed based 
on IODA.

SABER

The System Agnostic Background Error 
Representation (SABER) implements 
generic background error covariance 
matrices, among which is BUMP 
(Background error on Unstructured Mesh 
Package). After observation processing, the 
modelling of background errors is the most 

Figure 3. JEDI Structure with 
a generic layer for observation 
and background error 
handling.
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time-consuming task in data assimilation. 
Exchange and comparisons of covariance 
matrices have never been possible before 
JEDI. This will be an important tool for 
scientific advances in data assimilation. 

Comments

Each component of JEDI is stored in its own 
code repository. (Figure 4) It is the build 
system that gathers all code for a given 
build. This approach enforces separation of 
concerns and gives additional flexibility to 
build applications with the components it 
requires. It also facilitates development with 
different teams managing each repository.

Data Assimilation and Other High-
level Algorithms
Data assimilation algorithms in OOPS-JEDI 
are entirely written using the abstractions 
described in the previous sections. At 
this time, most existing variational data 
assimilation algorithms including 3D-Var, 
3D-FGAT, 4D-Var, 4D-En-Var, weak 
constraint 4D-Var, and observation space 
algorithms are implemented in the OOPS 
layer. Ensemble data assimilation algorithms 
(EDA and EnKF-based) are being developed. 

Minimization algorithms for variational 
data assimilation are written in a very 
generic manner and can be reused for other 
purposes. For example, an approximate 
inverse of the background error covariance 
matrix can be computed using one of those 
minimization algorithms for cases where 
no specific inverse is implemented in an 
ErrorCovariance model.

Algorithms related to data assimilation, for 
example, the computation of observation 
impact, are also implemented in the high-
level generic layer. 

Although already covering most 
operational data assimilation algorithms, 
the data assimilation layer will evolve in 
the future. New research will take place 
and new algorithms will be developed that 
can be immediately tested with all models 
interfaced with JEDI, from a very simple 
Lorenz model to the most advanced fully-
coupled Earth system models.

Authors
Yannick Trémolet (JCSDA)

Figure 4. Each major 
component of JEDI is managed 
in its own repository.
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Status of Model Interfacing in the 
Joint Effort for Data Assimilation 
Integration (JEDI)
Introduction
As outlined in the introductory articles, the central components of JEDI are completely 
generic in the sense that different data assimilation systems can make use of the same 
software infrastructure and components. This is achieved through so-called interface 
classes that define how the various components will interact with each other. However, 
some work is still required to build all the variables and methods of the interface classes for 
some specific forecast model so that the applications of JEDI can be used with that model. 
Examples of interface classes implemented for specific forecast models include Geometry, 
State, Increment, Model, LinearModel, and VariableChange. All of the operations in these 
interface classes depend on the grid of the underlying model or the model itself.

Generic tests in Object Oriented Prediction System (OOPS) confirm that the interface classes 
have been developed correctly and, once complete, applications based on the algorithms 
provided by OOPS can be created and used. Most of the actual models are written using 
Fortran, rather than C++, so the interface classes can just call into some Fortran equivalent. 
Several models are now interfaced to JEDI or are in the process of being interfaced. These 
are outlined in Table 1.

MODEL TYPE GRID
INTERFACE 

REPOSITORY
CENTER

GFS Atmosphere Cubed-sphere FV3-JEDI NOAA-EMC

GEOS Atmosphere Cubed-sphere FV3-JEDI NASA-GMAO

GFS GSDChem Aerosol Cubed-sphere FV3-JEDI NOAA-ESRL

GEOS-AERO Aerosol Cubed-sphere FV3-JEDI NASA-GMAO

LFRIc Atmosphere Cubed-sphere LFRIc MET Office (UK)

MPAS-A Atmosphere Voronoi meshes MPAS-JEDI NCAR

NEPTUNE Atmosphere Cubed-sphere NEPTUNE NRL

Quasi-geostrophic Toy model Lat-Lon OOPS ECMWF

Lorenz 95 Toy model 1D OOPS ECMWF

ShallowWater Toy model Lat-Lon shallow-water NOAA-ESRL

MOM6 Ocean Tripolar SOCA NOAA-EMC

SIS2 Sea-ice Tripolar SOCA NOAA-EMC

CICE6 Sea-ice Tripolar SOCA-CICE6 NOAA-EMC

WRF Atmosphere Lat-Lon WRF-JEDI NCAR

Table 1. Models for which an 
interface to JEDI has been or 
is being prepared.
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The generic nature of JEDI provides a 
great deal of flexibility as the complexity 
of the system increases. Rather than 
large monolithic software, there can exist 
smaller components that cover specific 
tasks or sets of tasks. Model interfaces are 
constructed for individual components 
of the Earth system (e.g., the atmosphere 
or ocean). There is no explicit need to 
combine different components into one 
interface, meaning they can be updated 
independently as models change. In 
addition, it does not limit scalability of 
development, an important consideration 
for a community effort of this magnitude. 

OOPS provides the methods for creating 
forecasts from within the data assimilation 
algorithms and in the same executable. This 
is important where 4D data assimilation is 
used with outer loops, since it avoids reading 
and writing large files and cuts down the 
number of model initializations that are 
required. There is a forecast model class 
within OOPS for handling initialization, 
stepping, and finalization of model forecasts.

Status of the Model Interfacing
The sections below outline the efforts 
ongoing for the interfacing of JEDI to the 
next generation forecast models being used 
at various centers in the United States and 
internationally. The details of interfacing to 
the toy models is omitted since these mostly 
exist to provide fast regression testing and 
interfacing examples rather than scientific 
capability. Details of the MPAS model are 
also omitted since these were covered in a 
previous edition of this newsletter McMillen  
(2019). Most of the models being interfaced to 
the JEDI system are so-called next generation 
models. They are typically non-hydrostatic 
and use grid construction that avoids the 

converging of grid points seen in longitude-
latitude grids. In general, the results below 
demonstrate infrastructural capability since 
that is the stage of development for most 
interfaces. Focus is currently shifting to 
examining the scientific validity of high-
resolution results and cycled experiments.

FV3-JEDI

The finite volume cubed-sphere (FV3) 
dynamical core (Lin 2004), developed 
by NOAA’s GFDL laboratory, is used in 
NASA’s Goddard Earth Observing System 
(GEOS) model and now NOAA’s Global 
Forecast System (GFS) model. It is a non-
hydrostatic model that uses cubed-sphere 
geometry, finite volume dynamics, and a 
Lagrangian vertical coordinate. FV3 also 
supports a two-way nesting capability, 
which will be used for regional modeling 
efforts at NOAA. 

The FV3-JEDI interface, named for the model 
component that governs the horizontal grid, 
is being built to provide JEDI-based data 
assimilation for all models, both global and 
regional, that use the FV3 dynamical core. By 
having a single interface, it will help bolster 
collaboration between and within centers 
that use FV3-based models and eliminate 
duplicate effort. In addition to providing 
the meteorological data assimilation, it will 
also provide the mechanism for doing other 
kinds of atmospheric data assimilation, such 
as aerosol, chemistry, and constituent. 

FV3-JEDI is interfaced to four different FV3-
based model drivers: MAPL, which drives 
the GEOS model; NEMS, which drives the 
GFS model; FV3-JEDI-LM, which drives 
a stand-alone FV3 dynamical core; and a 
‘pseudo’ model, which can read a previously-
produced forecast from either GEOS or GFS. 
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For the simplified FV3-JEDI-LM system, the 
model can be driven by FV3-JEDI, exchange 
states with JEDI, and be rewound for outer 
loops. For the MAPL and NEMS interfaces, 
FV3-JEDI can drive the forecast model 
and retrieve states as the model advances. 
NASA’s Global Modeling and Assimilation 
Office (GMAO) has developed adjoint and 
tangent linear versions of FV3, as well as 
the GEOS convection, cloud, and turbulence 
schemes. This linearized model is available 
through the FV3-JEDI-LM repository. 
Having this linearized model on the FV3 
grid enables 4DVar data assimilation with 
FV3-JEDI, as well as adjoint-based Forecast 
Sensitivity Observation Impacts (FSOI). 

With FV3-JEDI, all common flavors of 
data assimilation have been tested: 3DVar, 
3DEnVar, 4DEnVar, 3D-FGAT, and 4DVar, 
as well as their hybrid equivalents. The 
formulation of the B matrix uses BUMP, 
so far with prescribed length scales for 
correlation and localization. The static part 

of the B matrix uses a univariate formulation 
applied to stream function, velocity potential, 
temperature, relative humidity, and surface 
pressure. Work is underway to extend the 
static B matrix formulation to include more 
sophisticated balance operators and thus a 
multivariate formulation. FV3-JEDI has been 
interfaced to in-situ temperature, wind and 
humidity observations, radiances modeled 
with the Community Radiative Transfer 
Model (CRTM), bending angle observations 
using the Global Navigation Satellite System 
Radio Occultation (GNSS-RO), surface 
observations, and aerosol optical depth 
(AOD) modeled with the CRTM.

Figure 1 shows the analysis increment of 
the eastward component of wind using 
the 4DEnVar assimilation procedure. The 
increment is plotted at around 150hPa, 
the approximate height of the jet stream. 
The horizontal resolution of the grid is 
around 50km (C180 in FV3 terms). The 
background comes from the GEOS model. 

Figure 1. Analysis increment 
of the eastward component of 
wind at ~150hPa valid at 2018-
04-15 00UTC. 4DEnVar data 
assimilation using the FV3-
JEDI interface, assimilation 
of in-situ radiosonde, and 
aircraft temperature and wind. 
Localization handled using 
BUMP and defined using 
prescribed length scales.
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In this experiment, a subset of the in-
situ radiosonde and aircraft wind and 
temperature observations are assimilated. 
Most of these are over the United States. The 
localization is computed using BUMP and a 
prescribed length scale of around 1000km. 
The increment shown in the figure is plotted 
directly on the cube sphere grid, outlines 
of which are shown on the figure due to 
an artifact of the plotting software used. 
When computing the forward operator, 
the interpolation is directly from the native 
cubed-sphere grid to the observation 
locations. The assimilation window is 6 
hours centered on 2018-04-15 00z. Despite 
this being a fairly simple experiment, 
there are clear dynamical features in the 
increment, and relatively smooth and 
realistic structures are seen.

Figure 2 shows a similar experiment to that 
shown in Figure 1 except using the 4DVar 
algorithm and a hybrid formulation of the 
B matrix. The static part of B is univariate 

and based on prescribed, rather than 
dynamically computed, length scales. This 
figure shows temperature lower down in 
the troposphere at around 850hPa. The 
tangent linear and adjoint model used in 
the 4DVar uses moist physics and boundary 
layer in addition to the dynamical core. 
The dynamical influence, through the 
tangent linear and adjoint of the forecast 
model, results in large scale increment 
that spreads away from the observations 
and follows the dynamical trajectory of the 
atmospheric flow. 

The results above rely on a simple formulation 
of the static background error covariance 
so little weight is given to it. Modeling 
static background error covariances on the 
native model grids presents a number of 
challenges. Given the computational expense 
of representing multivariate covariances, 
the traditional approach relies on first 
transforming to unbalanced variables so 
covariance can be modeled univariately. For 

Figure 2. Analysis increment 
of temperature at ~850hPa 
valid at 2018-04-14 
21UTC. Hybrid-4DVar data 
assimilation using the FV3-
JEDI interface, assimilation 
of in-situ radiosonde, and 
aircraft temperature and wind. 
Univariate correlation and 
localization handled using 
BUMP.



JCSDA QUARTERLY19 NO. 66, Winter 2020NO. 66, Winter 2020

meteorological applications, this involves 
converting to stream function and velocity 
potential variables and then using statistical 
regression to solve the linear balance equation. 
Converting from winds to stream function and 
velocity potential requires solving an inverse 
Laplacian Poisson problem, something that is 
relatively inexpensive on a latitude-longitude 
grid but more challenging on a cubed-sphere 
grid. For FV3-JEDI, a Finite Element multigrid 
solver has been assembled based on code 
provided by Cotter and Thuburn, 2014. The 
majority of the algorithm is generic except the 
prolongation and restriction operators, which 
are currently limited to cubed-sphere and 
icosahedral hexagonal grids. Figure 3 shows 
the D-Grid tangential winds before and after 
application of the Poisson solver. The winds, 
which are on a 100km (C96) cubed-sphere 
grid, are converted to stream function and 
velocity potential and then converted back 
to winds using a straightforward derivative. 
The solver is run with a 5-grid hierarchy. The 
recovered winds are very close to the starting 
winds, showing the solver to be working. 
Small discrepancies come from the need to 
average the winds from the D-grid to the 
C-grid and back during the algorithm. Note 
the discontinuities at cube edges. This is due 
to D-Grid winds being grid tangential, i.e. 
aligned with the grid boxes, while indexing 
on cube faces begins at different corners to 
allow seamless joining of faces. This results in 
the u components being perpendicular across 
some face interfaces. Work is now underway 
to train a BUMP-based covariance model for 
univariate unbalanced variables so the above 
experiments can be repeated with a more 
sophisticated modeling of the covariances.

Figure 4 shows the dust (bin 1) increment 
for the NOAA Global Systems Division 
Chemistry (GSDChem) model. The 

increment is produced using a 3DEnVar 
algorithm (i.e., where the B matrix model 
is produced only from the ensemble). The 
increment is produced with the same FV3-
JEDI interface that is used for the above 
meteorological experiments and using the 
same executable. This level of flexibility is 
enabled by a design that lets users make run 
time choices of variables. The observations 
are from Suomi-NPP 500nm AOD and the 
forward operator used is the CRTM. The 
experiment is performed for a relatively 
coarse 200km horizontal grid (C48) and 
with a 6-hour assimilation window. The 
increment appears over and downstream of 
the Sahara Desert where it is expected.

SOCA

The Sea-ice Ocean Coupled data 
Assimilation (SOCA) project is a broad 
effort to deliver coupled marine data 
assimilation for NOAA that leverages the 
JEDI infrastructure. The project goes beyond 
building a model interface to the individual 
marine components to also assembling 
generic marine observation operators and 
data handling. The model components that 
SOCA is interfacing to are the Modular 
Ocean Model version 6 (MOM6) ocean 
model (Adcroft and Hallberg 2006) and the 
Community Ice Code (CICE) sea-ice model 
(Walters, et al. 2015). Like FV3, MOM6 is 
a GFDL model; CICE is developed by the 
Department of Energy. NASA’s GMAO is 
also planning on implementing the MOM6 
ocean model into GEOS and leveraging the 
interfacing work of SOCA.

An extensive set of observations have been 
interfaced to in SOCA; these are outlined 
in Table 2. Note that the nonlinear, tangent 
linear, and adjoint versions of all operators 
are available, making variational data 
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assimilation algorithms possible for all 
marine models that are or will be interfaced 
to JEDI.

The SOCA interfacing has been tested 
with 3DVar, 3DEnVar, and 3D-FGAT data 

assimilation and their hybrid variants 
for MOM6 and CICE. An interface to the 
stand-alone MOM6 forecast model has been 
implemented, making it possible to drive 
the model and retrieve states. This makes, 
for example, 3D-FGAT and cycling possible 

Figure 3. U component of 
the D-grid tangential winds 
before (top) and after (bottom) 
the application of a Poisson 
solver to convert them to 
stream function and velocity 
potential and then back using a 
straightforward derivative.
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all using the SOCA interface. In addition, it 
is possible to read model states in a pseudo 
model mode so SOCA can be interfaced 
to the full NOAA coupled model. A high-
resolution quarter degree cycled experiment 
has been conducted with SOCA updating 
the ocean and sea-ice states, but with the 

forecast model being the fully coupled 
FV3-MOM6-CICE5. In the experiment, the 
forecast states are read in a pseudo model 
mode. Figure 5 shows the increments of sea 
surface height and sea surface temperature 
from within the cycling. All the observations 
listed in Table 2 are used in the assimilation. 

Figure 4. Analysis increment 
of dust bin 1 at ~700hPa 
valid at 2018-04-14 12UTC. 
3DEnVar data assimilation 
using the FV3-JEDI interface, 
assimilation of AOD using the 
CRTM. Localization handled 
using BUMP.

Table 2. Summary of the 
observation types implemented 
in UFO and used in a typical 
SOCA assimilation cycle.

 RETRIEVED QUANTITY SENSOR/SATELLITE THINNING RATE
TYPICAL COUNT 
ASSIMILATED

Sea Surface Temperature 
from Infrared

AVHRR – NOAA-19 99.5% 110,000

AVHRR – METOP-A 99.5% 150,000

VIIRS – NPP 99.5% 250,000

ABI – GEOS-16 Monitoring Only Monitoring Only

Sea Surface Temperature 
from Microwave

GMI – GPM 75.0% 110,000

AMSR2 – GCOM–W1 75.0% 130,000

WindSat 75.0% 100,000

Sea Surface Salinity SMAP Radiometer 0.0% 450,000

Absolute Dynamic 
Topography

Jason-2 0.0% 240,000

Jason-3 0.0% 240,000

Sentinel-3a 0.0% 240,000

Cryosat-2 0.0% 240,000

SARAL 0.0% 240,000

Ice Fraction from 
Microwave F17 & F18 95.0% 100,000

Total: 1,640,000
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A 30-day cycling for MOM6 has been 
conducted with the SOCA interface. This was 
done using 3Dvar and a 24-hour assimilation 
window. The horizontal grid spacing used in 
the experiment is one degree (approximately 
100km). A total of 1.6 million observations 
were assimilated per cycle; observations 
assimilated were satellite sea surface 
temperatures (NESDIS/ACSPO AVHRR 
L2P) and altimetry (Jason-2, Jason-3 Sentinel-
3a, Cryosat-2 and SARAL). Figure 6 shows 
the sea surface heights on the final day of the 
cycled experiment. It is clear that more detail 
is present in the sea surface height field in 
the run that included data assimilation. In 
particular, the Kuroshio meander east of Japan 
has much more detail and realistic structure.

Neptune

The Navy Environmental Prediction System 
Using the NUMA Core (NEPTUNE) is the 
next generation model being developed 
by the Naval Research Lab (NRL). It uses 

the Nonhydrostatic Unified Model of the 
Atmosphere (NUMA) dynamical core 
(Giraldo, et al. 2013), which is a spectral 
element system. NEPTUNE uses a cubed-
sphere grid, though NUMA can work on 
unstructured grids. Development of the 
NEPTUNE interface began fairly recently, so 
is not as mature as some of the other projects. 
However, good progress is being made, and it 
is now possible to compute a 3Dvar increment 
with the static B from BUMP. Current 
efforts are focused on building up the set of 
observations interfaced with NEPTUNE.

LFRic

LFRic (named for Lewis Fry Richardson) 
is the next generation and exa-scale ready 
forecast model in development at the Met 
Office in the UK. LFRic uses the GungHo 
dynamical core (Staniforth et al. 2014), 
which uses mixed finite element finite 
volume solvers. Since LFRic itself is still in 
early development, the interfacing efforts 

Figure 5. Increments of sea 
surface height (left) and sea 
surface temperature, valid at 
2013-10-01 00z (right).

Figure 6. SOCA cycled 3Dvar 
results. Comparison of sea 
surface height on day 30 of a 
30-day free run of the MOM6 
ocean model (left) and a 30-day 
cycled 3Dvar (right).
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have been using an aqua planet version of 
the model. 

The main focus of the past six months 
has been on putting together a prototype 
4DEnVar system running across multiple 
nodes, which was a key deliverable earlier 
this year. In the process of developing a 
4DEnVar system, other systems have all 
been developed and tested, to include 
3DVar, 3DEnVar, and 3D-FGAT. The LFRic 
interface can use in-situ surface, radiosonde, 
and aircraft observations, as well as radiances 
simulated using the Radiative Transfer for 
TOVS (RTTOV) operator. Implementing 
the RTTOV operator into the UFO was a 
key development and deliverable, and this 
will enable comparison of RTTOV with the 
CRTM for all models.

Summary and Future Work
The JEDI development effort began almost 
from scratch around two years ago. 
Nevertheless, tremendous progress has 
been made towards producing realistic 
analysis states for a number of next 
generation atmospheric and marine forecast 
models. This has required a significant 
parallel development effort to provide 
data assimilation algorithms, a generic B 
matrix operator, observation processing, 
and observation modeling. Around 15 
models are now interfaced to JEDI in some 
form, and many different data assimilation 
algorithms, with a range of these models, 
are being run on a daily basis. So far, native 
grid 3DVar, 3DEnVar, 3D-FGAT, 4DEnVar, 
and 4DVar have all been implemented 
for operational forecast models. Using 
the UFO, in-situ, radiance, bending angle, 
satellite wind, surface pressure, and marine 
observations are all being assimilated 
from several different platforms. Having a 

generic B matrix operator has been crucial 
in making quick progress, and all models 
are successfully making use of the BUMP 
software for producing static and ensemble 
B matrix operators on their native grids. 

Over the coming months, the focus of 
the atmospheric groups is on refining 
the static B matrix operator and testing it 
within configurations with operational-
like horizontal grid spacing. Currently, the 
atmospheric models being interfaced are 
using a univariate approach to the static 
B operator. In most operational systems, 
a multivariate approach is used, typically 
through balance operators. In order to 
achieve this on the native grids, the model 
requires development of capability not 
existing in current operational systems. 
Fortunately, this issue is not applicable 
to the SOCA interface, where it has been 
possible to implement a multivariate B 
matrix operator with refactoring of existing 
techniques. With a more realistic B matrix, 
and as more observation operators become 
available through the UFO, the atmospheric 
modeling groups will be looking to perform 
longer and higher resolution cycled 
experiments. 

The first versions of the SOCA, MOM6, and 
CICE interfaces were delivered to NOAA-
EMC in September 2019. EMC’s current 
planning involves replacing the variational 
component of the Global Ocean Data 
Assimilation System (GODAS) with SOCA 
in early 2020. Between now and passing 
the first SOCA release to EMC, efforts will 
be directed towards increased resolution in 
cycled experiments, improving efficiency in 
the system, and examining the viability of 
using a hybrid 3DVar approach harnessing 
the existing LETKF ensemble in GODAS.
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Observations in the Joint Effort 
for Data Assimilation Integration 
(JEDI) - Unified Forward Operator 
(UFO) and Interface for Observation 
Data Access (IODA)
Introduction
The Joint Effort for Data assimilation Integration (JEDI) system is designed to be generic, 
flexible, and computationally efficient. JEDI decouples observation operators, observation 
filtering and data assimilation algorithms from state-space operations and packages them 
as separate components (classes) that can be re-used for a variety of applications in a wide 
range of environments from operational forecasting to academic research (Trémolet, 2020, 
this issue). JEDI is implemented primarily in C++ (and can link to Fortran code) using a 
generic and object-oriented approach. This article highlights the two key components of 
the JEDI framework related to observations: the Unified Forward Operator (UFO) and the 
Interface for Observation Data Access (IODA).

https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf
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The Unified Forward Operator (UFO)
The UFO code links with the Object Oriented 
Prediction System (OOPS) and implements 
classes related to the observation operators, 
which express the computation of a 
simulated observation given a known 
model state. All operators are written so that 
they can be used generically, that is with any 
model. This separation of the observation 
operator code from the model code reduces 
the amount of time required to introduce 
a new model into JEDI. Additionally, the 
UFO code implements generic classes 
that manipulate the results of observation 
operators for bias correction and quality 
control, which of course is critical in any 
data assimilation system.

Observation Operators

A broad introduction to how observation 
operators fit into JEDI is discussed earlier in 
this newsletter (Trémolet, 2020, this issue). 
As discussed, observation operators are 
split into two parts (see Figure 1) to allow 
for different models (with different State 
class implementations) to use the same 
observation operator.

The first part of the full observation operator, 
named getValues in OOPS, is model 
(geometry)-dependent and is implemented 
with the model interfaces. It extracts the 
values of model variables (GeoVaLs) at 
desired observation locations (Locations) 
and typically performs interpolation of 
requested model variables to the observation 
locations. This part of the observation 

operator, therefore, is model-aware, and this 
component isolates model details from the 
remainder of the operator code.

The second part of the full observation 
operator is model-independent and 
computes the Observation Operator from 
the input GeoVaLs. This part is implemented 
in UFO and is called ObsOperator in OOPS. 
ObsOperators can be rather simple, like 
computing wind speed from directional 
u- and v-wind components or vertically 
interpolating measurements in a profile. 
They can also be quite complex, such as 
when simulating radiometer brightness 
temperatures at several instrument channels.

Both GeoVaLs and Locations classes are 
implemented in UFO since they are meant to 
be used by all model interfaces. At present, 
the Locations class considers latitude, 
longitude, and time. It will soon be extended 
to more sophisticated modeling geometries 
with the ability to consider footprint 
locations and slanted profiles.

UFO already implements many 
ObsOperators, including:

• Brightness temperature and radiance 
simulations using both the Community 
Radiative Transfer Model (CRTM; Han 
et al., 2006) and the Radiative Transfer 
for TOVS (RTTOV; Saunders et al., 2018),

• Vertical interpolation in various 
specified coordinate systems (can 
be used with radiosonde, aircraft, 
satwind observations),

Figure 1. Observation operator 
in JEDI.
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• Calculations of aerosol optical depth (by 
invoking CRTM),

• Calculations of sea ice thickness and sea 
ice fraction, and

• Calculations of GNSS-RO bending angles 
(1D and 2D; Shao et al., 2019) using both 
NCEP bending angle simulations and 
an interface to the Radio Occultation 
Processing Package (ROPP).

In addition to computing the result of the 
observation operator H(x), ObsOperators 
may also return additional information, 
like Jacobians and ancillary diagnostic data 
produced by the operator, that are not 
directly used in the assimilation algorithm 
but could be useful for quality control (see 
next section), bias correction, or scientific 
investigations.

Quality Control and ObsFilters

Quality control in JEDI is handled through 
observation filters (class ObsFilter in 
OOPS). Filters can change quality control 
flags (i.e., to reject or retain observations) 
and observation error variances (e.g., one 
might wish to increase observation error 
variances to decrease the observation 
weight in the analysis instead of rejecting 
observations altogether). The filters can use 
information from:

• Observation metadata and observed 
values,

• GeoVaLs (model fields at observation 
locations),

• Results of observation operators (H(x)),
• Optional diagnostics (ObsDiagnostics) 

output from the observation operator, and

• Results of functions of some combination 
of the above variables. These functions 
(implementations of ObsFunction in 
UFO) are pre-compiled but may have 
user-customizable parameters.

The UFO ObsFilters are written to be generic. 
Generic filters do not depend on specific 
observation types and are configured 
through a configuration file. They may be 
applied either before or after an observation 
operator. This customizability allows the 
UFO to encompass much of the pre- and 
post-processing work performed in existing 
codes running in operational centers.

Some examples of generic filters include:
• A Background check that looks for 

differences between observation value 
and model simulated value (y – H(x)) 
and compares it to an absolute and/or 
relative threshold (a relative threshold 
is a threshold multiplied by observation 
error),

• A Domain check that verifies if some 
metadata, GeoVaLs, or observation 
operator diagnostics are within specified 
limits, and

• Thinning of observations based on 
specified criteria.

All filters can be configured to perform 
various actions depending on filter results. 
To illustrate the use of generic filters, 
consider several examples using the same 
generic filter (Domain Check).

The first example (below) can be used with 
GNSSRO data and rejects all observations 
with observation altitudes outside of a range 
of zero to 30 km:
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The second example (below) can be used in the ocean data assimilation and rejects all 
observations for which the model’s sea area fraction is smaller than 0.5:

The third example (below) uses result of function that computes wind speed from the wind 
components to inflate observation error by a factor of two for all observations for which 
wind speed is higher than 40:

The generic observation filters, combined with the very flexible control by yaml configuration 
files is a very powerful tool. No new code is required to apply a filter to different observation 
types, which also applies to new observations. Scientists can focus on the scientific aspects 
of their work, reducing the amount of time necessary to assimilate new observations.

Bias Correction

Another essential component of data assimilation is bias correction. Here, bias represents 
systematic differences between actual sensor measurements and a model’s simulated 
results. This can occur from a variety of processes. Biases are typically represented by a 
predictor model involving properties of the observed atmospheric column (such as the 
integrated lapse rate), model air-mass components (such as 1000-300 hPa thickness), and 
instrument state (e.g., its field of view). In particular, bias correction is an important and 
necessary step when assimilating radiance data. In general, this bias is associated with a 
given instrument and frequency band (channel) and varies in space and time. It depends 
in large part on atmospheric conditions at the time of observation, although other sources 
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of radiometric bias include the radiative 
transfer model itself, surface emissivity 
and orography, and instrument antenna 
characteristics. 

Many bias correction schemes have been 
developed and implemented in NWP 
systems. These schemes apply an offset 
to minimize the systematic differences 
between sensor measurements and the 
results of forward operators. In literature, 
several approaches are employed, 
including (and by no means limited to) 
slope-intercept correction (using an offline 
linear regression of measurements against 
simulations), histogram adjustment (re-
centering the histogram of the differences 
between simulations and measurements to 
make it centered around zero), variational 
approaches and multi-layer convolutional 
neural networks (Dee et al., 2009; Zhu et al., 
2014; Tao et al., 2016). 

To give developers and users flexible 
and configurable bias correction scheme 
interfaces, a factory design pattern is 
adopted, which provides approach to code 
for interface rather than implementation. 
At the time of this writing, the predictor 
model of linear regression formulation 
and the predictors used by GSI have been 
implemented and tested in UFO. However, 
the UFO code’s generic bias correction 
interface allows a user to specify what 
predictors they want to use and what 
predictor model they want to apply in a 
configurable YAML file, increasing the 
flexibility of the scheme.

Like the rest of the UFO, the design of 
the interfaces for bias correction, and the 
flexibility for selecting a bias correction 
scheme through a yaml configuration 

file, will facilitate future scientific 
developments. All the data available to 
observation filters, from observation data, 
GeoVaLs, observation operators output 
and diagnostics, and functions of those, 
can be used for bias correction. New bias 
corrections schemes can be implemented 
more easily. New or existing schemes and 
predictors can easily be applied to new 
observation types without any coding. 

The Interface for Observation Data 
Access (IODA)
Overview

The objective of the IODA is to provide 
uniform access to observation data 
across the whole forecasting chain from 
observation pre-processing to data 
assimilation to diagnostics.

The initial effort in the project has focused 
on the in-memory data access, which is 
a generic implementation of the OOPS 
ObsSpace class (Trémolet, 2020). It is used 
extensively with the observation operators, 
quality control, and bias correction in UFO 
and contributes to the genericity of those 
components. The second direction of effort 
is the definition of the IODA file format. 
It will enable more generic exchange of 
information throughout the forecasting 
suite and caters for efficient I/O to populate 
or save data from the in-memory IODA 
structure. Finally, a third direction of effort 
will be the long-term storage and retrieval 
of observation data and diagnostics in an 
organized structure (a data store). The 
common file format and organized data 
store will enable exchanges of data and 
scientific evaluations and comparisons.

In-memory Observation Handling

As its name indicates, IODA is primarily 
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an interface that isolates the scientific code, 
for example, in the observation operators, 
from the underlying data structures holding 
the data. The logical structure users should 
have in mind when using IODA is described 
below. The actual data storage might differ 
if a different organization has advantages in 
terms of efficiency or maintenance.

At the center of the scheme are tables which 
hold the data. Tables are two-dimensional. 
The columns represent variables (e.g., 
temperature, humidity, brightness 
temperature) and the rows represent the 
locations. Associated with each axis of the 
data tables are metadata tables. The location 
metadata hold the values describing each 
location and which are appropriate for each 
observation type (e.g., latitude, longitude, 
and scan angle). The variable metadata 
holds values associated with each variable 
(row) in the data tables, again appropriate 
per observation type, such as variable names 
or channel frequencies. Finally, the data 

table is replicated dynamically as necessary 
in a third dimension to hold different kinds 
of data, such as the observations themselves, 
the observation error, quality control flags, 
or simulated observations H(x) at various 
stages of the data assimilation process (see 

Figure 2).

The metadata tables along the two axes 
are fully generic and might contain very 
different information depending on the 
observation type. Additional functionality, 
for example, to access data by station 
identifier, by flight, or by sonde ascent, are 
being added to the interface. The IODA 
structure can contain data of different types, 
for example, observation values are real 
numbers while quality control flags are 
integers. This capability can be used in the 
future to store more complex information, 
for example, observation operator Jacobians. 
This also applies to the metadata tables.

The IODA interface provides methods to 

Figure 2. Schematic 
representation of the IODA 
data organization.



JCSDA QUARTERLY30 NO. 66, Winter 2020

query information about the data and to access data to and from the in-memory storage. 
An interface is provided for both Fortran and C++ (below). The interfaces are generic 
enough to cover all use cases by observation operators, quality control, and bias correction 
for all observation types. However, they also give flexibility for optimizations in the 
implementation. For example, the distribution of observations on distributed memory 
architectures should be handled at the implementation level and be transparent to the user. 
The IODA interface provides the separation of concerns between the scientific aspects of the 
code and the efficiency and software engineering aspects.

IODA interface example in C++:

IODA interface example in Fortran:

IODA Files

Operational centers receive observation data in many different formats (e.g., BUFR, GRIB, 
netCDF, and HDF5) and often generate several intermediate formats during observation 
pre-processing, data assimilation, and for diagnostics purposes. IODA offers a single file 
format for all observations and for use throughout the forecasting chain. Typically, one file 
will contain observations for one data assimilation cycle, but the format can accommodate 
other cases, for example, for diagnostics over longer time periods. As the IODA files will be 
used in operational applications and full resolution research experiments, I/O efficiency, 
including for distributed applications, is a primary concern in the design. Currently, two 
file formats are being evaluated for use in IODA, namely netCDF4 and ODB. Preliminary 
investigations show that both file formats could be suitable; more advanced evaluations are 
being conducted at the time of writing to inform a decision (that could be taken by the time 
this article is published).

To handle the various file formats in which observation data are presented, IODA provides a 
set of conversion programs that translate those formats into the IODA file format. Currently 
observation data can be converted from BUFR, netCDF4, ODB, and a specialized binary 
format for marine observations. This is an active area of development as numerous new 
observation types are being brought on board in JEDI.



JCSDA QUARTERLY31 NO. 66, Winter 2020NO. 66, Winter 2020

The IODA code base is split into two primary 
components (Figure 3), “ioda,” which 
implements the memory storage level and 
“ioda-converters,” which supplies a means 
for converting the various file formats from 
the observation data providers into the 
IODA file format. Also depicted in Figure 3 
is the typical data flow (black arrows) for the 
conversion and consumption of observation 
data by the JEDI system.

Observation Data Store

In addition to handling the observations 
during a data assimilation cycle, it is 
important to store observations and 
additional information for longer term. 
This is for analyzing scientific results, for 
repeating experiments, or for future use in 
reanalysis. Given the collaborative nature 
of JCSDA and the many partners involved, 
observations will have to be accessible from 
a variety of platforms, from laptops and 
desktops to cloud computing instances to 
dedicated HPC systems. The design and 
implementation of such a data store will 
start in 2020.

Ongoing Efforts
Both IODA and UFO underwent heavy 
development in 2019. In particular, the 
JCSDA hosted one workshop and two code 
sprints in February, April, and August. 
In February 2019, the U.S. Navy hosted 
a requirements-gathering workshop for 
IODA in Monterey, California (Herbener, 
2019). This was a highly productive and 
collaborative effort with representation 
from eight JCSDA partner organizations. 
The workshop resulted in a solid set 
of requirements that are driving the 
development of the IODA subsystem.

The code sprint in April 2019 took place 
in Boulder, CO, and was focused on the 
development of the capability to run 
3D-Var cycling experiments with the 
marine model SOCA. Over the course of 
two weeks, converters were written for the 
ingest of marine observations including 
sea ice thickness and fraction, sea surface 
temperature and height, altimetry and 
salinity, along with the corresponding 
forward operators. The code sprint resulted 

Figure 3. IODA components: 
“ioda-converters” holds 
programs for translating 
various file formats (BUFR, 
netCDF4, specialized binary, 
ODB, etc.) into the IODA file 
format. “Ioda” contains the 
implementation of the in-
memory storage.
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in the demonstration of a functional full 
month cycling using the new observations, 
with the SOCA model.

The second code sprint (August 2019) 
also took place in Boulder, CO, and lasted 
two weeks. This effort was focused on 
developing UFO QC filtering functions 
for a large set of microwave and infrared 
instruments, as well as the introduction of 
radar observations into JEDI. The necessary 
converters and observation operators were 
written for handling the new observation 
types, along with the development of generic 
filtering functions.

Collaborative work between all JCSDA 
partners has been very successful. We 
would like to use JEDI to reproduce the 
behavior and results of multiple operational 
systems in 2020. To that end, collaborative 
development will continue outside code 
sprints, and code sprints will be organized 
when beneficial. Quality control procedures 
will be extended to cover the full range of 
observations used by JCSDA partners in 
operational systems, for example, GSI. The 
observation operators, quality control, and 
variational bias correction will be validated 
by comparison with operational systems.

In the longer term, all these operators will be 
developed further to improve on the current 
operational systems, taking advantage of 
new technologies, such as machine learning 
and artificial intelligence. Collectively, 
the JCSDA partners have the capacity to 
develop the largest collection of high-
quality observation operators and associated 
procedures. UFO and IODA provide the 
tools to share and further improve them.
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The Joint Effort for Data 
Assimilation Integration (JEDI) 
Infrastructure
Overview
Like the JCSDA itself, the Joint Effort for Data assimilation Integration (JEDI) project 
literally begins with the idea of collaboration. As part of a Joint Center, we serve a diverse 
community of forecasters, researchers, academics, and policy makers; and, as part of a Joint 
Effort, our software development team includes the JEDI core staff and in-kind support 
from Joint Center for Satellite Data Assimilation (JCSDA) partners, as well as external 
collaborators who are not only users but also developers, making valuable contributions to 
the JEDI code base that serve to enhance their own applications as well as others. Potential 
JEDI users range from operational forecasters to university researchers to graduate students 
studying data assimilation. Potential applications range from coupled Earth system and 
Numerical Weather Prediction (NWP) models to idealized "toy" models designed to probe 
the fundamental physics of atmospheric and oceanic flows.

To support this diverse community, we need collaborative workflows and software tools 
that leverage contributions from distributed developers while promoting a unified vision. 
We also need infrastructure that will allow users and developers to build and run JEDI on 
a range of computational platforms, from laptops and workstations to local Linux clusters, 
to cloud computing instances, to high-performance computing (HPC) systems at national 
research facilities and operational centers. These are the challenges, and this article describes 
how we are meeting those challenges.
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Modern challenges require modern 
strategies. Over the past several decades, 
the concept of agile software development 
has revolutionized the technology industry. 
Different tech companies may define this 
concept somewhat differently, depending 
on whether or not they adopt a specific 
agile strategy, such as Scrum or Kanban, but 
all agile approaches share some common 
principles. In particular, agile software 
development is often contrasted with a 
waterfall approach in which software 
requirements are laid out at the beginning 
of the development process and the finished 
product is delivered to users months or even 
years later. Agile software development 
principles followed by the JEDI project 
include:

1. Innovation, technical excellence, and 

people over process

Software development should leverage 
the skills of talented, motivated 
individuals and the latest technical 
advances. Team members are given the 
freedom to explore innovative solutions 
and share responsibility for the quality 
of the finished product.

2. Continuous delivery of functional 

software

Working software is the primary 
measure of progress. Innovations should 
be coded, tested, and delivered to the 
users promptly and frequently, without 
waiting for the product to be “done” (an 
agile system is never “done”).

3. Responsive to users and other 

stakeholders

Requirements change. As the project 
proceeds, users may desire new 
functionality or encounter unforeseen 
circumstances. The software must 
adapt accordingly.

4. Flexibility and simplicity

No software is truly “future-proof,” 
but an agile software development 
approach appreciates that demands on 
the product are likely to change and 
embraces this expectation. For JEDI this 
means accommodations for new models, 
new satellite missions, new observations, 
new algorithms, new workflows, new 
computing platforms, and for data that 
continually grows ever bigger. An aspect 
of this that is often cast as a separate 
principle is maintaining simplicity in 
both the code and the development 
process. Simple, straightforward, 
modular code facilitates maintenance 
and enhancement.

We achieve these ideals by means of a 
number of software tools, most notably the 
git version control system, the web-based 
GitHub platform for managing, archiving, 
and distributing code, and the ZenHub 
project management software. After 
describing how we implement these tools 
for agile software development in the next 
section, we then discuss how we promote 
the implementation of JEDI software across 
computing platforms through the use of 
software containers, machine images, and 
environment modules. Next, we address 
how to promote innovation, excellence, and 
continuous delivery (items 1 and 2 above) 
through automated testing and how we 
further serve our community (items 3 and 4) 
through versatile NWP workflows.

A common thread throughout is cloud 
computing. The cloud provides an 
unprecedented opportunity to efficiently 
distribute code, data, computing 
services, and computing resources to our 
community of JEDI developers and users, 
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and JCSDA has made a commitment to 
exploit this opportunity. As the technical 
capabilities of cloud-hosted computing and 
storage resources continue to improve and 
price continues to drop, these platforms 
also provide a viable alternative to HPC 
facilities for many JEDI users who may 
have limited access to national HPC centers 
or local clusters.

The cloud also provides an exceptional 
opportunity for training new JEDI users 
and developers. JCSDA holds two JEDI 
Academies every year, at varying locations, 
where participants are introduced to 
the structure of the code, the working 
practices that guide code development, 
and the process by which they can build 
and run applications. Each afternoon, 
Academy participants are given hands-
on experience building and running JEDI 
on cloud computing instances that are 
pre-provisioned with an appropriate 
environment. Such instances can be created 
and destroyed as needed and may also be 
used for online tutorials in the future.

Software Development and 
Distribution
The git version control system provides 
a powerful way to organize code into 
repositories, track changes, and define code 
branches that isolate new developments 
until they are completed, tested, and ready 
to be merged into the primary code base. It 
runs on a user's local laptop, workstation, 
cluster, or HPC platform; wherever code 
development and testing take place. 
Code changes are made available to other 
developers and users by means of the web-
based GitHub platform, which is closely 
integrated with git. Developers can push and 
pull code to and from GitHub multiple times 

per day with a few simple git commands. 
GitHub represents each git repository as a 
separate web site, with dropdown menus 
to access different branches and additional 
tools to view differences between branches. 
In order to limit the size of the GitHub code 
repositories, large data files used for testing 
are stored remotely on the cloud and access 
either directly or via GitHub's Large File 
Service (LFS).

Git and GitHub are powerful tools, but they 
require a strategy in order to exploit them for 
optimal benefit. The strategy used at JEDI is 
one that has come to be known as git-flow 

(Driessen 2010). In the git-flow paradigm 
(Figure 1), each repository has only two 
permanent branches. "Permanent" meaning 
the branches themselves exist indefinitely 
while the code they contain evolves. The 
first is the master branch, which is reserved 
for public releases that, in the case of JEDI, 
we plan to make open-source. The second 
permanent branch is the develop branch. 
As its name suggests, this branch is for 
code in development, but it is important 
to emphasize that all code in the develop 
branch must be functional and well tested.

The vast majority of the code development 
occurs in feature branches that split off 
from the develop branch. As they work on 
a feature branch, each developer makes 
code changes that enhance functionality or 
address known issues, and they also write 
new tests for the code they have added. 
As they work, they continually push their 
code to GitHub where other developers 
can access it from anywhere, at any time. In 
an agile framework, it is important to keep 
the feature branches focused on a specific 
development that will, ideally, take no more 
than a few weeks to implement. The lifetime 
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of some feature branches may even be a few 
days or less. 

When a feature branch is mature and well 
tested, the developer announces that it is 
ready to be merged into the develop branch 
by issuing what is called a pull request 
on GitHub. All pull requests are subject to 
automated testing and code reviews by 
other members of the JEDI team. Details 
about the automated testing framework are 
discussed in the following section. Limiting 
the scope of each feature branch allows 
reviewers to more thoroughly assess the 
proposed changes. Often reviewers suggest 
changes to the feature branch that are 
discussed through the GitHub interface and 
then implemented by the original author of 
the feature branch or by any other member 
of the team. When at least two (often more) 
reviewers agree that the feature branch is 
ready, then a member of the JEDI team (with 
administrative privileges for that repository) 
merges the changes into the develop branch. 
The feature branch is then deleted and the 
developer moves on to another issue.

Other code branches admitted by the git-
flow paradigm include bugfix branches 
that fix known problems in the develop 
branch and hotfix branches that fix 
known problems in the master branch (for 

example, patches to releases). There are 
also release branches that are used to make 
final refinements prior to a release, such as 
adding documentation or adding tests. Like 
feature branches, bugfix, hotfix, and release 
branches are temporary and are deleted 
after they are merged into the develop 
and/or master branches. And, like feature 
branches, they are intended to be limited in 
scope to facilitate code reviews. 

The git-flow paradigm is extremely effective 
at promoting the agile software development 
principles discussed in the opening section. 
The coexistence of multiple feature branches 
together with release, bugfix, hotfix, develop, 
and master branches allows the JEDI team 
to pursue innovation while simultaneously 
and continually delivering functional 
software to the user (agile principles 1-2). 
To further promote these and the remaining 
agile principles (1-4), the ZenHub project 
management tool is used.

ZenHub integrates smoothly with GitHub 
but is a separate, third-party, web-based 
application. It enables users to create 
project boards similar to those used in agile 
workflows like scrum or kanban. Each 
project board is linked to one or more GitHub 
repositories and is populated by tasks, 
referred to as issues. These may include the 

Figure 1. The git-flow 
branching paradigm followed 
by JEDI.  Several code branches 
are highlighted as discussed 
in the text.  All merges to the 
develop and master branches 
must be done through GitHub 
after passing code reviews and 
automated testing, as indicated 
by the AWS CodBuild icon.  All 
merges to the master branch are 
tagged with a release number 
(here 0.1.2).



JCSDA QUARTERLY37 NO. 66, Winter 2020NO. 66, Winter 2020

development of new features or bug fixes or 
discussion threads. The issues are organized 
into a series of columns that include the 
project backlog (a to do list), tasks that are 
in progress, tasks that are under review or 
being discussed (review/QA), and tasks 
that have been completed or closed. There is 
also an icebox column for low-priority tasks 
that do not require immediate attention.

Issues may be prioritized within each column 
and assigned to one or more team members. 
Those following the issue are informed 
when its status has changed. For example, 
followers are notified by email when another 
team member comments on the issue or 
move it to the in progress column. This is an 
effective way to maximize collaboration and 
minimize time lost through duplication.

ZenHub also has many other tools for 
organizing issues into milestones (used 
for code sprints), epics (used for project 
accounting and long-term planning), and 
releases (used for defining software releases 
and other deliverables). Zenhub also has 
a number of reporting tools, allowing 
managers and team members to generate 
essential agile standbys, such as burndown 
charts, velocity tracking, and release reports.

Documentation on how to build and run 
the JEDI system is provided through online 
user manuals generated with the sphinx 
document generator and published through 
ReadtheDocs.com. More detailed low-
level code descriptions and diagrams are 
also generated by means of the Doxygen 
software package.

Portability
The diverse user community described in the 
opening section poses an implementation 

challenge: how can we support those who 
wish to run JEDI on laptops, workstations, 
clusters, and supercomputers? To best serve 
our users, JEDI needs to be portable.

An important component of our portability 
strategy is the relatively new technology 
of software containers. Though the general 
concept of software containers has been 
around for decades, it has only matured 
in recent years, following the release of 
Docker in 2013. Docker greatly facilitated 
the creation and distribution of containers, 
which established its current position as 
the most popular container provider. But 
Docker is an enterprise product that is not 
well suited for scientific applications. In 
particular, security vulnerabilities make 
Docker impractical for most HPC systems. 
Singularity was developed to address these 
limitations and to thereby promote the use 
of containers for scientific workflows. For 
those who do not have access to Singularity, 
we also support a third container option 
called Charliecloud. Charliecloud can 
be installed and run by any user on any 
viable linux system without the need for 
any privileged system access (Singularity 
requires administrative privileges to install, 
but not to run). 

Briefly, the idea behind a software container 
is to encapsulate a computing environment, 
often distributed as a single file, in such a 
way that lets each user re-create that same 
environment on their own computer, 
whether it be a laptop, a cloud instance, 
or an HPC system. In the case of JEDI, this 
computing environment includes a number 
of third-party software libraries, such as 
NetCDF, CMake, and LAPACK, all built 
with a specific set of compilers (such as 
gnu, clang, or intel), and MPI libraries (such 
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as OpenMPI, mpich, or Intel MPI) --- in 
short, everything that is needed to build (if 
necessary) and run JEDI. So, for example, a 
user can just download the JEDI Singularity 
container, "enter" that container with a 
single command, and then proceed to run 
JEDI applications.

Two types of containers are supported. The 
first are development containers that include 
the compilers and compiled dependencies 
but do not include the JEDI code itself. Once 
inside the container, user/developers can 
pull the JEDI code from GitHub, modify it 
as needed, and then proceed to compile and 
run it. By contrast, application containers 
are more streamlined. They do not include 
the compilers (which can make the container 
files large and unwieldy), but they do contain 
a compiled, tagged release of the JEDI code, 
ready to go. Our workflow begins by first 
generating a JEDI Docker container for each 
compiler/MPI combination. Then we create 
the Singularity and Charliecloud containers 
directly from these Docker containers. 
An advantage of this workflow is that the 
Docker development containers are also 
available for continuous integration testing, 
as described in the next section.

Though containers can be run on HPC 
and cloud platforms, it is often beneficial 
to install the JEDI dependencies directly 
on these systems, exploiting site-specific 
configurations and optimizations. These 
are made available to users as environment 
modules that can be loaded with a single 
command. The use of environment modules 
promotes optimal performance and also 
allows developers to easily switch between 
compiler/mpi implementations and library 
versions. We currently maintain JEDI 
environment modules on selected HPC 

systems used by JCSDA and its partners. 
On the Amazon cloud, we provide these 
environment modules to users through 
bootable Amazon Machine Images (AMIs). 
All these environment modules are built 
using the same set of build scripts used to 
create the containers, fostering a uniform 
computing environment for JEDI users 
and developers. This minimizes problems 
associated with incompatible software 
versions or inadequate configuration options.

Continuous Integration
As the software industry favored frequent 
and small modifications to the code 
(agile methodology) for the development 
approach, the need for frequent automated 
testing became paramount. Most of the 
Continuous Integration (CI) services, such 
as Travis-CI or Amazon Web Services (AWS) 
CodeBuild, use webhooks that are triggered 
by various events on the repository hosting 
site. The automated testing system has the 
capability to perform various tasks based on 
the webhook event type. For example, with 
new changes to a repository, a certain set of 
tests can be triggered and run. 

The automated testing framework in JEDI 
is designed to build the application and run 
the tests with every new pull request (to the 
develop and master branches) and every 
push to an existing pull request on the GitHub 
repository. The status of the test is shown 
on the pull request page for the developers 
and reviewers. Passing all tests ensures the 
developers that the new feature is compatible 
with all the JEDI components and can be 
added to the repository. With automated 
testing, any error or incompatibility in the 
new scripts can be caught at the early stages 
of the development and can help to run 
the development pipeline more efficiently. 
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Automated testing can help to make the 
review process shorter and to add new 
features to the repository quicker.

Building the required libraries and 
environment can be time-consuming 
especially for JEDI applications that depend 
on large libraries. By using a prebuilt 
environment inside a Docker container, we 
can reduce the build time and allocate most 
of the resources to building and testing the 
JEDI repositories. Separate docker containers 
can be built with different compilers and 
library versions. These containers are 
used in parallel to test the software across 
multiple platforms in the shortest amount 
of time. Currently, we use two containers 
for automated testing purposes. The first is 
based on GNU compilers and is hosted on 
DockerHub and is accessible for all users. 
The second is based on Intel compilers and, 
due to licensing restrictions, is hosted on the 
AWS Elastic Container Registry (ECR) and 
is only available to JCSDA AWS users. 

Currently, Travis-CI and AWS CodeBuild 
automated testing services are implemented 
in the JEDI core repositories. Both of 
these services provide customers with 
cloud computing resources to run tests 
automatically. With every new commit to 
the repository, source code is downloaded 
from the GitHub repository onto the 
automated testing server. Docker containers 
are used to provide all the necessary libraries 
and packages required to build and run the 
application. The next stage is to build and 
run the tests inside the Docker environment 
and on the automated testing server and 
to report the test status on the pull request 
GitHub page. 

Travis-CI computational resources are 
limited and suitable for less computationally 
expensive but more frequent tests compared 
to AWS CodeBuild. With AWS CodeBuild, 
three different instance sizes are available 
that users can choose based on their 
computational needs. For each JEDI core 
repository (i.e. oops, saber, ioda, and ufo) and 
for the FV3-jedi repository, two CodeBuild 
projects are set with GNU-based and Intel-
based containers that run in parallel. 

Another feature that is currently being 
added to the testing framework is a multi-
tier testing capability. As part of this feature, 
tests in each repository will be classified in 
different tiers based on their computational 
cost. For example, tests that use high-
resolution reference files are classified as 
more expensive tests or high-tier compared 
to small unit tests that are classified as 
low-tier tests. Low-tier tests will run more 
often than high-tier tests to speed up the 
testing process and reduce computational 
costs. When building and testing low-tier 
tests, large reference files used in high-tier 
testing will not be downloaded to speed up 
the testing and reduce the data bandwidth 
usage. High-tier tests will set to run 
periodically (i.e., daily, weekly, or monthly) 
to ensure that every aspect of the code is 
being tested. 

After building JEDI and running the tests, 
CodeCov is used to create a report on the 
test coverage. The test coverage report 
highlights the sections of the code that are 
not fully tested so developers can focus on 
writing tests for these sections. CodeCov 
also calculates how much new changes (with 
pull requests) change the test coverage and 
reports it to the GitHub pull request page 
(Figure 2). 
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Workflow
In the JEDI project, genericity is a core 
principle present in every aspect of 

library and infrastructure design. The JEDI 
system consists of generic programs that 
interface Earth-system models together with 
collections of DA algorithms and observation 
operators. Likewise, the JEDI container 
infrastructure allows these programs to 
be generically ported and tested across 
compilers, MPI distributions, operating 
systems, and computer architectures. 
Together, these features of the JEDI system 
define a combinatorial matrix of models, 
algorithms, operating systems, partner 
institutions, and hardware resources. The 
purpose of the workflow management 
component of the JEDI project is to provide 
a set of composable generic applications 
covering the space implied by these 
multiple axes of genericity. Using modern 
software design techniques, our goal is to 
provide users with a uniform, simple, and 
powerful interface for designing, modifying, 
scheduling, and monitoring data-centric 
workflows composed of JEDI executables. 
The scalability of the JEDI system and 
infrastructure require the workflow 
management software also to scale with 
the application resource requirements, 

encompassing everything from debugging 
DA algorithms on a laptop, to running multi-
node experiments in the cloud, to managing 
operational-grade cycling forecast systems 
on HPC resources.

The JEDI workflow system, JEDI-Rapids, 
consists of two parts: (1) a set of generic, 
composable applications corresponding 
to JEDI executables and their associated 
data, and (2) a generic workflow-generator 
allowing customizable generation of 
graphical workflow structures that 
combine individual JEDI applications into 
full analysis toolchains. As a workflow-
generation system, the JEDI-Rapids 
system is designed to programmatically 
produce concrete workflow descriptions 
for a range of production-quality workflow 
management software engines including 
ecFlow, Cylc, and Apache Airflow (Figure 

3). The workflow management engines 
are then responsible for scheduling and 
monitoring the execution of applications 
and executables. 

In order to present a uniform interface, 
configuration of the JEDI executables, 
the Python applications that control 
them, and the connection of applications 

Figure 2. a) Coverage sunburst 
plot is an interactive plot that 
shows the test coverage in each 
directory of the repository (ufo 
illustrated here). b) Changes 
in test coverage with each pull 
request is illustrated in an 
interactive plot as well. Each 
rectangle represents a file in 
the repository and how changes 
in this pull request increased 
(green) or decreased (red) the 
test coverage in these files. 

(a)
(b)

/src/ufo

/

/src/ufo/marine

/src/ufo/filters
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into larger workflow specifications, are 
each accomplished with YAML-syntax 
configuration files using the Jinja templating 
engine. The combination of YAML and 
Jinja is simultaneously powerful, simple, 
and easily editable, allowing the user to 

quickly reconfigure workflow descriptions. 
A user can change model parameters, DA 
algorithms, covariance models, observation 
operators, and observation QC filtering 
algorithms, as well as the entire workflow 
graph structure, all without writing any shell 
scripts, editing any code, or recompiling any 
packages. Future work will add a web-based 
graphical interface layer over-top of the 
YAML configuration to make automation 
and monitoring of common workflows even 
more intuitive and flexible.

Finally, the JEDI-Rapids system aims to 
improve the robustness, repeatability, and 
comparability of analysis products for 
Earth-system modeling applications. Key 
focuses of the JEDI workflow system are: (1) 
experimental reproducibility, the ability to re-
run and compare results on wildly different 
systems; and (2) data provenance, the 
ability to precisely trace the origin of each 
analysis product. Executable portability 
across systems is directly supported by the 
design of the JEDI infrastructure including 
the containers, environment modules, and 

CMake build system. The JEDI-Rapids 
system is designed to enable the wider 
goal of repeatability of entire experimental 
analysis pipelines across disparate systems. 
The object-oriented and functional 
programming constructs of the Python 
language are key to this ability, enabling 
the Python-based workflow applications 
to dynamically reconfigure interface 
components allowing them to adapt to 
different execution environments in ways 
not possible for systems based on ordinary 
shell scripts. As a result, the more broadly 
analysis toolchains become portable, the 
more important it becomes to also accurately 
document the origin of analysis products. 
The JEDI-Rapids system is also designed 
to track data-provenance through the use 
of metadata stored as ordinary YAML-
syntax files. The provenance metadata 
associates each analysis product to the 
particular system, execution environment, 
software versions, input data products, and 
application configuration settings used in 
its generation. In conjunction, these features 
allow JEDI applications and workflows to be 
easily ported with the JEDI-Rapids system to 
match the infrastructure and requirements 
of partner institutions, while simultaneously 
allowing analysis products to be compared 
and checked for correctness.

Figure 3. The JEDI-Rapids 
system is a generic workflow 
generator, interfacing JEDI 
applications with a range of 
different operational-grade 
workflow managers.
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PEOPLE Welcome Dr. Dick Dee
Dick Dee joined the JCSDA in October 2019, as a Senior Research Scientist. His role at the 
Joint Center will be to provide leadership in the area of observations.

Dick is originally from the Netherlands but spent most of his career outside his home 
country. He has a doctorate in Applied Mathematics from the Courant Institute of 
Mathematical Sciences at New York University, where he first learned about data 
assimilation and its application to numerical weather forecasting. Early in his career, he 
worked as a math professor at the Pontifícia Universidade Católica in Rio de Janeiro, 
Brazil, as a research professor at New York University, and, subsequently, as a research 
scientist at Delft Hydraulics in the Netherlands. He then returned to the U.S., joining the 
newly formed Data Assimilation Office (now GMAO) at NASA. During this time, he made 
several contributions to data assimilation science on topics, such as adaptive Kalman 
filters, covariance estimation, model bias correction, and observation quality control. As a 
visiting scientist at ECMWF in 2003, he implemented the variational bias correction (VarBC) 
component of the Integrated Forecast System (IFS). In 2005, he returned to ECMWF to work 
on reanalysis (including ERA-Interim) and led the ERA-CLIM projects involving satellite 
data rescue, coupled data assimilation, and production of century-long coupled climate re-
analyses. In 2014, he became Deputy Head of the new Copernicus Climate Change Service 
at ECMWF, overseeing activities related to production of climate data records, climate 
reanalysis, seasonal forecasting, and development of a cloud-based Climate Data Store.

Dick considers himself a very lucky man, both in his personal and professional life, who 
always ends up in the right place with the right people. He is happy to be back in the U.S., 
where he always feels very much at ease. He is thrilled to join a young, groundbreaking, 
dynamic team that is hell-bent on changing the NWP world order.

https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/
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Introducing Dr. Wei Han
Dr. Wei Han joined the New and Improved Observation (NIO) team at UCAR/JCSDA in 
October 2019. His primary responsibility and focus are the evaluation and assimilation of 
current and future geostationary hyper-spectral Infra-Red sounders. He physically works at 
the Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison 
as a UCAR project scientist, collaborating with SSEC and JCSDA team members, and also 
engages with Joint Effort for Data assimilation Integration (JEDI) at the JCSDA associated 
with this type of data. In the last two years, he has focused on the assimilation of the first 
geostationary hyper-spectral IR sounder(the Geostationary Interferometric Infrared Sounder 
(GIIRS)) on-board FY-4A. GIIRS temperature sounding channels have been operationally 
assimilated in Chinese Meteorological Administration’s Numerical Weather Prediction 
(NWP) system GRAPES since December 25, 2018, using 4D-Var. 

Wei is from China, where he earned his PhD and MS degrees in Meteorology. His research 
is focused on the development of operational variational data assimilation system in the 
last 15 years with focus on the bias correction of satellite data. Dr. Wei Han has developed 
Constrained Bias Correction (CBC) and Constrained VarBC (CVarBC) schemes for satellite 
radiances assimilation to constrain the size of the bias correction using uncertainty 
information from calibration and radiative transfer model, in order to avoid the drift to model 
bias. The CVarBC was successfully implemented in the ECMWF IFS for satellite radiance 
data assimilation by providing further constraints using potential available information, 
such as constraints on the size of the bias correction and innovative bias correction metrics 
using uncertainty estimation from calibration and radiative transfer. This has been studied 
in the full ECMWF global 4D-Var system using data from microwave sounders, which are 
sensitive to stratospheric temperature and ozone-sensitive infrared radiances from IASI, 
AIRS, and CrIS. The constrained VarBC of AMSU-A stratospheric sounding channels 
reduces the biases in the stratosphere and improves the medium range forecasts in the 
stratosphere and troposphere. The CVarBC has been activated in ECMWF IFS 45R1 since 
June 5, 2018. Wei also investigated the assimilation of IASI ozone channels in 2009 as an 
NWP-SAF visiting scientist at ECMWF. On November 15, 2011, ECMWF implemented the 
operational assimilation of ozone-sensitive infrared radiances from AIRS, IASI, and HIRS, 
which represents a major milestone in exploiting infrared sounders and analyzing ozone. 

Apart from science, Wei loves exploring, traveling, and running. He has completed eight 
full marathons since 2008. 
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Say Hello to Dr. Andy Fox
Andy Fox joined the JCSDA in Boulder, CO, in July to lead our efforts in land surface model 
data assimilation. He has conducted research in this field for the last two decades through a 
variety of projects focused on the roles of land surface processes in the coupled Earth System. 

Originally from Manchester, UK, Andy has degrees in Geography and Hydrology from the 
University of Oxford, the University of Colorado - Boulder, and a PhD from the University 
of Cambridge. Since, he has worked as a researcher at a number of universities in the UK 
and in the US. He has strong connections with NCAR where he was a visiting scientist for 
a number of years developing a data assimilation system for the Community Land Model. 
Outside of academia, he gained project management and system engineering experience 
whilst working in the data products group at the National Ecological Observatory Network 
(NEON). Andy is well known for his work on the terrestrial carbon cycle and is currently 
the chair of the Science Leadership Group of the inter-agency North American Carbon 
Program. He is particularly excited about what the next generation of satellite observations 
will bring to our understanding of the land surface and how these new observations will be 
used in advanced, coupled data assimilation systems.

Andy has called Boulder home for many years and enjoys life by the mountains skiing in the 
winter and climbing and trail running in the summertime. 

Welcome Dr. Nan Chen
Dr. Nan Chen joined the JCSDA in September 2019, as an Associate Scientist with the JEDI NIO 
team. Primarily Dr. Chen is working on getting new observations into the JEDI system. He 
works closely with the JEDI core team and has extensive experience in various fields, including 
satellite data application, algorithm development, and radiative transfer simulations. 

Nan graduated in May 2016, from the Light and Life Lab at Stevens Institute of Technology 
studying radiative transfer and satellite remote sensing. His work during that time included 
radiative transfer modeling of atmosphere, cloud, snow, land, and ocean in SW and IR regions, 
as well as its applications. He then developed a machine learning-based cloud mask and snow 
parameter retrieval algorithm based exclusively on a radiative transfer simulated dataset for 
the cryosphere mission of the Japan Aerospace Exploration Agency (JAXA) GCOM-C1/
SGLI project. During and after his PhD study, Nan developed the skills and tools required 
to achieve successful outcomes in scientific research projects, a discipline well suited to the 
vision of the JCSDA program. 

In his spare time, Nan likes cooking, running, hiking, biking, Ping-Pong, badminton, and 
playing competitive computer games.
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I doubt that any topic associated with the Joint Center for Satellite Data Assimilation has 
inspired more conversation in our community during the past couple of years than the 
Joint Effort for Data assimilation Integration (JEDI) Project.  Indeed, JEDI likely raises more 
questions than just about any other aspect of the JCSDA, ranging from the most basic (“What 
is it, actually?”) to the technical (“How is it being built, and does it work yet?) to the playful 
(“How much effort have you invested in devising so many cute acronyms?) This issue is 
composed of a five-part, JEDI-focused series of articles; collectively, you will find that they 
address a great many of these questions (at least the serious ones) and moreover, they may 
motivate more working DA specialists to draw from and contribute to JEDI in the future. 

Yannick Trémolet and Tom Auligné have written an introductory article that explains 
the need for data assimilation development that is generic, reusable, open, and agile, in 
order to support a variety of diverse, rapidly-evolving environmental models, as well as a 
growing and increasingly varied global observation system that include more short-lived 
satellites. The high-level structure of JEDI (linking generic functions to abstract interfaces 
and, in turn, to specific modeling system implementations) is described in a second article 
authored by Trémolet.

In fact, the development of interfaces to numerous model systems of the JCSDA partners is 
now well underway, and the status of these interfaces within JEDI is summarized in a third 
article written by Daniel Holdaway, Guillaume Vernieres, Marek Wlasak, and Sarah King. 
The fourth article, by Ryan Honeyager, Stephen Herbener, Xin Zhang, Anna Shlyaeva, and 
Yannick Trémolet, describes a pair of JEDI components that are critical to the actual use of 
observations in JEDI: the Unified Forward Operator (UFO) and the Interface for Observation 
Access (IODA).  The final piece in the package tackles the infrastructure of JEDI ( that is, 
the software development, distribution, and workflow supporting the JEDI objectives of 
portability and continuous integration) is from Maryam Abdi-Oskouei, Mark Miesch, and 
Mark Olah. 

A number of new colleagues have joined the JCSDA during the last quarter. They are Andy 
Fox, who will be leading the nascent Land DA Project, Nan Chen, who joins the New and 
Improved Observations (NIO) project, Dick Dee, Senior Scientist for Observations, and 
Wei Han, also working with the NIO team specifically bringing his expertise to bear on 
hyperspectral IR observations from geosynchronous orbits. You can find biographies of 
each of the colleagues in this issue to learn more about their work and interests. 

As I compose this note, another calendar year is drawing to a close. It has been one of 
marked success and accomplishment for the JCSDA and all the individuals who contribute 
to it; I hope that you all look back on it with as much satisfaction and pride as I do. I am 
confident that we will reach even greater heights in 2020. 

Jim Yoe

EDITOR'S NOTE
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SCIENCE CALENDAR UPCOMING EVENTS

MEETINGS OF INTEREST

DATE LOCATIONS WEBSITE TITLE
February 16–21, 2020 San Diego, CA https://www.agu.org/

Ocean-Sciences-Meeting
Ocean Sciences

May 3–8, 2020 Vienna, Austria https://www.egu2020.eu/ EGU

June 1–5, 2020 Fort Collins, CO http://www.isac.cnr.it/~ipwg/ IPWG

June 8–12, 2020 Fort Collins, CO https://www.cira.colostate.
edu/conferences/8th-
international-symposium-
on-data-assimilation/ 

8th International Symposium 
on Data Assimilation (ISDA)

July 19–24, 2020 Waikoloa, HI https://igarss2020.org/ IGARSS 

September 28– 
October 2, 2020

Wurzburg, Germany https://www.eumetsat.
int/website/home/News/
ConferencesandEvents/
DAT_4635627.html

EUMETSAT Meteorological 
Satellite Conference 2020

October 18–23, 2020 Banff, Canada https://www.birs.ca/
events/2020/5-day-
workshops/20w5166

Mathematical Approaches 
for Data Assimilation of 
Atmospheric Constituents 
and Inverse Modeling

December 7–11, 2020 San Francisco, CA https://www.agu.org/ AGU

January 10–14, 2021 New Orleans, LA https://www.ametsoc.org/
index.cfm/ams/

AMS 

CAREER OPPORTUNITIES Opportunities in support of JCSDA may be found at https://www.jcsda.org/opportunities 
as they become available.

MEETINGS AND EVENTS SPONSORED BY JCSDA

DATE LOCATIONS WEBSITE TITLE
February 3–5, 2020 Reading, United Kingdom https://www.ecmwf.int/en/

learning/workshops/4th-
workshop-assimilating-satellite-
cloud-and-precipitation-
observations-nwp

Joint Workshop 
JCSDA & ECMWF

February 24–27, 2020 Monterey, CA https://www.jcsda.org/
events/2020/2/24/4th-jedi-
academy

JEDI Academy 4

February 28, 2020 Monterey, CA https://www.jcsda.org/
events/2020/2/28/crtm-training-
amp-user-workshop

CRTM Workshop

June 2–4, 2020 Airforce Academy 
Colorado Springs, CO

jcsda.org/events 18th JCSDA Technical 
Review Meeting and 
Science Workshop
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