
JOINT CENTER FOR SATELLITE DATA ASSIMILATION NO. 66, Winter 2020

JCSDA Quarterly

NOAA | NASA | US NAVY | US AIR FORCE

https://doi.org/10.25923/rb19-0q26

IN THIS ISSUE NEWS IN THIS QUARTER

Disclaimer: The manuscript contents are solely the opinions of the author(s) and do not constitute a statement of policy, decision, or
position on behalf of NOAA or any other JCSDA partner agencies or the U.S. Government.

1 IN THIS ISSUE

1 NEWS IN THIS QUARTER
The Joint Effort for Data
Assimilation Integration
(JEDI)

Joint Effort for Data
Assimilation Integration
(JEDI) Design and Structure

Status of Model Interfacing
in the Joint Effort for Data
Assimilation Integration
(JEDI)

Observations in the Joint
Effort for Data Assimilation
Integration (JEDI) -
Unified Forward Operator
(UFO) And Interface for
Observation Data Access
(IODA)

The Joint Effort for Data
Assimilation Integration
(JEDI) Infrastructure

42 PEOPLE

45 EDITOR'S NOTE

46 SCIENCE CALENDAR

46 CAREER
OPPORTUNITIES

The Joint Effort for Data
Assimilation Integration (JEDI)
Data Assimilation Challenges
All partners of the Joint Center for Satellite Data Assimilation (JCSDA) run data assimilation
algorithms applied to their own models and applications. In 2001, the JCSDA was created to
accelerate and improve the use of new satellite observing systems into each member’s data
assimilation system. As Earth-observing systems constantly evolve and new systems are
launched, continuous scientific developments for exploiting the full potential of the data are
necessary. Given the cost and limited lifetime of new observing systems, it is important that
this process happens quickly. This effort has been successful and continues to be; but, as the
context evolves, new challenges emerge.

Data assimilation algorithms are evolving and progressing to better exploit all information
available. It can be argued that improvements in data assimilation methodology have
contributed more to the improvements of forecast skill than the improvements in the
quantity or quality of observations (Dee et al., 2014). Thus, better use of new observing
systems does require access to worldwide state-of-the-art data assimilation algorithms.

Furthermore, as weather and environmental forecasting progresses, more subtle processes
are taken into account. In this context, forecast models are evolving towards a more
comprehensive representation of the Earth system and coupling between its components.
Coupled data assimilation is desirable to better initialize coupled models, but better use
of observations can also benefit from a coupled data assimilation system. The primary use
case of relevance for JCSDA are the many satellite observations that are sensitive to the
meteorological state of the atmosphere but also to the underlying surfaces, whether land or
sea, and to the aerosols and chemical species present in the atmosphere.

Finally, models’ resolutions and observation data volumes keep increasing with time,
requiring more and more computationally efficient data assimilation codes. At the same
time, the supercomputers where data assimilation systems are run are becoming more
complex, with more and possibly heterogeneous processing elements. Using them efficiently

https://doi.org/10.25923/rb19-0q26

JCSDA QUARTERLY2 NO. 66, Winter 2020

JOINT CENTER FOR SATELLITE
DATA ASSIMILATION
5830 University Research Court
College Park, Maryland 20740

3300 Mitchell Lane
Boulder, Colorado 80301

Website: www.jcsda.org

EDITORIAL BOARD
Editor:
James G. Yoe

Assistant Editor:
Biljana Orescanin

Director:
Thomas Auligné

Chief Administrative Officer:
James G. Yoe

Support Staff:
Sandra L. Claar

is a growing concern in the community, with
leading centers exploring ways to improve
scalability of their forecasting models and
data assimilation systems (Bauer et al., 2020).
The JEDI structure evolved from the Object
Oriented Prediction System (OOPS) started
at The European Centre for Medium-Range
Weather Forecasts (ECMWF) in the context
of the scalability programme.

Data Assimilation Integration
Addressing all the challenges above,
in a manner that is generic and usable
by all JCSDA partners, requires a new
development approach. Current operational
data assimilation systems were developed
20 or 30 years ago (Kleist et al., 2009, Daley
et al., 2001, Lorenc et al., 2000, Rabier et
al., 2000). During that time, the fields of
computing and software development
have evolved tremendously, from pioneers
working in laboratories or their garage
to a mature industry dominating the
economy. The JEDI project leverages the
tools and methodologies commonly used
in the software industry to address the next
generation data assimilation challenges.

The first technologies leveraged by OOPS
and JEDI relate to code design. Object
oriented and generic programming are used
extensively to separate the many aspects
that constitute a modern data assimilation
system. The key concept in modern software
development for complex systems is
separation of concerns. In a well-designed
architecture, teams can develop different
aspects in parallel without interfering
with other work and without breaking
the components they are not working on.
Scientists can be more efficient focusing on
their area of expertise without having to
understand all aspects of the system. This

is similar to the concept of modularity.
However, modern techniques (such as
Object Oriented programming) extend this
concept and, just as importantly, enforce it
throughout the code.

Data assimilation scientific papers describe
algorithms with high-level notations that
represent a forecast model, observation
operators, or covariances matrices without
relying on the implementation details of
those operators. The OOPS code takes the
same approach, defines abstract interfaces
for the operators mentioned above,
and implements the data assimilation
algorithms using those interfaces. This
provides separation of concerns where data
assimilation specialists can focus on data
assimilation algorithms without requiring a
full knowledge of all underlying codes.

Separating concerns makes the data
assimilation code independent from the
model; it also means that it becomes
generic and can be used with different
models. This is the base for sharing data
assimilation algorithms between JCSDA
partners, significantly reducing duplication
of effort. Furthermore, nothing in the OOPS
code limits its application to atmospheric
applications. Applications for ocean, land
surface, or atmospheric chemistry can also
be interfaced into OOPS. The framework
caters to all components of the Earth system,
enabling the evolution towards fully-
coupled Earth system data assimilation.

In addition to the data assimilation
algorithms, the project also makes the
observation operators more generic so they
can also be shared between different models
through its Unified Forward Operator
(UFO) and Interface for Observation Data

www.jcsda.org

JCSDA QUARTERLY3 NO. 66, Winter 2020NO. 66, Winter 2020

Access (IODA) components. As a result, any
improvement in observation operators by
JCSDA or any partner can immediately be
shared with the other partners, without any
porting or recoding. UFO and IODA make
it easier and more valuable to invest into
operators that will be used widely.

Joint Effort
Developing a data assimilation system
for all the partners of a Joint Center, like
JCSDA is necessarily a Joint Effort involving
JCSDA core staff and all the partners.
For collaborative work, such as code
design, the software industry has matured
tremendously. In this domain as well, the
JEDI project makes use of modern tools and
methodologies.

JEDI software development is based on
an Agile approach. The principle is that
development happens in small increments
that are continuously integrated in the
code. This is not common in numerical
weather prediction or related applications
but is the most common practice in the
software industry as can be experienced
every day with frequent updates of apps on
smartphones or personal computers. The
Agile approach has a number of advantages
over the traditional, and dreaded, once-a-
year merging of all contributions.

The most obvious advantage of working
in small code changes that are merged
quickly is that all developers can see and
review the code as it is being developed.
As a result, errors can be identified and
corrected immediately and easily (it is
always more difficult, even for the most
experienced developers, to fix code written
up to two years before than code written just
a few days before). Potential conflicts with

other developments can also be identified,
discussed, and addressed early in the
development phase rather than after the fact.

A very visible difference between JEDI
and most projects in the field of weather
forecasting is the level of interaction between
all parties involved. The project is centered
around a core team at JCSDA, with additional
active in-kind contribution from partner
agencies. As a result, the project team is
geographically distributed. Communication
technologies have progressed to a level
where working on the same project across
the country has become common practice
in the software industry. Video-conferences
involving all developers take place
regularly, focusing on concrete development
questions and issues. Several other working
practices and cloud-based tools are used
to facilitate collaborative work, including
source code version control, issue tracking,
continuous integration (automated testing),
code reviews, and utilities for exchanging
information and discussion. This is essential
for working across agencies, possibly in
different parts of the country, and will be
used both for initial development and long-
term evolution and maintenance.

Because of the distributed nature of the
project, and of the future use by all partners,
portability is a constant concern at every
step. All JEDI code is tested automatically
and with several compilers for every pull
request and regularly for more extensive
and expensive tests. Container technology
(e.g., Docker, Singularity, Charliecloud) is
used for testing and development work.
Performance evaluation of code running in
containers is on-going for possible use in
production runs in the future, which would
ease maintenance across organizations. This

JCSDA QUARTERLY4 NO. 66, Winter 2020

effort towards portability has already been
beneficial for the project: JEDI software
was “ported” to cloud computing in about
20 minutes, to be contrasted with external
libraries or existing models that might
require months of work.

Managing a large system like JEDI with
all the models from the partners, all the
observation operators for all Earth system
components, and all data assimilation
algorithms would be impossible in a
traditional monolithic code. The JEDI code is
divided into components, each managed in
its own repository. A flexible build system
gathers the code from multiple repositories
as needed by applications and builds it.

The goal of the JEDI project is to develop a
worldwide state-of-the-art data assimilation
system that meets operational requirements
from the JCSDA partners and to make it
available for research. For that purpose, the
code will be released under an open source
license (Apache-2). To support transition to
operations and to the research community,
training sessions (“JEDI Academies”) are
regularly organized, initially focusing on
project developers and JCSDA partner
agencies, progressively extending to
the wider data assimilation community.
Documentation is being written as the
project progresses, and tutorials will be
provided in the future.

The project includes the development of all
the generic data assimilation components
and in collaboration with the partner
agencies to interface their respective
models to the system. It also includes the
development and maintenance of the tools
necessary to develop, test, and validate
the system in a collaborative environment.

This will be achieved through specific tools
and, where possible, the use of open source
software compatible with the license of the
JEDI software.

JEDI Evolution
The system includes existing leading
operational data assimilation algorithms
and facilitates exploration of new data
assimilation science across domains and
applications. Contrary to data assimilation
projects in the past, such as GSI, DART,
NAVDAS, or the IFS, JEDI is not centered
around one single data assimilation method
that would be imposed on all partners.
A unified system does not mean a single
configuration, and each agency will be able
to use different applications and different
data assimilation algorithms. It also means
that JEDI will be a base for developing new
data assimilation algorithms in the future
and address new challenges as they arise.

Areas where all partners will benefit from
JEDI improvements include, for example,
efficiency and scalability on new computer
architectures. Improvements in data
assimilation methodology will improve
the use of observations. Two foreseeable
directions for research in that area are the
evolution towards a fully-coupled Earth
system, and the methods that can always
make use of all the most recent observations
available for any given forecast, regardless
of their order of arrival through a more
continuous data assimilation process. Finally,
the JEDI UFO will encourage the common
development and sharing of observation
operators between the partners, collectively
paving the way for the use of more
observation types than any center on its own
could achieve. Development of new data
assimilation algorithms and improvement

JCSDA QUARTERLY5 NO. 66, Winter 2020NO. 66, Winter 2020

of existing algorithms aiming at improving
forecast skills will benefit JCSDA partners
while also avoiding duplication of effort.

Final Comments
The series of articles about JEDI in this
newsletter covers in more detail the main
aspects of the project. The next articles
explains the structure of the OOPS-JEDI
code (Trémolet, 2020, this issue), followed
by an article describing the interfacing
with the models (Holdaway et al., 2020,
this issue) and another one describing the
interfacing with observations through
UFO and IODA (Honeyager et al., 2020,
this issue). The last article in the series
describes the methodology and tools used
in JEDI (Abdi-Oskouei et al., 2020, this
issue). The goals of the JEDI project are very
ambitious. Together, the modern practices
and technologies described in these articles
make the goals set forward feasible.

Authors
Yannick Trémolet (JCSDA)
Thomas Auligné (JCSDA)

References
Bauer, P., et al., 2020: ECMWF Scalability
Programme - Progress and Plans, ECMWF
Technical Memorandum, in preparation.

Daley, R. and E. Barker, 2001: NAVDAS:
Formulation and Diagnostics. Mon. Wea.
Rev., 129, 869–883

Dee, D.P., M. Balmaseda, G. Balsamo, R.
Engelen, A.J. Simmons, and J. Thépaut,
2014: Toward a Consistent Reanalysis of the
Climate System. Bull. Amer. Meteor. Soc.,
95, 1235–1248, https://doi.org/10.1175/
BAMS-D-13-00043.1

Kleist, D. T., D. F. Parrish, J. C. Derber, R.
Treadon, W.-S. Wu, and S. Lord, 2009:
Introduction of the GSI into the NCEPs
Global Data Assimilation System. Wea.
Forecasting, 24, 1691–1705, https://doi.
org/10.1175/2009WAF2222201.1

Lorenc, A. C., and Coauthors, 2000: The Met.
Office global 3-dimensional variational data
assimilation scheme. Quart. J. Roy. Meteor.
Soc., 126, 2991–3012.

Rabier, F., H. Jarvinen, E. Klinker, J.-
F. Mahfouf, and A. Simmons, 2000: The
ECMWF operational implementation of
four-dimensional variational assimilation.
I: Experimental results with simplified
physics. Quart. J. Roy. Meteor. Soc., 126,
1143–1170.

Trémolet, Y., 2020: Joint Effort for Data
assimilation Integration (JEDI) Design and
Structure. JCSDA Quarterly, 66, Winter 2020
(this issue).

Holdaway, D., Vernières G., Wlasak M., and
King S., 2020: Status of Model Interfacing
in the Joint Effort for Data assimilation
Integration (JEDI). JCSDA Quarterly, 66,
Winter 2020 (this issue).

Honeyager, R., Herbener, S., Zhang, X.,
Shlyaeva, A., and Trémolet, Y., 2020:
Observations in the Joint Effort for Data
assimilation Integration (JEDI) - UFO and
IODA. JCSDA Quarterly, 66, Winter 2020
(this issue).

Abdi-Oskouei, M., Miesch, M., and Olah, M.
2020: The Joint effort for Data assimilation
Integration (JEDI) Infrastructure. JCSDA
Quarterly, 66, Winter 2020 (this issue).

https://doi.org/10.1175/BAMS-D-13-00043.1
https://doi.org/10.1175/BAMS-D-13-00043.1
https://doi.org/10.1175/2009WAF2222201.1
https://doi.org/10.1175/2009WAF2222201.1

JCSDA QUARTERLY6 NO. 66, Winter 2020

Joint Effort for Data Assimilation
Integration (JEDI) Design and
Structure
Introduction
Data assimilation is an essential component of any forecasting system. It aims at determining
the best estimate of the state of a system given observations of the system and a previous
estimate of the state of the system for use as initial condition for an ensuing forecast. It
also requires error estimates of the input quantities, usually covariances matrices and bias
estimates, and uses operators, such as the forecast model and observation operators.

The JEDI data assimilation system is centered around the Object Oriented Prediction
System (OOPS) that defines abstract representations of the quantities and operators used
in data assimilation, with the various operations that can be performed with them. This
abstract interface layer is implemented in C++ using templates. Different implementations
are chosen at compile time during template instantiation and provide genericity across
models. Adding a new model or system to JEDI means implementing the classes defined in
the abstract layer for that model or system. On the other side, adding or modifying a data
assimilation algorithm is done through the interface layer so that all code at high level is
model independent (Figure 1).

The main components of the JEDI system are described below. The description is not
exhaustive and is not intended as a full technical documentation. It describes the key
components and general principles behind the design. It should serve as an introduction
before going deeper into the system and code.

The next section describes the abstract interfaces OOPS expects for a given model or system
for which data assimilation is to be implemented. The following section shows where

Figure 1. OOPS generic design
and separation of concerns.
Applications are written in
a generic layer (blue) using
abstract building blocks (green),
which correspond to scientific
elements. Each model (red)
implements the abstract elements.

JCSDA QUARTERLY7 NO. 66, Winter 2020NO. 66, Winter 2020

generic components can be used, and the
last section gives some information about
data assimilation algorithms and high-level
applications.

OOPS Abstract Interfaces
Model Space Interfaces

In the scientific literature, high-level data
assimilation algorithms are described in
terms of a state variable x, without any
reference to the specific nature of the
fields in x or the geometry of their discrete
representation. All such details should be
encapsulated inside a state class and not
be visible from high-level algorithms. In a
similar way, forecast models, often denoted
M(x), are used to evolve the state of the
system of interest forward in time, but the
details of how this is done are not required
in order to define a data assimilation or other
high-level algorithms, thus such details
should not be apparent in high level parts of
the code.

The following classes provide high-level
access to model states and state related actions
required by data assimilation algorithms. All
assimilation algorithms refer to model space
entities only through these high-level classes.
The actual implementation of the classes in
model space are of course model specific.

Geometry

The state of the system is obviously
an important piece of data in any data
assimilation and forecasting system.
In meteorology and oceanography, it
is represented by a collection of fields
representing the values of the variables of the
problem. For computational purposes, fields
are discretized and a finite set of values are
stored and manipulated. This set of values is
distributed on a model-dependent geometry

that can be relatively simple, such as regular
grids, more complex, such as cubed-sphere
or reduced Gaussian grids, or more abstract,
such as spectral representations. The
Geometry class is dedicated to holding this
information in OOPS. It will typically contain
the definition of the model grid, resolution,
and distribution across processors. OOPS
creates Geometry objects and passes them
to lower level code where necessary,
typically to constructors of other model
space objects. Passing the same Geometry
to the constructors ensures consistency in
resolution and distribution across processors
between the objects involved.

State and Increment

The State class is the fundamental class
giving access to operations on model states
in OOPS. It holds and encapsulates data that
define the state of the system and the date
and time for which it is valid. In addition to
encapsulating data, the State class provides
operations associated with that state, such as
basic utility functions (read, write, diagnostic
prints), and a method (getValues) to provide
access to state values where necessary.

The Increment class is very similar to the
State class except for the fact that it handles
perturbations to the state. It provides a
method to compute an increment as the
difference between two states, to add an
Increment to a State, and a set of basic linear
algebra operators, which are legitimate
operations for increments but not for states.

Model

The main responsibility of the Model class is
to hold the forecast model configuration data
and to provide the ability to evolve a State in
time. Its main method is the forecast method,
which is coded in the OOPS layer and

JCSDA QUARTERLY8 NO. 66, Winter 2020

relies on specific model implementations to
provide three lower level methods: initialize,
step, and finalize. For a given model,
these three methods contain respectively
everything that happens before the loop
over time steps, inside the loop, and after
the loop. Although these do not necessarily
exist as such in every model, they are fairly
easy to create by wrapping existing code.
For improved efficiency in the case several
calls to the forecast are made in the same
executable, code that should be executed
only once should be in the constructor of the
Model, while code that needs executing at
the beginning of each integration should be
in the initialize method.

The reason for this design of the abstract
interface for the model is that 4D
assimilation methods require access to the
model state throughout the assimilation
window. The volume of data that would
represent far exceeds the amount of
memory available on supercomputers, so it
is not possible to store it in memory. For the
same reason, I/O would be prohibitively
expensive. These four-dimensional
computations have to happen while
the model is running. Some algorithms
also require running the forecast and
computations needed for data assimilation
repeatedly in an iterative process. The
level at which the interface between the
model and the data assimilation is written
in OOPS is the highest level possible that
meets those requirements while remaining
generic. Applying the same object-oriented
approach deeper into the models would be
possible, and possibly desirable in terms
of code design for the future, but it is not
needed for data assimilation and is not in
the scope of OOPS or JEDI.

PostProcessors

In addition to the initial condition and length
of the required forecast, a PostProcessor
object is passed to the Model’s forecast
method. The PostProcessor class is a very
generalized form of post-processing used to
handle all output a forecast should produce
while running. The goal of that class is to
isolate all the auxiliary code that should be
called during the integration of the forecast
model but is not strictly part of the model
(enforcing separation of concerns).

PostProcessors derive from a base class that
controls when each processor will be called
during the forecast execution based on the
configuration passed as an argument to its
constructor. This relieves both the forecast
model and the actual processor from that
responsibility, allowing them (and more
importantly, developers) to focus on their
responsibilities, which are to produce
respectively a forecast and some output given
the model state generated by the forecast.

Concrete post processors define a process
method taking a State or Increment as
unique argument that cannot be modified.
In addition to this, each processor class can
implement complex constructors and/or
destructors or other methods to be called
before and/or after the forecast run as
necessary. For simple cases, this will not
be useful (for example, to print norms to
a log file or to save the forecast to files).
In other cases, complex operations can
be implemented, for example setting-up
observations operators before the forecast
starts in the processor’s constructor, calling
them during the forecast integration
from the mandatory process method and

JCSDA QUARTERLY9 NO. 66, Winter 2020NO. 66, Winter 2020

collecting observation equivalents after the
forecast has completed in a specific method.
Storing the “trajectory” for tangent linear
and adjoint models is also the responsibility
of a dedicated post-processor.

In variational data assimilation, this
approach is important as all the contributions
to various terms of the cost function need to
be collected in the same model run while
keeping a lot of flexibility in implementing
new terms, and keeping the data assimilation
code isolated from the model code.

Other Classes in Model Space

A few other interface classes exist in model
space; for example, auxiliary classes for
state augmentation for applications such
as parameter or model bias estimation. A
LinearModel class also exists to hold tangent
linear and adjoint models.

Observations Space Interfaces

In the scientific literature, high-level data
assimilation algorithms are described in
terms of a vector of observations, usually
denoted y, without any reference to the
specific nature of the observations in y or
their distribution in space and time. All such
details should thus be encapsulated inside
an Observations class and not be visible
from high-level algorithms. In a similar way,
observation operators, often denoted H(x),
are used to simulate the observations given
the state of the system x, but the details of
how this is done are not required in order to
define a data assimilation or other high-level
algorithms; thus, such details should not be
apparent in high-level parts of the code.

The following classes provide high-level
access to observations and observation-
related actions required by data assimilation

algorithms. All assimilation algorithms
refer to observation space entities only
through these high-level classes. The actual
implementation of the classes in observation
space are specific to each observation type.

Observations and Departures

The Observations class holds and
encapsulates observations (often denoted
y in the scientific literature) and associated
operations. The Departures class is the
mirror in observation space of the Increment
class. It represents differences between, or
perturbations to, observations. It is very
similar to the Observations class except for
the fact that it provides an additional set of
linear algebra operators.

For data assimilation applications, there
is one object of class Observations per
observation type. There is no strong
constraint in the system about what
constitutes an observation type other
than the fact that the same observation
operator, quality control procedures, and
bias correction method will be applied to all
observations in a given type.

The Observations and Departures classes are
implemented in OOPS and are not part of the
interface to the actual model implementation.
Internally, Observations and Departures
objects each contain a vector of values
(ObsVector) to which methods are delegated.

ObsSpace and ObsVector

The concept of geometry from the model
space is transposed to the observation space
with the ObsSpace class. This class defines
the distribution of observations in space,
as the Geometry would for model space
entities. However, the ObsSpace class also
gives access to all metadata associated with

JCSDA QUARTERLY10 NO. 66, Winter 2020

the observations, including time, some
instrument dependent metadata, quality
control information, and to the actual
observation values themselves.

The ObsVector class is used to hold values in
observation space. Like State and Increment
are always defined with a Geometry,
ObsVectors always refer to an ObsSpace.
The values in an ObsVector can be read from
the ObsSpace, for example, the observations
values, or can be local variables computed
within the data assimilation process, for
example H(x). In that case, the values in the
ObsVector can be saved in the ObsSpace for
later diagnostics or can be deallocated like
any other local variable.

Optimisation of data access, for example,
according to frequent access patterns
or according to specific observation
distributions across processors, are left to the
lower-level implementation of each model,
as it is impossible to define optimisations
that would suit all possible applications.

ObsOperator

The computation of a simulated observation
given a model state comprises two steps:
the interpolation of the model variables
to the observation locations, and the
computation of the observation equivalent
from these interpolated model variables. It
is the responsibility of the state to provide
the values of its variables (or fields) at the
requested locations through the getValues
method, which isolates the observation part
of the code from the internal geometry of the
model being used.

The ObsOperator class define the actual
computation of observation equivalents
given model state values at the observations’

locations for a given observation type
(method simulateObs). This step can be
extremely simple if the quantity being
measured is a variable of the model (a
temperature or wind measure for example),
or very complex in the case of radiance
observations from satellites involving a
radiative transfer model. In any case, this
class encapsulates the science related to
the observation type and isolates it from
the technical details related to the forecast
model.

The LinearObsOperator class also exists and
holds the tangent linear and adjoint of the
observation operator.

Other Classes in Observation Space

An auxiliary observation control variable
and the corresponding increment are defined
in the interface directory. This is intended
for applications that require control of
parameters in the observation operators or for
estimation of observation bias. A covariance
matrix for these parameters is required.

Error Covariances

Background Errors

Modelling background error statistics is
an essential part of a data assimilation
system and a key element to the quality
of the analysis and ensuing forecast. The
design of the interfaces for background
error covariance matrices is, however, very
simple. In addition to a constructor, the
ErrorCovariance class requires a method
to multiply an increment by the covariance
matrix and another one to multiply an
increment by the inverse of the covariance
matrix. In real cases, this inverse is often very
ill conditioned, the variational algorithms
in OOPS only use it for diagnostics. Some
applications require a method to generate a

JCSDA QUARTERLY11 NO. 66, Winter 2020NO. 66, Winter 2020

random increment according to the statistic
distribution described by the covariance
matrix, this is particularly useful for testing.

OOPS implements a factory that lets users
choose a given covariance model at run
time. Generic background error covariance
implementations are implemented in
the System Agnostic Background Error
Representation (SABER) repository.

Observation Errors

Just like the background errors, the definition
of observation errors is key to the quality of
the analysis, but the interface to the covariance
matrix is simple and mimics that of the
background error covariance. The type of
observation error covariance is configurable at
run time, although initially only the diagonal
observation error covariance is implemented.
More generic covariance models will be
developed. For example, generic components
developed in the context of background
error covariance modeling to represent
correlations on unstructured grids open the
possibilities for more advanced observation
error correlations representations.

Other Interface Classes

Locations

The Locations class is one of the links
between the observation and the model parts
of the code. It is used to specify the locations
where model fields values are needed by

the observation operators and passed to the
getValues method of the state. OOPS only
passes Locations objects between methods
associated with other classes and makes
no assumption regarding the interface of
that class. Different applications can use
that flexibility to implement very different
coordinate systems and specific methods.

GeoVaLs

The GeoVaLs (Geophysical Values at
Locations) class is used to pass the model
values interpolated to the required locations
to the ObsOperator (Figure 2). The GeoVaLs
class is the other link between the model
and the observation parts of the code. The
only use of this class in OOPS is to pass
the model fields values at the locations of
observations from the getValues method to
the observation equivalent computation. As
a result, there are no constraints regarding
the interface of this class in a given system.

Traits

The set of classes that represents the system of
interest is gathered as a list of aliases (typedef
in C++) that define the concrete class that
corresponds to each abstract class expected
by OOPS. This list takes the form of a C++
class called a trait. The OOPS code is generic
and templated on this trait. At compile time,
through template instantiation, the compiler
replaces the generic classes in OOPS by the
specific classes defined in the trait. This

Figure 2. Interactions between
models and observations in
JEDI. The GeoVaLs class is
used to handle the state values
evaluated at the locations of
the observations.

JCSDA QUARTERLY12 NO. 66, Winter 2020

defines a generic data assimilation system
that can be used with many models without
re-writing any code.

Templates do not exist in Fortran and no
equivalent functionality is expected in the
future. It is this functionality, more than
the object-oriented aspects, that drove the
choice of C++ as a programming language
for OOPS and JEDI.

Comments About Interface

Classes Design

In model space, the State and Increments
are the classes that make the interface
between the abstract layer and the
concrete implementation. In observation
space, Observations and Departures are
implemented in OOPS, it is the lower level
ObsVector that constitute the interface. A
similar approach could have been chosen in
model space with a concept such as Fields for
example. However, fields in model space are
a representation of a continuous reality, for
which the concepts of resolution and change
of resolution exist. Even more than that,
fields can be represented in different spaces
(grid point, spectral, finite volume, spectral
elements, etc.). Even in the same system,
a linear model can be used jointly with a
nonlinear model that does not use the same
representation for fields (perturbation forecast
model). In observation space, the observations
are discrete and their number finite. There is
no concept of change of resolution or different
representation. Thus, it is reasonable to have
only one data structure and only one class to
interface; whereas, this would have limited
possibilities in model space.

The classes that define a specific system in a
given trait are wrapped in an interface layer
in OOPS. This is not mandatory and was

not done in earlier versions of the code. This
interface layer was added to help readability.
In particular, when adding a new model into
the system, this layer provides a single point
where all interfaces are visible. Without it,
one would have to scan all the code to see
where the classes in the trait are used to
have a complete list of methods and their
interfaces for each class. Such a list could be
maintained in the documentation but would
inevitably go out of date. By being part of
the code, it is permanently checked by the
compiler and cannot go out of date. It is a case
where the code really is the documentation.
The interface layer is also used to instrument
the code. It contains utilities for tracing and
timing the execution of the code. Such tools
could be extended in the future.

Generic Components
Each model interfaced with OOPS requires
its own trait with a complete set of consistent
classes matching the expected abstract
interfaces. However, a given concrete class
can be used in more than one trait. This opens
possibilities for sharing more code across
different models than just the high-level data
assimilation code, increasing collaboration
and reducing duplication of effort even
further. This is where JEDI extends OOPS
with more generic components (Figure 3) in
UFO, IODA and SABER.

The observation-related generic layer (UFO
and IODA) reduces code duplication for
observation handling and functionality
that is common to all observation types,
including quality control procedures and
bias correction. While the UFO and IODA
classes are specified in the OOPS trait and
chosen at compile time, specific operators
within UFO are chosen at run time, bringing
another level of flexibility to the system.

JCSDA QUARTERLY13 NO. 66, Winter 2020NO. 66, Winter 2020

UFO

The Unified Forward Operator (UFO) is
at the heart of JCSDA’s mission and is the
other major component of JEDI after OOPS.
It implements generic observation operators.
The key elements that make the observation
operators generic are the classes that make
the connection between the model space and
the observation space. As described above,
these classes are Locations and GeoVaLs.
Thus, UFO includes implementations of
these two classes in addition to a collection
of observation operators that users can
leverage. The same UFO operators can be
used in conjunction with several models
regardless of the models’ internal geometries.

In addition to the observation operators
themselves, UFO also implements generic
tools for quality control and variational bias
correction, which are extremely important
for operational centers. These aspects
represent a large fraction of the work related
to observation in operational centers and
thus have a lot of potential for reduction of
duplication of work. Once a UFO generic
operator has been validated, including it
in any JEDI-compliant system should be as
easy as installing a new app on a smartphone

from an App store. Generic operators will be
provided with default settings that can be
fine-tuned for each application.

IODA

The Interface for Observation Data Access
(IODA) is developed with the UFO to
handle observation data. It provides
functionality for I/O of observation data
and in memory access. In the interface layer
and traits, it implements the ObsSpace and
ObsVector classes.

IODA will facilitate the implementation
of UFO. It will also facilitate the exchange
of observations between centers for
experimental studies, comparisons, or
potentially for reanalyses. Data assimilation
diagnostics will also be developed based
on IODA.

SABER

The System Agnostic Background Error
Representation (SABER) implements
generic background error covariance
matrices, among which is BUMP
(Background error on Unstructured Mesh
Package). After observation processing, the
modelling of background errors is the most

Figure 3. JEDI Structure with
a generic layer for observation
and background error
handling.

JCSDA QUARTERLY14 NO. 66, Winter 2020

time-consuming task in data assimilation.
Exchange and comparisons of covariance
matrices have never been possible before
JEDI. This will be an important tool for
scientific advances in data assimilation.

Comments

Each component of JEDI is stored in its own
code repository. (Figure 4) It is the build
system that gathers all code for a given
build. This approach enforces separation of
concerns and gives additional flexibility to
build applications with the components it
requires. It also facilitates development with
different teams managing each repository.

Data Assimilation and Other High-
level Algorithms
Data assimilation algorithms in OOPS-JEDI
are entirely written using the abstractions
described in the previous sections. At
this time, most existing variational data
assimilation algorithms including 3D-Var,
3D-FGAT, 4D-Var, 4D-En-Var, weak
constraint 4D-Var, and observation space
algorithms are implemented in the OOPS
layer. Ensemble data assimilation algorithms
(EDA and EnKF-based) are being developed.

Minimization algorithms for variational
data assimilation are written in a very
generic manner and can be reused for other
purposes. For example, an approximate
inverse of the background error covariance
matrix can be computed using one of those
minimization algorithms for cases where
no specific inverse is implemented in an
ErrorCovariance model.

Algorithms related to data assimilation, for
example, the computation of observation
impact, are also implemented in the high-
level generic layer.

Although already covering most
operational data assimilation algorithms,
the data assimilation layer will evolve in
the future. New research will take place
and new algorithms will be developed that
can be immediately tested with all models
interfaced with JEDI, from a very simple
Lorenz model to the most advanced fully-
coupled Earth system models.

Authors
Yannick Trémolet (JCSDA)

Figure 4. Each major
component of JEDI is managed
in its own repository.

JCSDA QUARTERLY15 NO. 66, Winter 2020NO. 66, Winter 2020

Status of Model Interfacing in the
Joint Effort for Data Assimilation
Integration (JEDI)
Introduction
As outlined in the introductory articles, the central components of JEDI are completely
generic in the sense that different data assimilation systems can make use of the same
software infrastructure and components. This is achieved through so-called interface
classes that define how the various components will interact with each other. However,
some work is still required to build all the variables and methods of the interface classes for
some specific forecast model so that the applications of JEDI can be used with that model.
Examples of interface classes implemented for specific forecast models include Geometry,
State, Increment, Model, LinearModel, and VariableChange. All of the operations in these
interface classes depend on the grid of the underlying model or the model itself.

Generic tests in Object Oriented Prediction System (OOPS) confirm that the interface classes
have been developed correctly and, once complete, applications based on the algorithms
provided by OOPS can be created and used. Most of the actual models are written using
Fortran, rather than C++, so the interface classes can just call into some Fortran equivalent.
Several models are now interfaced to JEDI or are in the process of being interfaced. These
are outlined in Table 1.

MODEL TYPE GRID
INTERFACE

REPOSITORY
CENTER

GFS Atmosphere Cubed-sphere FV3-JEDI NOAA-EMC

GEOS Atmosphere Cubed-sphere FV3-JEDI NASA-GMAO

GFS GSDChem Aerosol Cubed-sphere FV3-JEDI NOAA-ESRL

GEOS-AERO Aerosol Cubed-sphere FV3-JEDI NASA-GMAO

LFRIc Atmosphere Cubed-sphere LFRIc MET Office (UK)

MPAS-A Atmosphere Voronoi meshes MPAS-JEDI NCAR

NEPTUNE Atmosphere Cubed-sphere NEPTUNE NRL

Quasi-geostrophic Toy model Lat-Lon OOPS ECMWF

Lorenz 95 Toy model 1D OOPS ECMWF

ShallowWater Toy model Lat-Lon shallow-water NOAA-ESRL

MOM6 Ocean Tripolar SOCA NOAA-EMC

SIS2 Sea-ice Tripolar SOCA NOAA-EMC

CICE6 Sea-ice Tripolar SOCA-CICE6 NOAA-EMC

WRF Atmosphere Lat-Lon WRF-JEDI NCAR

Table 1. Models for which an
interface to JEDI has been or
is being prepared.

JCSDA QUARTERLY16 NO. 66, Winter 2020

The generic nature of JEDI provides a
great deal of flexibility as the complexity
of the system increases. Rather than
large monolithic software, there can exist
smaller components that cover specific
tasks or sets of tasks. Model interfaces are
constructed for individual components
of the Earth system (e.g., the atmosphere
or ocean). There is no explicit need to
combine different components into one
interface, meaning they can be updated
independently as models change. In
addition, it does not limit scalability of
development, an important consideration
for a community effort of this magnitude.

OOPS provides the methods for creating
forecasts from within the data assimilation
algorithms and in the same executable. This
is important where 4D data assimilation is
used with outer loops, since it avoids reading
and writing large files and cuts down the
number of model initializations that are
required. There is a forecast model class
within OOPS for handling initialization,
stepping, and finalization of model forecasts.

Status of the Model Interfacing
The sections below outline the efforts
ongoing for the interfacing of JEDI to the
next generation forecast models being used
at various centers in the United States and
internationally. The details of interfacing to
the toy models is omitted since these mostly
exist to provide fast regression testing and
interfacing examples rather than scientific
capability. Details of the MPAS model are
also omitted since these were covered in a
previous edition of this newsletter McMillen
(2019). Most of the models being interfaced to
the JEDI system are so-called next generation
models. They are typically non-hydrostatic
and use grid construction that avoids the

converging of grid points seen in longitude-
latitude grids. In general, the results below
demonstrate infrastructural capability since
that is the stage of development for most
interfaces. Focus is currently shifting to
examining the scientific validity of high-
resolution results and cycled experiments.

FV3-JEDI

The finite volume cubed-sphere (FV3)
dynamical core (Lin 2004), developed
by NOAA’s GFDL laboratory, is used in
NASA’s Goddard Earth Observing System
(GEOS) model and now NOAA’s Global
Forecast System (GFS) model. It is a non-
hydrostatic model that uses cubed-sphere
geometry, finite volume dynamics, and a
Lagrangian vertical coordinate. FV3 also
supports a two-way nesting capability,
which will be used for regional modeling
efforts at NOAA.

The FV3-JEDI interface, named for the model
component that governs the horizontal grid,
is being built to provide JEDI-based data
assimilation for all models, both global and
regional, that use the FV3 dynamical core. By
having a single interface, it will help bolster
collaboration between and within centers
that use FV3-based models and eliminate
duplicate effort. In addition to providing
the meteorological data assimilation, it will
also provide the mechanism for doing other
kinds of atmospheric data assimilation, such
as aerosol, chemistry, and constituent.

FV3-JEDI is interfaced to four different FV3-
based model drivers: MAPL, which drives
the GEOS model; NEMS, which drives the
GFS model; FV3-JEDI-LM, which drives
a stand-alone FV3 dynamical core; and a
‘pseudo’ model, which can read a previously-
produced forecast from either GEOS or GFS.

JCSDA QUARTERLY17 NO. 66, Winter 2020NO. 66, Winter 2020

For the simplified FV3-JEDI-LM system, the
model can be driven by FV3-JEDI, exchange
states with JEDI, and be rewound for outer
loops. For the MAPL and NEMS interfaces,
FV3-JEDI can drive the forecast model
and retrieve states as the model advances.
NASA’s Global Modeling and Assimilation
Office (GMAO) has developed adjoint and
tangent linear versions of FV3, as well as
the GEOS convection, cloud, and turbulence
schemes. This linearized model is available
through the FV3-JEDI-LM repository.
Having this linearized model on the FV3
grid enables 4DVar data assimilation with
FV3-JEDI, as well as adjoint-based Forecast
Sensitivity Observation Impacts (FSOI).

With FV3-JEDI, all common flavors of
data assimilation have been tested: 3DVar,
3DEnVar, 4DEnVar, 3D-FGAT, and 4DVar,
as well as their hybrid equivalents. The
formulation of the B matrix uses BUMP,
so far with prescribed length scales for
correlation and localization. The static part

of the B matrix uses a univariate formulation
applied to stream function, velocity potential,
temperature, relative humidity, and surface
pressure. Work is underway to extend the
static B matrix formulation to include more
sophisticated balance operators and thus a
multivariate formulation. FV3-JEDI has been
interfaced to in-situ temperature, wind and
humidity observations, radiances modeled
with the Community Radiative Transfer
Model (CRTM), bending angle observations
using the Global Navigation Satellite System
Radio Occultation (GNSS-RO), surface
observations, and aerosol optical depth
(AOD) modeled with the CRTM.

Figure 1 shows the analysis increment of
the eastward component of wind using
the 4DEnVar assimilation procedure. The
increment is plotted at around 150hPa,
the approximate height of the jet stream.
The horizontal resolution of the grid is
around 50km (C180 in FV3 terms). The
background comes from the GEOS model.

Figure 1. Analysis increment
of the eastward component of
wind at ~150hPa valid at 2018-
04-15 00UTC. 4DEnVar data
assimilation using the FV3-
JEDI interface, assimilation
of in-situ radiosonde, and
aircraft temperature and wind.
Localization handled using
BUMP and defined using
prescribed length scales.

JCSDA QUARTERLY18 NO. 66, Winter 2020

In this experiment, a subset of the in-
situ radiosonde and aircraft wind and
temperature observations are assimilated.
Most of these are over the United States. The
localization is computed using BUMP and a
prescribed length scale of around 1000km.
The increment shown in the figure is plotted
directly on the cube sphere grid, outlines
of which are shown on the figure due to
an artifact of the plotting software used.
When computing the forward operator,
the interpolation is directly from the native
cubed-sphere grid to the observation
locations. The assimilation window is 6
hours centered on 2018-04-15 00z. Despite
this being a fairly simple experiment,
there are clear dynamical features in the
increment, and relatively smooth and
realistic structures are seen.

Figure 2 shows a similar experiment to that
shown in Figure 1 except using the 4DVar
algorithm and a hybrid formulation of the
B matrix. The static part of B is univariate

and based on prescribed, rather than
dynamically computed, length scales. This
figure shows temperature lower down in
the troposphere at around 850hPa. The
tangent linear and adjoint model used in
the 4DVar uses moist physics and boundary
layer in addition to the dynamical core.
The dynamical influence, through the
tangent linear and adjoint of the forecast
model, results in large scale increment
that spreads away from the observations
and follows the dynamical trajectory of the
atmospheric flow.

The results above rely on a simple formulation
of the static background error covariance
so little weight is given to it. Modeling
static background error covariances on the
native model grids presents a number of
challenges. Given the computational expense
of representing multivariate covariances,
the traditional approach relies on first
transforming to unbalanced variables so
covariance can be modeled univariately. For

Figure 2. Analysis increment
of temperature at ~850hPa
valid at 2018-04-14
21UTC. Hybrid-4DVar data
assimilation using the FV3-
JEDI interface, assimilation
of in-situ radiosonde, and
aircraft temperature and wind.
Univariate correlation and
localization handled using
BUMP.

JCSDA QUARTERLY19 NO. 66, Winter 2020NO. 66, Winter 2020

meteorological applications, this involves
converting to stream function and velocity
potential variables and then using statistical
regression to solve the linear balance equation.
Converting from winds to stream function and
velocity potential requires solving an inverse
Laplacian Poisson problem, something that is
relatively inexpensive on a latitude-longitude
grid but more challenging on a cubed-sphere
grid. For FV3-JEDI, a Finite Element multigrid
solver has been assembled based on code
provided by Cotter and Thuburn, 2014. The
majority of the algorithm is generic except the
prolongation and restriction operators, which
are currently limited to cubed-sphere and
icosahedral hexagonal grids. Figure 3 shows
the D-Grid tangential winds before and after
application of the Poisson solver. The winds,
which are on a 100km (C96) cubed-sphere
grid, are converted to stream function and
velocity potential and then converted back
to winds using a straightforward derivative.
The solver is run with a 5-grid hierarchy. The
recovered winds are very close to the starting
winds, showing the solver to be working.
Small discrepancies come from the need to
average the winds from the D-grid to the
C-grid and back during the algorithm. Note
the discontinuities at cube edges. This is due
to D-Grid winds being grid tangential, i.e.
aligned with the grid boxes, while indexing
on cube faces begins at different corners to
allow seamless joining of faces. This results in
the u components being perpendicular across
some face interfaces. Work is now underway
to train a BUMP-based covariance model for
univariate unbalanced variables so the above
experiments can be repeated with a more
sophisticated modeling of the covariances.

Figure 4 shows the dust (bin 1) increment
for the NOAA Global Systems Division
Chemistry (GSDChem) model. The

increment is produced using a 3DEnVar
algorithm (i.e., where the B matrix model
is produced only from the ensemble). The
increment is produced with the same FV3-
JEDI interface that is used for the above
meteorological experiments and using the
same executable. This level of flexibility is
enabled by a design that lets users make run
time choices of variables. The observations
are from Suomi-NPP 500nm AOD and the
forward operator used is the CRTM. The
experiment is performed for a relatively
coarse 200km horizontal grid (C48) and
with a 6-hour assimilation window. The
increment appears over and downstream of
the Sahara Desert where it is expected.

SOCA

The Sea-ice Ocean Coupled data
Assimilation (SOCA) project is a broad
effort to deliver coupled marine data
assimilation for NOAA that leverages the
JEDI infrastructure. The project goes beyond
building a model interface to the individual
marine components to also assembling
generic marine observation operators and
data handling. The model components that
SOCA is interfacing to are the Modular
Ocean Model version 6 (MOM6) ocean
model (Adcroft and Hallberg 2006) and the
Community Ice Code (CICE) sea-ice model
(Walters, et al. 2015). Like FV3, MOM6 is
a GFDL model; CICE is developed by the
Department of Energy. NASA’s GMAO is
also planning on implementing the MOM6
ocean model into GEOS and leveraging the
interfacing work of SOCA.

An extensive set of observations have been
interfaced to in SOCA; these are outlined
in Table 2. Note that the nonlinear, tangent
linear, and adjoint versions of all operators
are available, making variational data

JCSDA QUARTERLY20 NO. 66, Winter 2020

assimilation algorithms possible for all
marine models that are or will be interfaced
to JEDI.

The SOCA interfacing has been tested
with 3DVar, 3DEnVar, and 3D-FGAT data

assimilation and their hybrid variants
for MOM6 and CICE. An interface to the
stand-alone MOM6 forecast model has been
implemented, making it possible to drive
the model and retrieve states. This makes,
for example, 3D-FGAT and cycling possible

Figure 3. U component of
the D-grid tangential winds
before (top) and after (bottom)
the application of a Poisson
solver to convert them to
stream function and velocity
potential and then back using a
straightforward derivative.

JCSDA QUARTERLY21 NO. 66, Winter 2020NO. 66, Winter 2020

all using the SOCA interface. In addition, it
is possible to read model states in a pseudo
model mode so SOCA can be interfaced
to the full NOAA coupled model. A high-
resolution quarter degree cycled experiment
has been conducted with SOCA updating
the ocean and sea-ice states, but with the

forecast model being the fully coupled
FV3-MOM6-CICE5. In the experiment, the
forecast states are read in a pseudo model
mode. Figure 5 shows the increments of sea
surface height and sea surface temperature
from within the cycling. All the observations
listed in Table 2 are used in the assimilation.

Figure 4. Analysis increment
of dust bin 1 at ~700hPa
valid at 2018-04-14 12UTC.
3DEnVar data assimilation
using the FV3-JEDI interface,
assimilation of AOD using the
CRTM. Localization handled
using BUMP.

Table 2. Summary of the
observation types implemented
in UFO and used in a typical
SOCA assimilation cycle.

 RETRIEVED QUANTITY SENSOR/SATELLITE THINNING RATE
TYPICAL COUNT
ASSIMILATED

Sea Surface Temperature
from Infrared

AVHRR – NOAA-19 99.5% 110,000

AVHRR – METOP-A 99.5% 150,000

VIIRS – NPP 99.5% 250,000

ABI – GEOS-16 Monitoring Only Monitoring Only

Sea Surface Temperature
from Microwave

GMI – GPM 75.0% 110,000

AMSR2 – GCOM–W1 75.0% 130,000

WindSat 75.0% 100,000

Sea Surface Salinity SMAP Radiometer 0.0% 450,000

Absolute Dynamic
Topography

Jason-2 0.0% 240,000

Jason-3 0.0% 240,000

Sentinel-3a 0.0% 240,000

Cryosat-2 0.0% 240,000

SARAL 0.0% 240,000

Ice Fraction from
Microwave F17 & F18 95.0% 100,000

Total: 1,640,000

JCSDA QUARTERLY22 NO. 66, Winter 2020

A 30-day cycling for MOM6 has been
conducted with the SOCA interface. This was
done using 3Dvar and a 24-hour assimilation
window. The horizontal grid spacing used in
the experiment is one degree (approximately
100km). A total of 1.6 million observations
were assimilated per cycle; observations
assimilated were satellite sea surface
temperatures (NESDIS/ACSPO AVHRR
L2P) and altimetry (Jason-2, Jason-3 Sentinel-
3a, Cryosat-2 and SARAL). Figure 6 shows
the sea surface heights on the final day of the
cycled experiment. It is clear that more detail
is present in the sea surface height field in
the run that included data assimilation. In
particular, the Kuroshio meander east of Japan
has much more detail and realistic structure.

Neptune

The Navy Environmental Prediction System
Using the NUMA Core (NEPTUNE) is the
next generation model being developed
by the Naval Research Lab (NRL). It uses

the Nonhydrostatic Unified Model of the
Atmosphere (NUMA) dynamical core
(Giraldo, et al. 2013), which is a spectral
element system. NEPTUNE uses a cubed-
sphere grid, though NUMA can work on
unstructured grids. Development of the
NEPTUNE interface began fairly recently, so
is not as mature as some of the other projects.
However, good progress is being made, and it
is now possible to compute a 3Dvar increment
with the static B from BUMP. Current
efforts are focused on building up the set of
observations interfaced with NEPTUNE.

LFRic

LFRic (named for Lewis Fry Richardson)
is the next generation and exa-scale ready
forecast model in development at the Met
Office in the UK. LFRic uses the GungHo
dynamical core (Staniforth et al. 2014),
which uses mixed finite element finite
volume solvers. Since LFRic itself is still in
early development, the interfacing efforts

Figure 5. Increments of sea
surface height (left) and sea
surface temperature, valid at
2013-10-01 00z (right).

Figure 6. SOCA cycled 3Dvar
results. Comparison of sea
surface height on day 30 of a
30-day free run of the MOM6
ocean model (left) and a 30-day
cycled 3Dvar (right).

JCSDA QUARTERLY23 NO. 66, Winter 2020NO. 66, Winter 2020

have been using an aqua planet version of
the model.

The main focus of the past six months
has been on putting together a prototype
4DEnVar system running across multiple
nodes, which was a key deliverable earlier
this year. In the process of developing a
4DEnVar system, other systems have all
been developed and tested, to include
3DVar, 3DEnVar, and 3D-FGAT. The LFRic
interface can use in-situ surface, radiosonde,
and aircraft observations, as well as radiances
simulated using the Radiative Transfer for
TOVS (RTTOV) operator. Implementing
the RTTOV operator into the UFO was a
key development and deliverable, and this
will enable comparison of RTTOV with the
CRTM for all models.

Summary and Future Work
The JEDI development effort began almost
from scratch around two years ago.
Nevertheless, tremendous progress has
been made towards producing realistic
analysis states for a number of next
generation atmospheric and marine forecast
models. This has required a significant
parallel development effort to provide
data assimilation algorithms, a generic B
matrix operator, observation processing,
and observation modeling. Around 15
models are now interfaced to JEDI in some
form, and many different data assimilation
algorithms, with a range of these models,
are being run on a daily basis. So far, native
grid 3DVar, 3DEnVar, 3D-FGAT, 4DEnVar,
and 4DVar have all been implemented
for operational forecast models. Using
the UFO, in-situ, radiance, bending angle,
satellite wind, surface pressure, and marine
observations are all being assimilated
from several different platforms. Having a

generic B matrix operator has been crucial
in making quick progress, and all models
are successfully making use of the BUMP
software for producing static and ensemble
B matrix operators on their native grids.

Over the coming months, the focus of
the atmospheric groups is on refining
the static B matrix operator and testing it
within configurations with operational-
like horizontal grid spacing. Currently, the
atmospheric models being interfaced are
using a univariate approach to the static
B operator. In most operational systems,
a multivariate approach is used, typically
through balance operators. In order to
achieve this on the native grids, the model
requires development of capability not
existing in current operational systems.
Fortunately, this issue is not applicable
to the SOCA interface, where it has been
possible to implement a multivariate B
matrix operator with refactoring of existing
techniques. With a more realistic B matrix,
and as more observation operators become
available through the UFO, the atmospheric
modeling groups will be looking to perform
longer and higher resolution cycled
experiments.

The first versions of the SOCA, MOM6, and
CICE interfaces were delivered to NOAA-
EMC in September 2019. EMC’s current
planning involves replacing the variational
component of the Global Ocean Data
Assimilation System (GODAS) with SOCA
in early 2020. Between now and passing
the first SOCA release to EMC, efforts will
be directed towards increased resolution in
cycled experiments, improving efficiency in
the system, and examining the viability of
using a hybrid 3DVar approach harnessing
the existing LETKF ensemble in GODAS.

JCSDA QUARTERLY24 NO. 66, Winter 2020

Authors
Daniel Holdaway (JCSDA), Guillaume
Vernieres (JCSDA), Marek Wlasak (Met
Office), Sarah King (NRL)

References
Adcroft, A and Hallberg, R. 2006. "On
methods for solving the oceanic equations of
motion in generalized vertical coordinates."
Ocean Modelling 224-233.

Cotter, C. .J and Thuburn, J. 2014. "A finite
element exterior calculus framework for
the rotating shallow-water equations."
Journal of Computational Physics (Journal of
Computational Physics).

Giraldo, F. X., Kelly, J. F., and Constantinescu,
E. 2013. "Implicit explicit formulations of a
three-dimensional nonhydrostatic unified
model of the atmosphere (NUMA)." SIAM J.
Sci. Comput. B1162–B1194.

Lin, S.-J. 2004. "A “Vertically Lagrangian”
Finite-Volume Dynamical Core for Global
Models." Mon. Wea. Rev. 2293-2307.

McMillen, J., 2019: Prediction and Data
Assimilation for Cloud (PANDA-C). JCSDA
Quarterly, 65, Fall 2019

Staniforth, A, Melvin, T, Wood, N. 2014.
"GungHo! A new dynamical core for
the Unified Model." ECMWF. https://
www.ecmwf.int/sites/default/files/
e l i b r a r y / 2 0 1 4 / 1 2 3 8 9 - g u n g h o - n e w -
dynamical-core-unified-model.pdf.

Walters, D. N., E. C. Hunke, C. M. Harris,
A. E. West, J. K. Ridley, A. B. Keen, H. T.
Hewitt, and J. G. L. Rae. 2015. "Development
of the Global Sea Ice 6.0 CICE configuration
for the Met Office Global Coupled model."
Geoscientific Model Development 2221–2230.

Observations in the Joint Effort
for Data Assimilation Integration
(JEDI) - Unified Forward Operator
(UFO) and Interface for Observation
Data Access (IODA)
Introduction
The Joint Effort for Data assimilation Integration (JEDI) system is designed to be generic,
flexible, and computationally efficient. JEDI decouples observation operators, observation
filtering and data assimilation algorithms from state-space operations and packages them
as separate components (classes) that can be re-used for a variety of applications in a wide
range of environments from operational forecasting to academic research (Trémolet, 2020,
this issue). JEDI is implemented primarily in C++ (and can link to Fortran code) using a
generic and object-oriented approach. This article highlights the two key components of
the JEDI framework related to observations: the Unified Forward Operator (UFO) and the
Interface for Observation Data Access (IODA).

https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf
https://www.ecmwf.int/sites/default/files/elibrary/2014/12389-gungho-new-dynamical-core-unified-model.pdf

JCSDA QUARTERLY25 NO. 66, Winter 2020NO. 66, Winter 2020

The Unified Forward Operator (UFO)
The UFO code links with the Object Oriented
Prediction System (OOPS) and implements
classes related to the observation operators,
which express the computation of a
simulated observation given a known
model state. All operators are written so that
they can be used generically, that is with any
model. This separation of the observation
operator code from the model code reduces
the amount of time required to introduce
a new model into JEDI. Additionally, the
UFO code implements generic classes
that manipulate the results of observation
operators for bias correction and quality
control, which of course is critical in any
data assimilation system.

Observation Operators

A broad introduction to how observation
operators fit into JEDI is discussed earlier in
this newsletter (Trémolet, 2020, this issue).
As discussed, observation operators are
split into two parts (see Figure 1) to allow
for different models (with different State
class implementations) to use the same
observation operator.

The first part of the full observation operator,
named getValues in OOPS, is model
(geometry)-dependent and is implemented
with the model interfaces. It extracts the
values of model variables (GeoVaLs) at
desired observation locations (Locations)
and typically performs interpolation of
requested model variables to the observation
locations. This part of the observation

operator, therefore, is model-aware, and this
component isolates model details from the
remainder of the operator code.

The second part of the full observation
operator is model-independent and
computes the Observation Operator from
the input GeoVaLs. This part is implemented
in UFO and is called ObsOperator in OOPS.
ObsOperators can be rather simple, like
computing wind speed from directional
u- and v-wind components or vertically
interpolating measurements in a profile.
They can also be quite complex, such as
when simulating radiometer brightness
temperatures at several instrument channels.

Both GeoVaLs and Locations classes are
implemented in UFO since they are meant to
be used by all model interfaces. At present,
the Locations class considers latitude,
longitude, and time. It will soon be extended
to more sophisticated modeling geometries
with the ability to consider footprint
locations and slanted profiles.

UFO already implements many
ObsOperators, including:

• Brightness temperature and radiance
simulations using both the Community
Radiative Transfer Model (CRTM; Han
et al., 2006) and the Radiative Transfer
for TOVS (RTTOV; Saunders et al., 2018),

• Vertical interpolation in various
specified coordinate systems (can
be used with radiosonde, aircraft,
satwind observations),

Figure 1. Observation operator
in JEDI.

JCSDA QUARTERLY26 NO. 66, Winter 2020

• Calculations of aerosol optical depth (by
invoking CRTM),

• Calculations of sea ice thickness and sea
ice fraction, and

• Calculations of GNSS-RO bending angles
(1D and 2D; Shao et al., 2019) using both
NCEP bending angle simulations and
an interface to the Radio Occultation
Processing Package (ROPP).

In addition to computing the result of the
observation operator H(x), ObsOperators
may also return additional information,
like Jacobians and ancillary diagnostic data
produced by the operator, that are not
directly used in the assimilation algorithm
but could be useful for quality control (see
next section), bias correction, or scientific
investigations.

Quality Control and ObsFilters

Quality control in JEDI is handled through
observation filters (class ObsFilter in
OOPS). Filters can change quality control
flags (i.e., to reject or retain observations)
and observation error variances (e.g., one
might wish to increase observation error
variances to decrease the observation
weight in the analysis instead of rejecting
observations altogether). The filters can use
information from:

• Observation metadata and observed
values,

• GeoVaLs (model fields at observation
locations),

• Results of observation operators (H(x)),
• Optional diagnostics (ObsDiagnostics)

output from the observation operator, and

• Results of functions of some combination
of the above variables. These functions
(implementations of ObsFunction in
UFO) are pre-compiled but may have
user-customizable parameters.

The UFO ObsFilters are written to be generic.
Generic filters do not depend on specific
observation types and are configured
through a configuration file. They may be
applied either before or after an observation
operator. This customizability allows the
UFO to encompass much of the pre- and
post-processing work performed in existing
codes running in operational centers.

Some examples of generic filters include:
• A Background check that looks for

differences between observation value
and model simulated value (y – H(x))
and compares it to an absolute and/or
relative threshold (a relative threshold
is a threshold multiplied by observation
error),

• A Domain check that verifies if some
metadata, GeoVaLs, or observation
operator diagnostics are within specified
limits, and

• Thinning of observations based on
specified criteria.

All filters can be configured to perform
various actions depending on filter results.
To illustrate the use of generic filters,
consider several examples using the same
generic filter (Domain Check).

The first example (below) can be used with
GNSSRO data and rejects all observations
with observation altitudes outside of a range
of zero to 30 km:

JCSDA QUARTERLY27 NO. 66, Winter 2020NO. 66, Winter 2020

The second example (below) can be used in the ocean data assimilation and rejects all
observations for which the model’s sea area fraction is smaller than 0.5:

The third example (below) uses result of function that computes wind speed from the wind
components to inflate observation error by a factor of two for all observations for which
wind speed is higher than 40:

The generic observation filters, combined with the very flexible control by yaml configuration
files is a very powerful tool. No new code is required to apply a filter to different observation
types, which also applies to new observations. Scientists can focus on the scientific aspects
of their work, reducing the amount of time necessary to assimilate new observations.

Bias Correction

Another essential component of data assimilation is bias correction. Here, bias represents
systematic differences between actual sensor measurements and a model’s simulated
results. This can occur from a variety of processes. Biases are typically represented by a
predictor model involving properties of the observed atmospheric column (such as the
integrated lapse rate), model air-mass components (such as 1000-300 hPa thickness), and
instrument state (e.g., its field of view). In particular, bias correction is an important and
necessary step when assimilating radiance data. In general, this bias is associated with a
given instrument and frequency band (channel) and varies in space and time. It depends
in large part on atmospheric conditions at the time of observation, although other sources

JCSDA QUARTERLY28 NO. 66, Winter 2020

of radiometric bias include the radiative
transfer model itself, surface emissivity
and orography, and instrument antenna
characteristics.

Many bias correction schemes have been
developed and implemented in NWP
systems. These schemes apply an offset
to minimize the systematic differences
between sensor measurements and the
results of forward operators. In literature,
several approaches are employed,
including (and by no means limited to)
slope-intercept correction (using an offline
linear regression of measurements against
simulations), histogram adjustment (re-
centering the histogram of the differences
between simulations and measurements to
make it centered around zero), variational
approaches and multi-layer convolutional
neural networks (Dee et al., 2009; Zhu et al.,
2014; Tao et al., 2016).

To give developers and users flexible
and configurable bias correction scheme
interfaces, a factory design pattern is
adopted, which provides approach to code
for interface rather than implementation.
At the time of this writing, the predictor
model of linear regression formulation
and the predictors used by GSI have been
implemented and tested in UFO. However,
the UFO code’s generic bias correction
interface allows a user to specify what
predictors they want to use and what
predictor model they want to apply in a
configurable YAML file, increasing the
flexibility of the scheme.

Like the rest of the UFO, the design of
the interfaces for bias correction, and the
flexibility for selecting a bias correction
scheme through a yaml configuration

file, will facilitate future scientific
developments. All the data available to
observation filters, from observation data,
GeoVaLs, observation operators output
and diagnostics, and functions of those,
can be used for bias correction. New bias
corrections schemes can be implemented
more easily. New or existing schemes and
predictors can easily be applied to new
observation types without any coding.

The Interface for Observation Data
Access (IODA)
Overview

The objective of the IODA is to provide
uniform access to observation data
across the whole forecasting chain from
observation pre-processing to data
assimilation to diagnostics.

The initial effort in the project has focused
on the in-memory data access, which is
a generic implementation of the OOPS
ObsSpace class (Trémolet, 2020). It is used
extensively with the observation operators,
quality control, and bias correction in UFO
and contributes to the genericity of those
components. The second direction of effort
is the definition of the IODA file format.
It will enable more generic exchange of
information throughout the forecasting
suite and caters for efficient I/O to populate
or save data from the in-memory IODA
structure. Finally, a third direction of effort
will be the long-term storage and retrieval
of observation data and diagnostics in an
organized structure (a data store). The
common file format and organized data
store will enable exchanges of data and
scientific evaluations and comparisons.

In-memory Observation Handling

As its name indicates, IODA is primarily

JCSDA QUARTERLY29 NO. 66, Winter 2020NO. 66, Winter 2020

an interface that isolates the scientific code,
for example, in the observation operators,
from the underlying data structures holding
the data. The logical structure users should
have in mind when using IODA is described
below. The actual data storage might differ
if a different organization has advantages in
terms of efficiency or maintenance.

At the center of the scheme are tables which
hold the data. Tables are two-dimensional.
The columns represent variables (e.g.,
temperature, humidity, brightness
temperature) and the rows represent the
locations. Associated with each axis of the
data tables are metadata tables. The location
metadata hold the values describing each
location and which are appropriate for each
observation type (e.g., latitude, longitude,
and scan angle). The variable metadata
holds values associated with each variable
(row) in the data tables, again appropriate
per observation type, such as variable names
or channel frequencies. Finally, the data

table is replicated dynamically as necessary
in a third dimension to hold different kinds
of data, such as the observations themselves,
the observation error, quality control flags,
or simulated observations H(x) at various
stages of the data assimilation process (see

Figure 2).

The metadata tables along the two axes
are fully generic and might contain very
different information depending on the
observation type. Additional functionality,
for example, to access data by station
identifier, by flight, or by sonde ascent, are
being added to the interface. The IODA
structure can contain data of different types,
for example, observation values are real
numbers while quality control flags are
integers. This capability can be used in the
future to store more complex information,
for example, observation operator Jacobians.
This also applies to the metadata tables.

The IODA interface provides methods to

Figure 2. Schematic
representation of the IODA
data organization.

JCSDA QUARTERLY30 NO. 66, Winter 2020

query information about the data and to access data to and from the in-memory storage.
An interface is provided for both Fortran and C++ (below). The interfaces are generic
enough to cover all use cases by observation operators, quality control, and bias correction
for all observation types. However, they also give flexibility for optimizations in the
implementation. For example, the distribution of observations on distributed memory
architectures should be handled at the implementation level and be transparent to the user.
The IODA interface provides the separation of concerns between the scientific aspects of the
code and the efficiency and software engineering aspects.

IODA interface example in C++:

IODA interface example in Fortran:

IODA Files

Operational centers receive observation data in many different formats (e.g., BUFR, GRIB,
netCDF, and HDF5) and often generate several intermediate formats during observation
pre-processing, data assimilation, and for diagnostics purposes. IODA offers a single file
format for all observations and for use throughout the forecasting chain. Typically, one file
will contain observations for one data assimilation cycle, but the format can accommodate
other cases, for example, for diagnostics over longer time periods. As the IODA files will be
used in operational applications and full resolution research experiments, I/O efficiency,
including for distributed applications, is a primary concern in the design. Currently, two
file formats are being evaluated for use in IODA, namely netCDF4 and ODB. Preliminary
investigations show that both file formats could be suitable; more advanced evaluations are
being conducted at the time of writing to inform a decision (that could be taken by the time
this article is published).

To handle the various file formats in which observation data are presented, IODA provides a
set of conversion programs that translate those formats into the IODA file format. Currently
observation data can be converted from BUFR, netCDF4, ODB, and a specialized binary
format for marine observations. This is an active area of development as numerous new
observation types are being brought on board in JEDI.

JCSDA QUARTERLY31 NO. 66, Winter 2020NO. 66, Winter 2020

The IODA code base is split into two primary
components (Figure 3), “ioda,” which
implements the memory storage level and
“ioda-converters,” which supplies a means
for converting the various file formats from
the observation data providers into the
IODA file format. Also depicted in Figure 3
is the typical data flow (black arrows) for the
conversion and consumption of observation
data by the JEDI system.

Observation Data Store

In addition to handling the observations
during a data assimilation cycle, it is
important to store observations and
additional information for longer term.
This is for analyzing scientific results, for
repeating experiments, or for future use in
reanalysis. Given the collaborative nature
of JCSDA and the many partners involved,
observations will have to be accessible from
a variety of platforms, from laptops and
desktops to cloud computing instances to
dedicated HPC systems. The design and
implementation of such a data store will
start in 2020.

Ongoing Efforts
Both IODA and UFO underwent heavy
development in 2019. In particular, the
JCSDA hosted one workshop and two code
sprints in February, April, and August.
In February 2019, the U.S. Navy hosted
a requirements-gathering workshop for
IODA in Monterey, California (Herbener,
2019). This was a highly productive and
collaborative effort with representation
from eight JCSDA partner organizations.
The workshop resulted in a solid set
of requirements that are driving the
development of the IODA subsystem.

The code sprint in April 2019 took place
in Boulder, CO, and was focused on the
development of the capability to run
3D-Var cycling experiments with the
marine model SOCA. Over the course of
two weeks, converters were written for the
ingest of marine observations including
sea ice thickness and fraction, sea surface
temperature and height, altimetry and
salinity, along with the corresponding
forward operators. The code sprint resulted

Figure 3. IODA components:
“ioda-converters” holds
programs for translating
various file formats (BUFR,
netCDF4, specialized binary,
ODB, etc.) into the IODA file
format. “Ioda” contains the
implementation of the in-
memory storage.

JCSDA QUARTERLY32 NO. 66, Winter 2020

in the demonstration of a functional full
month cycling using the new observations,
with the SOCA model.

The second code sprint (August 2019)
also took place in Boulder, CO, and lasted
two weeks. This effort was focused on
developing UFO QC filtering functions
for a large set of microwave and infrared
instruments, as well as the introduction of
radar observations into JEDI. The necessary
converters and observation operators were
written for handling the new observation
types, along with the development of generic
filtering functions.

Collaborative work between all JCSDA
partners has been very successful. We
would like to use JEDI to reproduce the
behavior and results of multiple operational
systems in 2020. To that end, collaborative
development will continue outside code
sprints, and code sprints will be organized
when beneficial. Quality control procedures
will be extended to cover the full range of
observations used by JCSDA partners in
operational systems, for example, GSI. The
observation operators, quality control, and
variational bias correction will be validated
by comparison with operational systems.

In the longer term, all these operators will be
developed further to improve on the current
operational systems, taking advantage of
new technologies, such as machine learning
and artificial intelligence. Collectively,
the JCSDA partners have the capacity to
develop the largest collection of high-
quality observation operators and associated
procedures. UFO and IODA provide the
tools to share and further improve them.

Authors
Ryan Honeyager (JCSDA), Stephen
Herbener (JCSDA), Xin Zhang (JCSDA),
Anna Shlyaeva (JCSDA), and Yannick
Trémolet (JCSDA).

References
Dee, D. P. and Uppala, S., 2009: Variational
bias correction of satellite radiance data
in the ERA-Interim reanalysis. Q.J.R.
Meteorol. Soc., 135: 1830-1841, https://doi.
org/10.1002/qj.493.

Han, Y., Van Delst, P., Liu, Q., Weng, F., Yan,
B., Treadon, R., and Derber, J., 2006: JCSDA
Community Radiative Transfer Model
(CRTM) - Version 1. NOAA Technical Report
NESDIS, 122, https://repository.library.
noaa.gov/view/noaa/1157/noaa_1157_
DS1.pdf.

Herbener, S. R., 2019: “2019 IODA Workshop
Summary.” JCSDA Quarterly, 63, 23-25,
https://doi.org/10.25923/c23x-ac34.

Saunders, R., Hocking, J., Turner, E., Rayer,
P., Rundle, D., Brunel, P., Vidot, J., Roquet,
P., Matricardi, M., Geer, A., Bormann,
N., and Lupu, C., 2018: An update on
the RTTOV fast radiative transfer model
(currently at version 12). Geosci. Model Dev.,
11, 2717-2737, https://doi.org/10.5194/
gmd-11-2717-2018.

Shao, H., Vandenberghe, F., Zhang, H.,
Ruston, B., Healy, S., Cucurull, L., 2019:
“Development of GNSS-RO Operators for
JEDI/UFO.” JCSDA Quarterly, 62, Winter
2019, https://doi.org/10.25923/w2dh-
ep66.

https://doi.org/10.1002/qj.493
https://doi.org/10.1002/qj.493
https://repository.library.noaa.gov/view/noaa/1157/noaa_1157_DS1.pdf.
https://repository.library.noaa.gov/view/noaa/1157/noaa_1157_DS1.pdf.
https://repository.library.noaa.gov/view/noaa/1157/noaa_1157_DS1.pdf.
https://doi.org/10.25923/c23x-ac34
https://doi.org/10.5194/gmd-11-2717-2018
https://doi.org/10.5194/gmd-11-2717-2018
https://doi.org/10.25923/w2dh-ep66
https://doi.org/10.25923/w2dh-ep66

JCSDA QUARTERLY33 NO. 66, Winter 2020NO. 66, Winter 2020

Tao, Y., X. Gao, K. Hsu, S. Sorooshian, and
A. Ihler, 2016: A Deep Neural Network
Modeling Framework to Reduce Bias
in Satellite Precipitation Products. J.
Hydrometeor., 17, 931–945, https://doi.
org/10.1175/JHM-D-15-0075.1.

Trémolet, Y., 2020: Joint Effort for Data
assimilation Integration (JEDI) Design and
Structure. JCSDA Quarterly, 66, Winter 2020
(this issue).

Zhu, Y., Derber, J., Collard, A., Dee, D.,
Treadon, R., Gayno, G. and Jung, J. A.,
2014: Enhanced radiance bias correction
in the National Centers for Environmental
Prediction's Gridpoint Statistical
Interpolation data assimilation system.
Q.J.R. Meteorol. Soc., 140, 1479-1492, https://
doi.org/10.1002/qj.2233.

The Joint Effort for Data
Assimilation Integration (JEDI)
Infrastructure
Overview
Like the JCSDA itself, the Joint Effort for Data assimilation Integration (JEDI) project
literally begins with the idea of collaboration. As part of a Joint Center, we serve a diverse
community of forecasters, researchers, academics, and policy makers; and, as part of a Joint
Effort, our software development team includes the JEDI core staff and in-kind support
from Joint Center for Satellite Data Assimilation (JCSDA) partners, as well as external
collaborators who are not only users but also developers, making valuable contributions to
the JEDI code base that serve to enhance their own applications as well as others. Potential
JEDI users range from operational forecasters to university researchers to graduate students
studying data assimilation. Potential applications range from coupled Earth system and
Numerical Weather Prediction (NWP) models to idealized "toy" models designed to probe
the fundamental physics of atmospheric and oceanic flows.

To support this diverse community, we need collaborative workflows and software tools
that leverage contributions from distributed developers while promoting a unified vision.
We also need infrastructure that will allow users and developers to build and run JEDI on
a range of computational platforms, from laptops and workstations to local Linux clusters,
to cloud computing instances, to high-performance computing (HPC) systems at national
research facilities and operational centers. These are the challenges, and this article describes
how we are meeting those challenges.

https://doi.org/10.1175/JHM-D-15-0075.1
https://doi.org/10.1175/JHM-D-15-0075.1
https://doi.org/10.1002/qj.2233
https://doi.org/10.1002/qj.2233

JCSDA QUARTERLY34 NO. 66, Winter 2020

Modern challenges require modern
strategies. Over the past several decades,
the concept of agile software development
has revolutionized the technology industry.
Different tech companies may define this
concept somewhat differently, depending
on whether or not they adopt a specific
agile strategy, such as Scrum or Kanban, but
all agile approaches share some common
principles. In particular, agile software
development is often contrasted with a
waterfall approach in which software
requirements are laid out at the beginning
of the development process and the finished
product is delivered to users months or even
years later. Agile software development
principles followed by the JEDI project
include:

1. Innovation, technical excellence, and

people over process

Software development should leverage
the skills of talented, motivated
individuals and the latest technical
advances. Team members are given the
freedom to explore innovative solutions
and share responsibility for the quality
of the finished product.

2. Continuous delivery of functional

software

Working software is the primary
measure of progress. Innovations should
be coded, tested, and delivered to the
users promptly and frequently, without
waiting for the product to be “done” (an
agile system is never “done”).

3. Responsive to users and other

stakeholders

Requirements change. As the project
proceeds, users may desire new
functionality or encounter unforeseen
circumstances. The software must
adapt accordingly.

4. Flexibility and simplicity

No software is truly “future-proof,”
but an agile software development
approach appreciates that demands on
the product are likely to change and
embraces this expectation. For JEDI this
means accommodations for new models,
new satellite missions, new observations,
new algorithms, new workflows, new
computing platforms, and for data that
continually grows ever bigger. An aspect
of this that is often cast as a separate
principle is maintaining simplicity in
both the code and the development
process. Simple, straightforward,
modular code facilitates maintenance
and enhancement.

We achieve these ideals by means of a
number of software tools, most notably the
git version control system, the web-based
GitHub platform for managing, archiving,
and distributing code, and the ZenHub
project management software. After
describing how we implement these tools
for agile software development in the next
section, we then discuss how we promote
the implementation of JEDI software across
computing platforms through the use of
software containers, machine images, and
environment modules. Next, we address
how to promote innovation, excellence, and
continuous delivery (items 1 and 2 above)
through automated testing and how we
further serve our community (items 3 and 4)
through versatile NWP workflows.

A common thread throughout is cloud
computing. The cloud provides an
unprecedented opportunity to efficiently
distribute code, data, computing
services, and computing resources to our
community of JEDI developers and users,

JCSDA QUARTERLY35 NO. 66, Winter 2020NO. 66, Winter 2020

and JCSDA has made a commitment to
exploit this opportunity. As the technical
capabilities of cloud-hosted computing and
storage resources continue to improve and
price continues to drop, these platforms
also provide a viable alternative to HPC
facilities for many JEDI users who may
have limited access to national HPC centers
or local clusters.

The cloud also provides an exceptional
opportunity for training new JEDI users
and developers. JCSDA holds two JEDI
Academies every year, at varying locations,
where participants are introduced to
the structure of the code, the working
practices that guide code development,
and the process by which they can build
and run applications. Each afternoon,
Academy participants are given hands-
on experience building and running JEDI
on cloud computing instances that are
pre-provisioned with an appropriate
environment. Such instances can be created
and destroyed as needed and may also be
used for online tutorials in the future.

Software Development and
Distribution
The git version control system provides
a powerful way to organize code into
repositories, track changes, and define code
branches that isolate new developments
until they are completed, tested, and ready
to be merged into the primary code base. It
runs on a user's local laptop, workstation,
cluster, or HPC platform; wherever code
development and testing take place.
Code changes are made available to other
developers and users by means of the web-
based GitHub platform, which is closely
integrated with git. Developers can push and
pull code to and from GitHub multiple times

per day with a few simple git commands.
GitHub represents each git repository as a
separate web site, with dropdown menus
to access different branches and additional
tools to view differences between branches.
In order to limit the size of the GitHub code
repositories, large data files used for testing
are stored remotely on the cloud and access
either directly or via GitHub's Large File
Service (LFS).

Git and GitHub are powerful tools, but they
require a strategy in order to exploit them for
optimal benefit. The strategy used at JEDI is
one that has come to be known as git-flow

(Driessen 2010). In the git-flow paradigm
(Figure 1), each repository has only two
permanent branches. "Permanent" meaning
the branches themselves exist indefinitely
while the code they contain evolves. The
first is the master branch, which is reserved
for public releases that, in the case of JEDI,
we plan to make open-source. The second
permanent branch is the develop branch.
As its name suggests, this branch is for
code in development, but it is important
to emphasize that all code in the develop
branch must be functional and well tested.

The vast majority of the code development
occurs in feature branches that split off
from the develop branch. As they work on
a feature branch, each developer makes
code changes that enhance functionality or
address known issues, and they also write
new tests for the code they have added.
As they work, they continually push their
code to GitHub where other developers
can access it from anywhere, at any time. In
an agile framework, it is important to keep
the feature branches focused on a specific
development that will, ideally, take no more
than a few weeks to implement. The lifetime

JCSDA QUARTERLY36 NO. 66, Winter 2020

of some feature branches may even be a few
days or less.

When a feature branch is mature and well
tested, the developer announces that it is
ready to be merged into the develop branch
by issuing what is called a pull request
on GitHub. All pull requests are subject to
automated testing and code reviews by
other members of the JEDI team. Details
about the automated testing framework are
discussed in the following section. Limiting
the scope of each feature branch allows
reviewers to more thoroughly assess the
proposed changes. Often reviewers suggest
changes to the feature branch that are
discussed through the GitHub interface and
then implemented by the original author of
the feature branch or by any other member
of the team. When at least two (often more)
reviewers agree that the feature branch is
ready, then a member of the JEDI team (with
administrative privileges for that repository)
merges the changes into the develop branch.
The feature branch is then deleted and the
developer moves on to another issue.

Other code branches admitted by the git-
flow paradigm include bugfix branches
that fix known problems in the develop
branch and hotfix branches that fix
known problems in the master branch (for

example, patches to releases). There are
also release branches that are used to make
final refinements prior to a release, such as
adding documentation or adding tests. Like
feature branches, bugfix, hotfix, and release
branches are temporary and are deleted
after they are merged into the develop
and/or master branches. And, like feature
branches, they are intended to be limited in
scope to facilitate code reviews.

The git-flow paradigm is extremely effective
at promoting the agile software development
principles discussed in the opening section.
The coexistence of multiple feature branches
together with release, bugfix, hotfix, develop,
and master branches allows the JEDI team
to pursue innovation while simultaneously
and continually delivering functional
software to the user (agile principles 1-2).
To further promote these and the remaining
agile principles (1-4), the ZenHub project
management tool is used.

ZenHub integrates smoothly with GitHub
but is a separate, third-party, web-based
application. It enables users to create
project boards similar to those used in agile
workflows like scrum or kanban. Each
project board is linked to one or more GitHub
repositories and is populated by tasks,
referred to as issues. These may include the

Figure 1. The git-flow
branching paradigm followed
by JEDI. Several code branches
are highlighted as discussed
in the text. All merges to the
develop and master branches
must be done through GitHub
after passing code reviews and
automated testing, as indicated
by the AWS CodBuild icon. All
merges to the master branch are
tagged with a release number
(here 0.1.2).

JCSDA QUARTERLY37 NO. 66, Winter 2020NO. 66, Winter 2020

development of new features or bug fixes or
discussion threads. The issues are organized
into a series of columns that include the
project backlog (a to do list), tasks that are
in progress, tasks that are under review or
being discussed (review/QA), and tasks
that have been completed or closed. There is
also an icebox column for low-priority tasks
that do not require immediate attention.

Issues may be prioritized within each column
and assigned to one or more team members.
Those following the issue are informed
when its status has changed. For example,
followers are notified by email when another
team member comments on the issue or
move it to the in progress column. This is an
effective way to maximize collaboration and
minimize time lost through duplication.

ZenHub also has many other tools for
organizing issues into milestones (used
for code sprints), epics (used for project
accounting and long-term planning), and
releases (used for defining software releases
and other deliverables). Zenhub also has
a number of reporting tools, allowing
managers and team members to generate
essential agile standbys, such as burndown
charts, velocity tracking, and release reports.

Documentation on how to build and run
the JEDI system is provided through online
user manuals generated with the sphinx
document generator and published through
ReadtheDocs.com. More detailed low-
level code descriptions and diagrams are
also generated by means of the Doxygen
software package.

Portability
The diverse user community described in the
opening section poses an implementation

challenge: how can we support those who
wish to run JEDI on laptops, workstations,
clusters, and supercomputers? To best serve
our users, JEDI needs to be portable.

An important component of our portability
strategy is the relatively new technology
of software containers. Though the general
concept of software containers has been
around for decades, it has only matured
in recent years, following the release of
Docker in 2013. Docker greatly facilitated
the creation and distribution of containers,
which established its current position as
the most popular container provider. But
Docker is an enterprise product that is not
well suited for scientific applications. In
particular, security vulnerabilities make
Docker impractical for most HPC systems.
Singularity was developed to address these
limitations and to thereby promote the use
of containers for scientific workflows. For
those who do not have access to Singularity,
we also support a third container option
called Charliecloud. Charliecloud can
be installed and run by any user on any
viable linux system without the need for
any privileged system access (Singularity
requires administrative privileges to install,
but not to run).

Briefly, the idea behind a software container
is to encapsulate a computing environment,
often distributed as a single file, in such a
way that lets each user re-create that same
environment on their own computer,
whether it be a laptop, a cloud instance,
or an HPC system. In the case of JEDI, this
computing environment includes a number
of third-party software libraries, such as
NetCDF, CMake, and LAPACK, all built
with a specific set of compilers (such as
gnu, clang, or intel), and MPI libraries (such

JCSDA QUARTERLY38 NO. 66, Winter 2020

as OpenMPI, mpich, or Intel MPI) --- in
short, everything that is needed to build (if
necessary) and run JEDI. So, for example, a
user can just download the JEDI Singularity
container, "enter" that container with a
single command, and then proceed to run
JEDI applications.

Two types of containers are supported. The
first are development containers that include
the compilers and compiled dependencies
but do not include the JEDI code itself. Once
inside the container, user/developers can
pull the JEDI code from GitHub, modify it
as needed, and then proceed to compile and
run it. By contrast, application containers
are more streamlined. They do not include
the compilers (which can make the container
files large and unwieldy), but they do contain
a compiled, tagged release of the JEDI code,
ready to go. Our workflow begins by first
generating a JEDI Docker container for each
compiler/MPI combination. Then we create
the Singularity and Charliecloud containers
directly from these Docker containers.
An advantage of this workflow is that the
Docker development containers are also
available for continuous integration testing,
as described in the next section.

Though containers can be run on HPC
and cloud platforms, it is often beneficial
to install the JEDI dependencies directly
on these systems, exploiting site-specific
configurations and optimizations. These
are made available to users as environment
modules that can be loaded with a single
command. The use of environment modules
promotes optimal performance and also
allows developers to easily switch between
compiler/mpi implementations and library
versions. We currently maintain JEDI
environment modules on selected HPC

systems used by JCSDA and its partners.
On the Amazon cloud, we provide these
environment modules to users through
bootable Amazon Machine Images (AMIs).
All these environment modules are built
using the same set of build scripts used to
create the containers, fostering a uniform
computing environment for JEDI users
and developers. This minimizes problems
associated with incompatible software
versions or inadequate configuration options.

Continuous Integration
As the software industry favored frequent
and small modifications to the code
(agile methodology) for the development
approach, the need for frequent automated
testing became paramount. Most of the
Continuous Integration (CI) services, such
as Travis-CI or Amazon Web Services (AWS)
CodeBuild, use webhooks that are triggered
by various events on the repository hosting
site. The automated testing system has the
capability to perform various tasks based on
the webhook event type. For example, with
new changes to a repository, a certain set of
tests can be triggered and run.

The automated testing framework in JEDI
is designed to build the application and run
the tests with every new pull request (to the
develop and master branches) and every
push to an existing pull request on the GitHub
repository. The status of the test is shown
on the pull request page for the developers
and reviewers. Passing all tests ensures the
developers that the new feature is compatible
with all the JEDI components and can be
added to the repository. With automated
testing, any error or incompatibility in the
new scripts can be caught at the early stages
of the development and can help to run
the development pipeline more efficiently.

JCSDA QUARTERLY39 NO. 66, Winter 2020NO. 66, Winter 2020

Automated testing can help to make the
review process shorter and to add new
features to the repository quicker.

Building the required libraries and
environment can be time-consuming
especially for JEDI applications that depend
on large libraries. By using a prebuilt
environment inside a Docker container, we
can reduce the build time and allocate most
of the resources to building and testing the
JEDI repositories. Separate docker containers
can be built with different compilers and
library versions. These containers are
used in parallel to test the software across
multiple platforms in the shortest amount
of time. Currently, we use two containers
for automated testing purposes. The first is
based on GNU compilers and is hosted on
DockerHub and is accessible for all users.
The second is based on Intel compilers and,
due to licensing restrictions, is hosted on the
AWS Elastic Container Registry (ECR) and
is only available to JCSDA AWS users.

Currently, Travis-CI and AWS CodeBuild
automated testing services are implemented
in the JEDI core repositories. Both of
these services provide customers with
cloud computing resources to run tests
automatically. With every new commit to
the repository, source code is downloaded
from the GitHub repository onto the
automated testing server. Docker containers
are used to provide all the necessary libraries
and packages required to build and run the
application. The next stage is to build and
run the tests inside the Docker environment
and on the automated testing server and
to report the test status on the pull request
GitHub page.

Travis-CI computational resources are
limited and suitable for less computationally
expensive but more frequent tests compared
to AWS CodeBuild. With AWS CodeBuild,
three different instance sizes are available
that users can choose based on their
computational needs. For each JEDI core
repository (i.e. oops, saber, ioda, and ufo) and
for the FV3-jedi repository, two CodeBuild
projects are set with GNU-based and Intel-
based containers that run in parallel.

Another feature that is currently being
added to the testing framework is a multi-
tier testing capability. As part of this feature,
tests in each repository will be classified in
different tiers based on their computational
cost. For example, tests that use high-
resolution reference files are classified as
more expensive tests or high-tier compared
to small unit tests that are classified as
low-tier tests. Low-tier tests will run more
often than high-tier tests to speed up the
testing process and reduce computational
costs. When building and testing low-tier
tests, large reference files used in high-tier
testing will not be downloaded to speed up
the testing and reduce the data bandwidth
usage. High-tier tests will set to run
periodically (i.e., daily, weekly, or monthly)
to ensure that every aspect of the code is
being tested.

After building JEDI and running the tests,
CodeCov is used to create a report on the
test coverage. The test coverage report
highlights the sections of the code that are
not fully tested so developers can focus on
writing tests for these sections. CodeCov
also calculates how much new changes (with
pull requests) change the test coverage and
reports it to the GitHub pull request page
(Figure 2).

JCSDA QUARTERLY40 NO. 66, Winter 2020

Workflow
In the JEDI project, genericity is a core
principle present in every aspect of

library and infrastructure design. The JEDI
system consists of generic programs that
interface Earth-system models together with
collections of DA algorithms and observation
operators. Likewise, the JEDI container
infrastructure allows these programs to
be generically ported and tested across
compilers, MPI distributions, operating
systems, and computer architectures.
Together, these features of the JEDI system
define a combinatorial matrix of models,
algorithms, operating systems, partner
institutions, and hardware resources. The
purpose of the workflow management
component of the JEDI project is to provide
a set of composable generic applications
covering the space implied by these
multiple axes of genericity. Using modern
software design techniques, our goal is to
provide users with a uniform, simple, and
powerful interface for designing, modifying,
scheduling, and monitoring data-centric
workflows composed of JEDI executables.
The scalability of the JEDI system and
infrastructure require the workflow
management software also to scale with
the application resource requirements,

encompassing everything from debugging
DA algorithms on a laptop, to running multi-
node experiments in the cloud, to managing
operational-grade cycling forecast systems
on HPC resources.

The JEDI workflow system, JEDI-Rapids,
consists of two parts: (1) a set of generic,
composable applications corresponding
to JEDI executables and their associated
data, and (2) a generic workflow-generator
allowing customizable generation of
graphical workflow structures that
combine individual JEDI applications into
full analysis toolchains. As a workflow-
generation system, the JEDI-Rapids
system is designed to programmatically
produce concrete workflow descriptions
for a range of production-quality workflow
management software engines including
ecFlow, Cylc, and Apache Airflow (Figure

3). The workflow management engines
are then responsible for scheduling and
monitoring the execution of applications
and executables.

In order to present a uniform interface,
configuration of the JEDI executables,
the Python applications that control
them, and the connection of applications

Figure 2. a) Coverage sunburst
plot is an interactive plot that
shows the test coverage in each
directory of the repository (ufo
illustrated here). b) Changes
in test coverage with each pull
request is illustrated in an
interactive plot as well. Each
rectangle represents a file in
the repository and how changes
in this pull request increased
(green) or decreased (red) the
test coverage in these files.

(a)
(b)

/src/ufo

/

/src/ufo/marine

/src/ufo/filters

JCSDA QUARTERLY41 NO. 66, Winter 2020NO. 66, Winter 2020

into larger workflow specifications, are
each accomplished with YAML-syntax
configuration files using the Jinja templating
engine. The combination of YAML and
Jinja is simultaneously powerful, simple,
and easily editable, allowing the user to

quickly reconfigure workflow descriptions.
A user can change model parameters, DA
algorithms, covariance models, observation
operators, and observation QC filtering
algorithms, as well as the entire workflow
graph structure, all without writing any shell
scripts, editing any code, or recompiling any
packages. Future work will add a web-based
graphical interface layer over-top of the
YAML configuration to make automation
and monitoring of common workflows even
more intuitive and flexible.

Finally, the JEDI-Rapids system aims to
improve the robustness, repeatability, and
comparability of analysis products for
Earth-system modeling applications. Key
focuses of the JEDI workflow system are: (1)
experimental reproducibility, the ability to re-
run and compare results on wildly different
systems; and (2) data provenance, the
ability to precisely trace the origin of each
analysis product. Executable portability
across systems is directly supported by the
design of the JEDI infrastructure including
the containers, environment modules, and

CMake build system. The JEDI-Rapids
system is designed to enable the wider
goal of repeatability of entire experimental
analysis pipelines across disparate systems.
The object-oriented and functional
programming constructs of the Python
language are key to this ability, enabling
the Python-based workflow applications
to dynamically reconfigure interface
components allowing them to adapt to
different execution environments in ways
not possible for systems based on ordinary
shell scripts. As a result, the more broadly
analysis toolchains become portable, the
more important it becomes to also accurately
document the origin of analysis products.
The JEDI-Rapids system is also designed
to track data-provenance through the use
of metadata stored as ordinary YAML-
syntax files. The provenance metadata
associates each analysis product to the
particular system, execution environment,
software versions, input data products, and
application configuration settings used in
its generation. In conjunction, these features
allow JEDI applications and workflows to be
easily ported with the JEDI-Rapids system to
match the infrastructure and requirements
of partner institutions, while simultaneously
allowing analysis products to be compared
and checked for correctness.

Figure 3. The JEDI-Rapids
system is a generic workflow
generator, interfacing JEDI
applications with a range of
different operational-grade
workflow managers.

JCSDA QUARTERLY42 NO. 66, Winter 2020

Authors
Maryam Abdi-Oskouei, Mark Miesch, and
Mark Olah (JCSDA)

References
Driessen, V. 2010, "A Successful Git
Branching Model," https://nvie.com/
posts/a-successful-git-branching-model/

PEOPLE Welcome Dr. Dick Dee
Dick Dee joined the JCSDA in October 2019, as a Senior Research Scientist. His role at the
Joint Center will be to provide leadership in the area of observations.

Dick is originally from the Netherlands but spent most of his career outside his home
country. He has a doctorate in Applied Mathematics from the Courant Institute of
Mathematical Sciences at New York University, where he first learned about data
assimilation and its application to numerical weather forecasting. Early in his career, he
worked as a math professor at the Pontifícia Universidade Católica in Rio de Janeiro,
Brazil, as a research professor at New York University, and, subsequently, as a research
scientist at Delft Hydraulics in the Netherlands. He then returned to the U.S., joining the
newly formed Data Assimilation Office (now GMAO) at NASA. During this time, he made
several contributions to data assimilation science on topics, such as adaptive Kalman
filters, covariance estimation, model bias correction, and observation quality control. As a
visiting scientist at ECMWF in 2003, he implemented the variational bias correction (VarBC)
component of the Integrated Forecast System (IFS). In 2005, he returned to ECMWF to work
on reanalysis (including ERA-Interim) and led the ERA-CLIM projects involving satellite
data rescue, coupled data assimilation, and production of century-long coupled climate re-
analyses. In 2014, he became Deputy Head of the new Copernicus Climate Change Service
at ECMWF, overseeing activities related to production of climate data records, climate
reanalysis, seasonal forecasting, and development of a cloud-based Climate Data Store.

Dick considers himself a very lucky man, both in his personal and professional life, who
always ends up in the right place with the right people. He is happy to be back in the U.S.,
where he always feels very much at ease. He is thrilled to join a young, groundbreaking,
dynamic team that is hell-bent on changing the NWP world order.

https://nvie.com/posts/a-successful-git-branching-model/
https://nvie.com/posts/a-successful-git-branching-model/

JCSDA QUARTERLY43 NO. 66, Winter 2020NO. 66, Winter 2020

Introducing Dr. Wei Han
Dr. Wei Han joined the New and Improved Observation (NIO) team at UCAR/JCSDA in
October 2019. His primary responsibility and focus are the evaluation and assimilation of
current and future geostationary hyper-spectral Infra-Red sounders. He physically works at
the Space Science and Engineering Center (SSEC) at the University of Wisconsin-Madison
as a UCAR project scientist, collaborating with SSEC and JCSDA team members, and also
engages with Joint Effort for Data assimilation Integration (JEDI) at the JCSDA associated
with this type of data. In the last two years, he has focused on the assimilation of the first
geostationary hyper-spectral IR sounder(the Geostationary Interferometric Infrared Sounder
(GIIRS)) on-board FY-4A. GIIRS temperature sounding channels have been operationally
assimilated in Chinese Meteorological Administration’s Numerical Weather Prediction
(NWP) system GRAPES since December 25, 2018, using 4D-Var.

Wei is from China, where he earned his PhD and MS degrees in Meteorology. His research
is focused on the development of operational variational data assimilation system in the
last 15 years with focus on the bias correction of satellite data. Dr. Wei Han has developed
Constrained Bias Correction (CBC) and Constrained VarBC (CVarBC) schemes for satellite
radiances assimilation to constrain the size of the bias correction using uncertainty
information from calibration and radiative transfer model, in order to avoid the drift to model
bias. The CVarBC was successfully implemented in the ECMWF IFS for satellite radiance
data assimilation by providing further constraints using potential available information,
such as constraints on the size of the bias correction and innovative bias correction metrics
using uncertainty estimation from calibration and radiative transfer. This has been studied
in the full ECMWF global 4D-Var system using data from microwave sounders, which are
sensitive to stratospheric temperature and ozone-sensitive infrared radiances from IASI,
AIRS, and CrIS. The constrained VarBC of AMSU-A stratospheric sounding channels
reduces the biases in the stratosphere and improves the medium range forecasts in the
stratosphere and troposphere. The CVarBC has been activated in ECMWF IFS 45R1 since
June 5, 2018. Wei also investigated the assimilation of IASI ozone channels in 2009 as an
NWP-SAF visiting scientist at ECMWF. On November 15, 2011, ECMWF implemented the
operational assimilation of ozone-sensitive infrared radiances from AIRS, IASI, and HIRS,
which represents a major milestone in exploiting infrared sounders and analyzing ozone.

Apart from science, Wei loves exploring, traveling, and running. He has completed eight
full marathons since 2008.

JCSDA QUARTERLY44 NO. 66, Winter 2020

Say Hello to Dr. Andy Fox
Andy Fox joined the JCSDA in Boulder, CO, in July to lead our efforts in land surface model
data assimilation. He has conducted research in this field for the last two decades through a
variety of projects focused on the roles of land surface processes in the coupled Earth System.

Originally from Manchester, UK, Andy has degrees in Geography and Hydrology from the
University of Oxford, the University of Colorado - Boulder, and a PhD from the University
of Cambridge. Since, he has worked as a researcher at a number of universities in the UK
and in the US. He has strong connections with NCAR where he was a visiting scientist for
a number of years developing a data assimilation system for the Community Land Model.
Outside of academia, he gained project management and system engineering experience
whilst working in the data products group at the National Ecological Observatory Network
(NEON). Andy is well known for his work on the terrestrial carbon cycle and is currently
the chair of the Science Leadership Group of the inter-agency North American Carbon
Program. He is particularly excited about what the next generation of satellite observations
will bring to our understanding of the land surface and how these new observations will be
used in advanced, coupled data assimilation systems.

Andy has called Boulder home for many years and enjoys life by the mountains skiing in the
winter and climbing and trail running in the summertime.

Welcome Dr. Nan Chen
Dr. Nan Chen joined the JCSDA in September 2019, as an Associate Scientist with the JEDI NIO
team. Primarily Dr. Chen is working on getting new observations into the JEDI system. He
works closely with the JEDI core team and has extensive experience in various fields, including
satellite data application, algorithm development, and radiative transfer simulations.

Nan graduated in May 2016, from the Light and Life Lab at Stevens Institute of Technology
studying radiative transfer and satellite remote sensing. His work during that time included
radiative transfer modeling of atmosphere, cloud, snow, land, and ocean in SW and IR regions,
as well as its applications. He then developed a machine learning-based cloud mask and snow
parameter retrieval algorithm based exclusively on a radiative transfer simulated dataset for
the cryosphere mission of the Japan Aerospace Exploration Agency (JAXA) GCOM-C1/
SGLI project. During and after his PhD study, Nan developed the skills and tools required
to achieve successful outcomes in scientific research projects, a discipline well suited to the
vision of the JCSDA program.

In his spare time, Nan likes cooking, running, hiking, biking, Ping-Pong, badminton, and
playing competitive computer games.

JCSDA QUARTERLY45 NO. 66, Winter 2020NO. 66, Winter 2020

I doubt that any topic associated with the Joint Center for Satellite Data Assimilation has
inspired more conversation in our community during the past couple of years than the
Joint Effort for Data assimilation Integration (JEDI) Project. Indeed, JEDI likely raises more
questions than just about any other aspect of the JCSDA, ranging from the most basic (“What
is it, actually?”) to the technical (“How is it being built, and does it work yet?) to the playful
(“How much effort have you invested in devising so many cute acronyms?) This issue is
composed of a five-part, JEDI-focused series of articles; collectively, you will find that they
address a great many of these questions (at least the serious ones) and moreover, they may
motivate more working DA specialists to draw from and contribute to JEDI in the future.

Yannick Trémolet and Tom Auligné have written an introductory article that explains
the need for data assimilation development that is generic, reusable, open, and agile, in
order to support a variety of diverse, rapidly-evolving environmental models, as well as a
growing and increasingly varied global observation system that include more short-lived
satellites. The high-level structure of JEDI (linking generic functions to abstract interfaces
and, in turn, to specific modeling system implementations) is described in a second article
authored by Trémolet.

In fact, the development of interfaces to numerous model systems of the JCSDA partners is
now well underway, and the status of these interfaces within JEDI is summarized in a third
article written by Daniel Holdaway, Guillaume Vernieres, Marek Wlasak, and Sarah King.
The fourth article, by Ryan Honeyager, Stephen Herbener, Xin Zhang, Anna Shlyaeva, and
Yannick Trémolet, describes a pair of JEDI components that are critical to the actual use of
observations in JEDI: the Unified Forward Operator (UFO) and the Interface for Observation
Access (IODA). The final piece in the package tackles the infrastructure of JEDI (that is,
the software development, distribution, and workflow supporting the JEDI objectives of
portability and continuous integration) is from Maryam Abdi-Oskouei, Mark Miesch, and
Mark Olah.

A number of new colleagues have joined the JCSDA during the last quarter. They are Andy
Fox, who will be leading the nascent Land DA Project, Nan Chen, who joins the New and
Improved Observations (NIO) project, Dick Dee, Senior Scientist for Observations, and
Wei Han, also working with the NIO team specifically bringing his expertise to bear on
hyperspectral IR observations from geosynchronous orbits. You can find biographies of
each of the colleagues in this issue to learn more about their work and interests.

As I compose this note, another calendar year is drawing to a close. It has been one of
marked success and accomplishment for the JCSDA and all the individuals who contribute
to it; I hope that you all look back on it with as much satisfaction and pride as I do. I am
confident that we will reach even greater heights in 2020.

Jim Yoe

EDITOR'S NOTE

JCSDA QUARTERLY46 NO. 66, Winter 2020

SCIENCE CALENDAR UPCOMING EVENTS

MEETINGS OF INTEREST

DATE LOCATIONS WEBSITE TITLE
February 16–21, 2020 San Diego, CA https://www.agu.org/

Ocean-Sciences-Meeting
Ocean Sciences

May 3–8, 2020 Vienna, Austria https://www.egu2020.eu/ EGU

June 1–5, 2020 Fort Collins, CO http://www.isac.cnr.it/~ipwg/ IPWG

June 8–12, 2020 Fort Collins, CO https://www.cira.colostate.
edu/conferences/8th-
international-symposium-
on-data-assimilation/

8th International Symposium
on Data Assimilation (ISDA)

July 19–24, 2020 Waikoloa, HI https://igarss2020.org/ IGARSS

September 28–
October 2, 2020

Wurzburg, Germany https://www.eumetsat.
int/website/home/News/
ConferencesandEvents/
DAT_4635627.html

EUMETSAT Meteorological
Satellite Conference 2020

October 18–23, 2020 Banff, Canada https://www.birs.ca/
events/2020/5-day-
workshops/20w5166

Mathematical Approaches
for Data Assimilation of
Atmospheric Constituents
and Inverse Modeling

December 7–11, 2020 San Francisco, CA https://www.agu.org/ AGU

January 10–14, 2021 New Orleans, LA https://www.ametsoc.org/
index.cfm/ams/

AMS

CAREER OPPORTUNITIES Opportunities in support of JCSDA may be found at https://www.jcsda.org/opportunities
as they become available.

MEETINGS AND EVENTS SPONSORED BY JCSDA

DATE LOCATIONS WEBSITE TITLE
February 3–5, 2020 Reading, United Kingdom https://www.ecmwf.int/en/

learning/workshops/4th-
workshop-assimilating-satellite-
cloud-and-precipitation-
observations-nwp

Joint Workshop
JCSDA & ECMWF

February 24–27, 2020 Monterey, CA https://www.jcsda.org/
events/2020/2/24/4th-jedi-
academy

JEDI Academy 4

February 28, 2020 Monterey, CA https://www.jcsda.org/
events/2020/2/28/crtm-training-
amp-user-workshop

CRTM Workshop

June 2–4, 2020 Airforce Academy
Colorado Springs, CO

jcsda.org/events 18th JCSDA Technical
Review Meeting and
Science Workshop

https://www.agu.org/Ocean-Sciences-Meeting
https://www.agu.org/Ocean-Sciences-Meeting
https://www.egu2020.eu/
https://www.cira.colostate.edu/conferences/8th-international-symposium-on-data-assimilation/
https://www.cira.colostate.edu/conferences/8th-international-symposium-on-data-assimilation/
https://www.cira.colostate.edu/conferences/8th-international-symposium-on-data-assimilation/
https://www.cira.colostate.edu/conferences/8th-international-symposium-on-data-assimilation/
https://igarss2020.org/
https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_4635627.html
https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_4635627.html
https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_4635627.html
https://www.eumetsat.int/website/home/News/ConferencesandEvents/DAT_4635627.html
https://www.birs.ca/events/2020/5-day-workshops/20w5166
https://www.birs.ca/events/2020/5-day-workshops/20w5166
https://www.birs.ca/events/2020/5-day-workshops/20w5166
https://www.jcsda.org/opportunities
https://www.ecmwf.int/en/learning/workshops/4th-workshop-assimilating-satellite-cloud-and-precipitation-observations-nwp
https://www.ecmwf.int/en/learning/workshops/4th-workshop-assimilating-satellite-cloud-and-precipitation-observations-nwp
https://www.ecmwf.int/en/learning/workshops/4th-workshop-assimilating-satellite-cloud-and-precipitation-observations-nwp
https://www.ecmwf.int/en/learning/workshops/4th-workshop-assimilating-satellite-cloud-and-precipitation-observations-nwp
https://www.ecmwf.int/en/learning/workshops/4th-workshop-assimilating-satellite-cloud-and-precipitation-observations-nwp
https://www.jcsda.org/events/2020/2/24/4th-jedi-academy
https://www.jcsda.org/events/2020/2/24/4th-jedi-academy
https://www.jcsda.org/events/2020/2/24/4th-jedi-academy
https://www.jcsda.org/events/2020/2/28/crtm-training-amp-user-workshop
https://www.jcsda.org/events/2020/2/28/crtm-training-amp-user-workshop
https://www.jcsda.org/events/2020/2/28/crtm-training-amp-user-workshop
https://www.jcsda.org/events?view=calendar&month=06-2020

	IN THIS ISSUE
	NEWS IN THIS QUARTER
	The Joint Effort for Data Assimilation Integration (JEDI)
	Joint Effort for Data Assimilation Integration (JEDI) Design and Structure
	Status of Model Interfacing in the Joint Effort for Data Assimilation Integration (JEDI)
	Observations in the Joint Effort for Data Assimilation Integration (JEDI) - Unified Forward Operato
	The Joint Effort for Data Assimilation Integration (JEDI) Infrastructure

	PEOPLE
	EDITOR'S NOTE
	SCIENCE CALENDAR
	CAREER OPPORTUNITIES

