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Abstract Recent studies have shown the promise of remotely sensed solar-induced chlorophyll
fluorescence (SIF) in informing terrestrial carbon exchange, but analyses have been limited to either plot
level (~1 km2) or hemispheric/global (~108 km2) scales due to the lack of a direct measure of carbon
exchange at intermediate scales. Here we use a network of atmospheric CO2 observations over North
America to explore the value of SIF for informing net ecosystem exchange (NEE) at regional scales. We find
that SIF explains space-time NEE patterns at regional (~100 km2) scales better than a variety of other
vegetation and climate indicators. We further show that incorporating SIF into an atmospheric inversion
leads to a spatial redistribution of NEE estimates over North America, with more uptake attributed to
agricultural regions and less to needleleaf forests. Our results highlight the synergy of ground-based and
spaceborne carbon cycle observations.

1. Introduction

The terrestrial biosphere currently absorbs approximately one quarter of anthropogenic carbon dioxide emis-
sions resulting from fossil fuel burning (Le Quéré et al., 2016). However, estimates of the present and future
magnitude, seasonality, and spatiotemporal patterns of these terrestrial carbon fluxes remain highly uncer-
tain (Fang et al., 2014; Friedlingstein et al., 2014; Sitch et al., 2008). Global maps of remotely sensed solar-
induced chlorophyll fluorescence (SIF), an emission that originates from the photosynthetic machinery of
plants, offer the potential to directly track changes in photosynthetic activity and thus carbon uptake across
a variety of spatiotemporal scales (Frankenberg et al., 2011; Guanter et al., 2014; Joiner et al., 2014; Magnani
et al., 2014). While the exact nature of themechanistic relationship between SIF and gross primary production
(GPP) is still uncertain and warrants further study (Porcar-Castell et al., 2014; van der Tol et al., 2009), an
empirical relationship has been observed between satellite-based observations of SIF and estimates of GPP
from flux towers and biospheric models (Frankenberg et al., 2011; Guanter et al., 2014; Joiner et al., 2014;
Yang et al., 2015). The empirical GPP-SIF relationship, while promising, relies primarily on plot-scale
(~1 km2) GPP estimates. A logical next step in the exploration of the utility of SIF as a carbon cycle data set
is to examine the efficacy of SIF measurements to constrain surface carbon fluxes at critical intermediate
(e.g., biome/regional) scales.

Observations of atmospheric CO2 concentrations (hereafter “atmospheric observations”) provide an opportu-
nity to investigate SIF at important yet difficult to explore regional scales (e.g., Parazoo et al., 2013).
Atmospheric observations have long provided a diagnostic to monitor the carbon cycle at global scales by
tracking the rise and fall of CO2 concentrations (Keeling et al., 1976; Tans et al., 1990). While individual
tower-based atmospheric observationsmay integrate the influence of large areas (up to ~106 km2) (Gloor et al.,
2001), relatively dense networks of atmospheric observations (e.g., over North America) have enabled investi-
gations into regional-scale patterns of net ecosystem exchange (NEE) (Göckede et al., 2010; Lauvaux et al.,
2012; Schuh et al., 2013). Furthermore, networks of atmospheric observations have been shown to provide
an intermediate-scale constraint not only for NEE but also for relationships between NEE and enviro-climatic
variables that explain the spatiotemporal variability of NEE (Fang & Michalak, 2015; Gourdji et al., 2012).
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Here we use a network of atmospheric observations over North America to compare the ability of SIF and
other surface-level enviro-climatic or vegetative variables (e.g., temperature, precipitation, and other vegeta-
tion indices; hereafter “explanatory variables”) to explain the space–time patterns of NEE. We use an atmo-
spheric transport model (hereafter “transport model”) to relate the space-time patterns of the explanatory
variables to fluctuations in atmospheric observations from a network of towers across North America.
Second, we compare two sets of inverse-modeling-derived estimates of NEE, one set that incorporates SIF
into the inversion and another set that relies only on other existing explanatory variables. In this way, we
assess how SIF (by tracking GPP) impacts the space-time patterns of inverse estimates of NEE.

2. Data
2.1. Atmospheric CO2 Data

We use ~23,000 three-hourly average atmospheric observations from North American continuous in situ
CO2 measurement sites over 3 years, 2008–2010. Most data are sourced from the ObsPack product:
GLOBALVIEWplus v2.1 (ObsPack GLOBALVIEWplus v2.1, 2016) with the exception of sites supported by
the Mid-Continent Intensive project (Miles et al., 2012, 2013) located in Austin Cary Memorial Forest,
Gainesville, Florida (AAC); Chestnut Ridge, Tennessee (ACR); Canaan Valley, West Virginia (ACV); Mead,
Nebraska (AME); Missouri Ozark, Missouri (AOZ) (Stephens et al., 2011); Centerville, Iowa (RCE);
Galesville, Wisconsin (RGV); Kewanee, Illinois (RKW); Mead, Nebraska (RMM); Round Lake, Minnesota
(RRL) (S. J. Richardson et al., 2012); and Rosemount, Minnesota (KCMP) (Griffis et al., 2008), as well as
the site at Harvard Forest, Massachusetts (HFM) (Urbanski et al., 2007) (see Table S1 in the supporting
information for tower locations, names, heights, and data providers). The atmospheric observations were
filtered similar to Fang and Michalak (2015) to exclude anomalous data associated with low-quality flags,
extreme outliers, large spikes of ±30 ppm from background, and possible transport model issues. In order
to focus on the biospheric signal of North America we removed the influence of fossil fuel CO2 emissions
and boundary conditions. Boundary conditions or background CO2 values were calculated similar to
Jeong et al. (2017), using a three-dimensional curtain estimated from marine boundary layer data
(Cooperative Air Sampling Network—http://www.esrl.noaa.gov/gmd/ccgg/flask.html) and vertical profile
data from aircraft (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/). We used fossil fuel emission estimates
from the fossil fuel data assimilation system scaled to a 1° × 1° spatial scale and three-hourly temporal
resolution (Asefi-Najafabady et al., 2014). For additional information regarding the atmospheric observa-
tions see the supporting information Text S1.

2.2. Explanatory Variables

We use a number of environmental data sets as possible explanatory variables for NEE. These include SIF and
four other remotely sensed vegetation indices: the enhanced vegetation index (EVI), leaf area index (LAI),
fraction of photosynthetically active radiation (FPAR), and the normalized difference vegetation index
(NDVI) (Huete et al., 2002; Joiner et al., 2013; Tucker et al., 2005; Zhu et al., 2013), as well as variables related
to water availability and temperature from the North American Regional Reanalysis (Mesinger et al., 2006)
including temperature, precipitation rate, soil moisture, downwelling shortwave radiation (DSWR), snow
cover, specific humidity (SpHum), and relative humidity. A detailed description of the data sets can be found
in the supporting information Text S1.

All of the explanatory variables have been scaled to a 1° × 1° spatial and 15 or 16 day temporal resolution
(note that this is coarser than the three-hourly atmospheric observations). The relatively coarse temporal
resolution is used to match that of the coarsest explanatory variable, in order to better isolate the relative
value of the various variables in tracking NEE, rather than confound the impact of differences in temporal
resolution. We use the spatiotemporal kriging approach of Tadić et al. (2017) to map SIF from the level 2
SIF data (v26) from GOME-2 (Joiner et al., 2013).

3. Methods

We use the Weather Research and Forecasting (WRF) model (Nehrkorn et al., 2010; Skamarock & Klemp, 2008)
coupled with the Stochastic Time-Inverted Lagrangian Transport (STILT) model (Lin et al., 2003) as the trans-
port model to calculate the sensitivity (ppm/(μmol/m2s)) of each atmospheric observation to upwind surface
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regions, defined here at a 1° × 1° spatial and three-hourly temporal resolution. The resulting sensitivity matrix
is used to link the surface level explanatory variables with observed variations in atmospheric CO2 concentra-
tions as well as to estimate CO2 fluxes as part of the inverse model. The WRF-STILT model has been used
extensively for atmospheric inverse modeling studies on regional to continental domains (e.g., Fang et al.,
2014; Gerbig et al., 2003; Gourdji et al., 2010, 2012; Miller et al., 2013).

3.1. Explanatory Variable Evaluation

The first analysis evaluates the ability of the explanatory variables to capture the spatiotemporal patterns of
NEE, as seen through the variations in the atmospheric CO2 data. To do this, we use a multiple linear regres-
sion framework (hereafter “regression model”) that represents the atmospheric observations as a linear com-
bination of atmospheric tracers that are based on the space-time patterns of the explanatory variables. In
effect, the transport model is used to translate the space-time patterns of the explanatory variables, which
are defined at the Earth surface, into an atmospheric tracer with emissions defined by the space-time pat-
terns of a given explanatory variable:

z ¼ HXβMLR þ ε (1)

where z is an (n × 1) vector of three-hourly atmospheric observations (ppm), H is an (n ×m) sensitivity matrix
discussed above and derived from the transport model (ppm/(μmol/m2s)) with n being the number of atmo-
spheric observations andm the number of discretized fluxes in space and time, X is an (m × p) matrix contain-
ing p different explanatory variables (which vary at 1° × 1° spatial and 15 or 16 day temporal resolution) along
with a constant term, βMLR is a (p × 1) vector of unknown coefficients that characterize the relationship
between the tracers (e.g., HXSIF) and observations z, and ε represents the residuals (ppm), which incorporate
both model-data mismatch errors (i.e., observation, aggregation, representation, and transport model errors)
and the portion of the flux space-time variability that cannot be explained using the variables in X.

This framework evaluates the linear relationship between the surface explanatory variables and NEE, as seen
through the atmospheric observations. While a simplification, linear relationships have been shown to cap-
ture a substantial proportion of the space-time variability in NEE (Fang & Michalak, 2015; Mueller et al.,
2010). This regression model also allows for a straightforward assessment of the explanatory power of each
explanatory variable. Hence, we can identify and compare each explanatory variable’s ability to explain the
variability in NEE as seen through the atmospheric observations, via the coefficient of determination (r2).
We perform an exhaustive search over all possible combinations of explanatory variables to identify the com-
binations, or regression models, that best explain the atmospheric observations for a given model size. Lastly,
we calculate the 95% confidence intervals of the coefficient of determination values using a bootstrap
method (Ohtani, 2000).

3.2. Geostatistical Inverse Modeling

The second analysis is designed to explore the impacts of the SIF information on estimates of NEE for North
America. To do so, we set up two inverse models, one that incorporates SIF as an explanatory variable and
ones that does not. Atmospheric inverse modeling relies on the concept that atmospheric observations
are influenced by fluxes at the Earth’s surface as the air passes over an upwind region. With knowledge of
background concentrations of the air entering the domain of interest and the path that air parcels take on
their way to observation sites, estimates of the most likely distribution of surface fluxes can be obtained.

The geostatistical inverse modeling (GIM) framework allows for the incorporation of explanatory variables
and is used here to estimate NEE fluxes at a 1° × 1° spatial and three-hourly temporal resolution for 2008
to 2010 over North American land, with the domain spanning 10°–70°N and 50°–170°W. The explanatory vari-
ables used in the inversion take the place of a traditional prior flux estimate (typically output from a terrestrial
biospheric model (TBM)) and are selected here based on the regression analysis as those variables that pro-
vide the largest explanatory power (R2). We estimate fluxes at a high resolution to minimize spatial and tem-
poral aggregation errors (Gourdji et al., 2010; Kaminski et al., 2001). While flux estimates for individual grid
cells and time steps are not considered well constrained by the atmospheric observations, results are ulti-
mately interpreted at monthly and biome scales or greater, via aggregation of a posteriori estimates.

We obtain flux estimates by minimizing the GIM objective function (Michalak et al., 2004):
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Ls;β ¼ 1
2

z� Hsð ÞTR�1 z� Hsð Þ þ 1
2

s� XβGIMð ÞTQ�1 s� XβGIMð Þ (2)

where s (m ×1) represents a vector of unknown discretized surface fluxes in space and time (μmol/m2s) H, X
and z are explained in section 3.1, Q is the (m × m) prior error covariance matrix ((μmol/m2s)2), and R is the
(n × n) model-data mismatch covariance matrix (ppm2). As implemented here, this framework simultaneously
estimates the space and time varying unknown surface fluxes, s, as well as a unique scalar coefficients, βGIM, for
each explanatory variable over the entire space and time domain informed by the entire network of atmo-
spheric observations, similar to Gourdji et al. (2012). Refer to Gourdji et al. (2012) for further details regarding
the specifics of the GIM framework including the estimation of covariance parameters for the Q and R
matrices. The framework developed for this work is targeted to specifically address and therefore isolate the
additional information provided by the explanatory variables in X; hence, Q and R parameters are held con-
stant between the two inverse models with and without SIF. Both analyses are informed by the same atmo-
spheric CO2 observations, leverage the same transport model, and cover the same analysis domain (see
supporting information Table S3 for details of the differences between the regression and inversion analyses).

4. Results and Discussion

A tracer defined by the spatiotemporal patterns of SIF explains a substantial portion of the variability (~40%)
in the atmospheric observations over North America, more so than any other explanatory variable (Figure 1a).
While SIF has been shown to track GPP at the plot scale (e.g., Guanter et al., 2014; Joiner et al., 2014), here we
show that SIF correlates strongly with space-time patterns of NEE at 1° × 1° spatial resolution across a range of
biomes in North America. The fact that just this one variable explains close of half of the observed variability
in atmospheric observations in North America across 3 years is both surprising and encouraging and is con-
sistent with the fact that GPP itself explains a substantial portion of variability in NEE (Baldocchi, 2008).

The explanatory power of a tracer defined by SIF is greater than that of all other examined explanatory vari-
ables, and even greater than a majority of NEE estimates from 10 terrestrial biospheric models (TBMs) parti-
cipating in the Multiscale synthesis and Terrestrial Model Intercomparison Project (MsTMIP) project
(Huntzinger et al., 2013, 2014) (see details in supporting information Text S1). We note that while the TBMs
were not calibrated to this set of atmospheric observations, TBMs incorporate more sophisticated mechanis-
tic knowledge of the processes controlling GPP and ecosystem respiration (Reco). The fact that the examined
explanatory variables can rival the explanatory power of mechanistic models supports the notion that

Figure 1. (a) SIF (green square) explains 40% of the variance in the atmospheric CO2 data from 2008 to 2010 for all of North
America; regionally, SIF explains 46%, 50%, and 38% of the variance in atmospheric observations primarily sensitive to
the (b) croplands, (c) needleleaf forests, and (d) deciduous broadleaf forests, respectively (see Figure 2b for biome map).
Also shown are the best multivariable regression models with SIF (green circles) and without SIF (circles colored based on
first-listed variable). The error bars represent 95% confidence intervals obtained from bootstrapping. Variables and models
explaining less than 25% of the variance not shown.
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relatively simple regression models can be used to explore the surface level drivers of NEE fluxes at regional
scales (Figures 1 and S1).

Because SIF is a corollary for GPP and not Reco, we explore whether the relative performance of SIF might be
impacted by the addition of other explanatory variables related to temperature and moisture, known drivers
of Reco. By performing an exhaustive search among the explanatory variables listed in section 2.2 to find the
best (highest R2) combination of variables, we find that variables associated with Reco significantly improve
the fit of the regression models over their respective single-variable variants (Figure 1a). Even with the addi-
tional variables, the benefit of including SIF remains at the two and three-variable regression model level
(Figure 1a). Coupling SIF with specific humidity (SpHum), a measure of the moisture content or mass of water
vapor per unit mass of air, yields the greatest increase in the variance explained (R2 = 0.43). The identification
of specific humidity as an important covariate for NEE over North America aligns with previous inverse mod-
eling work by Gourdji et al. (2012), who found that specific humidity was correlated with a respiratory signal
and improved NEE estimates over North America. Specific humidity modifies the continental seasonal cycle
via reductions (increases) in the magnitude of growing season (dormant season) NEE, which act as simplified
Reco adjustments to the SIF-only regression model (Figure S2). Specific humidity, by incorporating informa-
tion of both temperature and moisture, can be seen as a broad explanatory factor of heterotrophic respira-
tion (Davidson et al., 2006; Ise & Moorcroft, 2006; Wei et al., 2015), although the underlying mechanisms
are admittedly much more complex. Augmenting the two variable SIF regression model further by including
precipitation provides only marginal benefit (Figure 1a).

Coupling EVI (the best non-SIF explanatory variable) with downwelling shortwave radiation (DSWR) also
improves the fit (R2 = 0.38) but this combination still explains less variability than SIF alone (r2 = 0.40).
While DWSR is not a driver of Reco it likely acts to adjust the space-time patterns of EVI to better reflect the
NEE signal. The three-variable regression model of EVI, DWSR, and temperature further increases the variance
explained (R2 = 0.42) such that these three variables together provide comparable explanatory power to SIF
alone. This combination of EVI, DWSR, and temperature, while simple, aligns with site-level studies that
showed that a combination of leaf area, temperature, and radiation can explain a similar portion of the varia-
bility in NEE as observed here (van Dijk et al., 2005). Using these regression models, we see that the space-
time patterns of SIF are able to explain NEE variability across North America. In order to assess variations
between biomes, a similar analysis is conducted at the biome scale.

A regional analysis shows a clear biome dependence in SIF’s ability to explain NEE (over existing vegetation
indices), with the largest improvements seen in the croplands and needleaf forests (Figures 1b and 1c). We
subdivide observations using the transport model to identify the dominant biome of influence for any given
observation (Figure S3). When taken alone, SIF explains more variability than other explanatory variables in
croplands and needleaf forests (Δr2 = 0.07 and Δr2 = 0.09, respectively). This provides the first biome-level
atmospheric observation-driven indication that SIF tracks GPP better than existing vegetation indices in crop-
lands and needleleaf forests, which had previously been hypothesized based on analyses using plot-scale
and terrestrial model-based GPP estimates (Guanter et al., 2014; Walther et al., 2015; Zhang et al., 2016). In
deciduous broadleaf forests, on the other hand, SIF performs similarly to existing vegetation indices, which
aligns with recent work (Walther et al., 2015) showing that SIF and EVI both track modeled GPP equally well
in deciduous forests.

The superior explanatory power of SIF over existing vegetation indices in croplands and needleleaf forests is
driven primarily by a better representation of seasonality (Figures S4 and S5). In croplands, SIF is needed to
explain the unique short and intense peak of the growing season (typical of cropland NEE) (Figure S4). The
advantage in explanatory power remains in the two-variable cropland regression model (SIF and SpHum)
(Figure 1b) showing that the increases in GPP that were derived from site-level SIF-GPP comparisons (e.g.,
Guanter et al., 2014) are apparent at the biome level and even carry through to the NEE signal. In needleleaf
forests, on the other hand, we see that SIF tracks seasonal transitions of NEE better than greenness indicators
(Figure S5)—supporting TBM-based findings (Walther et al., 2015) that showed a decoupling of GPP and
greenness in these regions. Downwelling shortwave radiation (DWSR) is needed to improve the seasonality
and bridge the gap between EVI and SIF, further confirming that seasonality is better captured by SIF
(Figures 1c and S5) but also highlighting that more complex regression models without SIF are able to cap-
ture this timing.
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We acknowledge that the simple regressionmodels we are utilizing do not capture the complexity of the true
underlying mechanisms driving NEE; it is nevertheless useful to identify the primary drivers of NEE using an
atmospheric observation constraint. Starting with the individual best explanatory variables, SIF and EVI, we
see that these both help to capture the major seasonal and spatial patterns of the NEE signal. The regression
coefficients associated with these variables indicate that an increase in SIF and EVI is associated with
increased uptake of CO2, as expected (equation (1)). When moving from the single-variable regression mod-
els to the multivariable regression models, we see that the added variables are known drivers of Reco. We also
find that sign of the regression coefficients on these variables is opposite to those for SIF or EVI, signifying
that these variables are associated with an increase in atmospheric CO2 or a respiratory signal. Thus, we find
that atmospheric observations do provide a constraint on the relationship between explanatory variables
and CO2 exchange. The fact that these variables are understood to be associated with GPP and Reco provides
confirmation that the signal in atmospheric observations can be used to identify variables that align with our
mechanistic understanding of broad drivers of both photosynthesis and respiration, while adding confidence
to our findings regarding the importance of SIF as an explanatory variable of NEE.

Moving from the regression analysis to the inverse models, we see that the unique information SIF provides
translates to inferences into in the spatial distribution of NEE fluxes over croplands and needleaf forest
regions of North America (Figure 2). The difference map between inverse model estimates including and
excluding SIF reveals a consistent difference in the spatial pattern over 3 years (2008 to 2010) (Figure 2).
The results in Figure 2 are based on inverse models with three explanatory variables (from Figure 1a) in X
(see equation (2)), but similar results are found using two explanatory variables (from Figure 1a) (Figures S6
and S7). It is important to note that no prior information on biome classification was provided in the inverse
models, making the correspondence of the differences in NEE estimates with the croplands and needleleaf
forest biome regions striking (biomes defined by an IGBP landcover classification map (Figure 2b)
(Frankenberg et al., 2011)). Spatially, SIF is informing a shift in the subcontinental distribution of CO2 fluxes
within North America.

Aggregating fluxes by biome reveals that a redistribution of NEE from the needleleaf forests to croplands is
statistically significant at the annual level and more pronounced over the growing season (Figures 3a and 3b)
(differences in other biomes are not statistically significant (p > 0.01)). Even at the monthly scale we see
that the addition of SIF significantly alters the cropland and needleaf forest biome level flux estimates dur-
ing the peak summer months. We further probe the robustness of the inverse modeling results (see the
Sensitivity Analysis section in the supporting information Text S1) and find that the overall conclusion
about the difference between inversions with and without SIF is insensitive to both background conditions
and choice of fossil fuel inventory. Thus, by focusing on the difference between inversions, we find that

Figure 2. Including SIF information leads to a redistribution of the growing season uptake from needleleaf forests to
croplands (a). The difference between June, July, and August flux estimates obtained from inverse models with and
without SIF (each using the three explanatory variables from Figure 1a) averaged over 3 years (2008–2010), with green
(brown) indicating a stronger (weaker) uptake in the NEE estimates from the inversion including SIF. A biome map
with atmospheric observation locations shown as circles with crosses is shown in Figure 2b. Biome outlines are shown as
black lines (a). For unit conversion: 100 gC/m2 yr = 0.264 μmol/m2 s.
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including SIF in an inverse model constrained by atmospheric obser-
vations leads to a robust difference in NEE in both the needleleaf
forests and croplands.

The spatial shift in the NEE estimates resulting from the use of SIF pro-
vides the first large-scale perspective of the impacts of SIF in defining
subcontinental patterns of carbon exchange that is informed by a
large-scale atmospheric observation constraint. The additional uptake
in the croplands along with the compensating reduction in the sink
in the needleleaf forests offers confirmation of findings (in this case
at the continental scale) of recent flux-tower based studies where
state-of-the-art process-based terrestrial biosphere models were found
to underestimate GPP in croplands (Guanter et al., 2014) and overesti-
mate GPP in needleaf forests (A. D. Richardson et al., 2012). As NEE in
croplands is largely driven by the seasonal pattern of GPP, the increase
in net uptake we see when including SIF offers a large-scale validation
of the increase in GPP seen in previous work (Guan et al., 2016; Guanter
et al., 2014). The fact that SIF informs a decrease in the net uptake in
needleleaf forests supports the notion that SIF, by being more directly
linked to the photosynthetic machinery (i.e., incorporating the influ-
ences of FPAR, PAR, and light-use efficiency), is superior to vegetative
data sets when attempting to predict the space-time patterns of CO2

flux in these forested regions (Jeong et al., 2017; Luus et al., 2017;
Walther et al., 2015; Yang et al., 2015, 2016). We speculate that the
SIF-informed shift in NEE away from the boreal region seen here may
also explain why there has historically been a tendency for inverse
models to overestimate northern hemisphere extratropical terrestrial
carbon uptake (Sarmiento et al., 2010; Stephens et al., 2007), although
an expanded global analysis similar to that of Parazoo et al. (2014)
but for NEE would be needed to confirm this. As most inverse models
rely on TBM output as an initial guess or “prior,” the inability of TBMs
to adequately capture the seasonality of boreal regions hampers the
ability of inverse models to accurately partition NEE geographically.
Interestingly, at the continental scale, the inverse models with and
without SIF yield nearly identical estimates at both monthly and annual
scales (Figure 3), indicating that while the total large-scale carbon bud-
get is determined primarily by the constraint provided by the atmo-
spheric observations, SIF provides crucial information for allocating
NEE at intermediate scales.

Lastly, we acknowledge that a variety of other complexities exist that
likely impact the ability to explain the NEE signal using atmospheric
observations. These include (1) merging of surface signals from differ-
ing space/time regions, (2) higher temporal resolution of atmospheric
observations (three-hourly) compared to surface level explanatory vari-
ables (16 day), (3) atmospheric data issues (e.g., lack of coverage and

local influences), (4) boundary conditions, and (5) transport model errors. Some issues are a part of any
exploration into the biosphere using atmospheric observations (e.g., 3 and 5) and are the reason for objec-
tively estimating and incorporating the error terms in equations (1) and (2). Some issues specifically affect
regional inverse modeling studies (e.g., 4) and were explored in the supporting information Text S1 (see
Sensitivity Analysis section). For 1 and 2, we use atmospheric observations averaged over 3 h in the midafter-
noon as transport models typically best represent these times of the day, yet attempting to fit fluctuations in
three-hourly atmospheric observations with 16 day explanatory variables is admittedly difficult. We justify
keeping the high-frequency atmospheric observations because it allows us to examine changes in the sur-
face influence of the data, which is crucial for minimizing aggregation errors in the inverse model, which

Figure 3. The redistribution of uptake from needleleaf forests to croplands aver-
aged over 3 years (2008–2010) is statistically significant at the annual level and
June, July, and August (JJA). Monthly (black diamonds), annual (black circles),
and JJA (black squares) differences in flux estimates between the inverse models
with and without SIF, aggregated over (a and b) two biomes and (c) all of North
America with one standard deviation (dark shading) and two standard deviation
(light shading) uncertainty bounds (uncertainty propagation for the difference
between two averages is calculated using the posterior uncertainty estimates
from the with-SIF and without-SIF inversions for all 3 years). Negative (positive)
values represent more (less) uptake in the estimates from the inversion including
SIF. Biomes not shown had differences that were not statistically significant at
the biome-monthly or biome-annual level (p > 0.01).
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estimates fluxes at a three-hourly resolution (see Gourdji et al., 2010; Kaminski et al., 2001). Nevertheless, by
coupling the network of atmospheric observations with SIF, we are given that an unprecedented look into
the information SIF is providing at intermediate scales for explaining the space-time patterns of NEE across
North America.

5. Conclusions

In this study, we show that SIF can explain a substantial portion of the space-time variability of NEE at regional
(1° × 1°) scales throughout North America and within specific biomes, more than other existing vegetation
and climate indicators. We use a network of atmospheric CO2 observations to link regional-scale NEE to SIF
and find that the ability of SIF to represent GPP provides valuable information for explaining NEE across
North America. Through a regression analysis, we find that patterns of SIF are indeed consistent with the
NEE signal observed in the atmosphere, more so than a variety of existing vegetation indices and even
TBMs. These results offer the first example of using a network of CO2 observations to evaluate the utility of
SIF in representing the spatiotemporal variability of NEE for regional to continental domains. The inversion
analyses further show that SIF provides new insight into the spatial allocation of continental-scale growing
season NEE between subcontinental regions associated with the cropland and needleleaf forest biomes in
North America and that these shifts are indeed more consistent with the observed atmospheric CO2 record.
More broadly, we show that atmospheric CO2 data provide a useful tool for exploring flux drivers at difficult
to measure yet crucial intermediate scales.
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