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Seasonal winter forecasts and the stratosphere
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Abstract
We investigate seasonal forecasts of the winter North Atlantic Oscillation (NAO) and their
relationship with the stratosphere. Climatological frequencies of sudden stratospheric warm-
ing (SSW) and strong polar vortex (SPV) events are well represented and the predicted risk of
events varies between 25 and 90% from winter to winter, indicating predictability beyond the
deterministic range. The risk of SSW and SPV events relates to predicted NAO as expected,
with NAO shifts of −6.5 and +4.8 hPa in forecast members containing SSW and SPV events.
Most striking of all is that forecast skill of the surface winter NAO vanishes from these hind-
casts if members containing SSW events are excluded.
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1. Introduction

Previous studies have quantified the deterministic limit
on the predictability of the timing of sudden strato-
spheric warming (SSW) events. These studies typically
indicate significant forecast skill out to around 2 weeks
(Mukougawa et al., 2005; Stan and Straus, 2009; Mar-
shall and Scaife, 2010; Sigmond et al., 2013) and very
occasionally 1 month (Kuroda, 2008) ahead. However,
there could be additional forecast skill beyond this
timescale if we consider the probabilistic risk of an
event occurring. In addition, there could also be fore-
cast skill for strong polar vortex (SPV) events which
have received relatively little attention compared with
SSW events despite the apparent symmetry between the
tropospheric impacts of both types of event (Baldwin
and Dunkerton, 1999). Given the stratospheric influence
on winter surface climate (e.g. Boville, 1984; Scaife
and Knight, 2008; Kolstad et al., 2010; Mitchell et al.,
2013; Sigmond et al., 2013), we also investigate the
relationship with winter seasonal forecasts of the sur-
face North Atlantic Oscillation (NAO).

Here, we investigate retrospective forecasts of the
risk of winter SSW and SPV events and the resulting
impact on seasonal forecasts of surface winter climate
from the Met Office Global Seasonal forecast system
GloSea (Arribas et al., 2011). We use ensembles of 24
forecasts starting in early November for each of the 20
winters from 1992/1993 to 2011/2012 from the fifth
generation of GloSea (MacLachlan et al., 2014). These
winter forecasts have statistically significant forecast

skill for the surface NAO (Scaife et al., 2014). We
define stratospheric events using the daily zonal Arctic
winds at 10 hPa and averaged around 60 N in each
forecast ensemble member. SSW events are defined to
occur if this wind decreases below zero at some time
in the winter, while SPV events are defined to occur
if this wind increases above 48 m s−1 on some day in
the winter. This SPV (upper) threshold is chosen as it
is broken with the same frequency as the lower SSW
threshold in our forecasts.

2. Predictability of stratospheric events
beyond the deterministic range

To eliminate predictability on the timescale of weeks
described above, we discard forecast data from the
first month (November) and include only data for the
December to February period. The 20 winters from
1992/1993 to 2011/2012 are included, with 24 mem-
ber ensemble forecasts for each winter, making a total
of 480 winter forecasts. This total number of realiza-
tions is an order of magnitude greater than the number
of stratospheric winters we have in the observational
record since the advent of comprehensive satellite data
for the stratosphere (e.g. Pawson and Fiorino, 1999;
Scaife et al., 2000). This allows more stable statistics
to be calculated than are possible from the observational
record alone.

Figure 1 shows the ensemble of 24 member fore-
casts for the winters 1997/1998 and 1999/2000.
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Figure 1. Ensemble forecast evolution of zonal wind in the
stratosphere. Zonal mean U winds are shown (10 hPa, 60 N)
in two different winters, with 24 ensemble members per win-
ter and an example member colored red. The horizontal lines
show the threshold for SSW (0 ms−1) events and SPV (48 ms−1)
events. The two winters shown exhibit quite different predicted
probability of a SSW or SPV event, indicating the potential for
forecasting the risk of these events well beyond the determinis-
tic range of a few weeks.

Forecast members highlighted in red illustrate example
evolutions of the stratospheric wind. In the case of
1997/1998, the sample member undergoes a SSW
event around day 37 (6 January) when it crosses the
zero wind line. Similarly, while the sample member for
1999/2000 does not show any sudden warmings, it does
go through an SPV event around day 18 (18 December)
when it crosses the upper threshold. Counting whether
at least one event occurs in each forecast member yields
a forecast probability of either a SSW or SPV event
for each winter. The climatological frequency of SSW
and SPV events averaged over all 20 winters and all
forecast members is 0.53 and 0.55, respectively. This
matches the observed frequency of 0.45 and 0.60 for the
same period to within statistical sampling uncertainty,
using the same criteria. GloSea5 evidently produces
a good simulation of stratospheric climate variability
in this sense.

The winter ensembles in Figure 1 illustrate the very
different probability of SSW and SPV events between
winter 1997/1998 and winter 1999/2000 in these
long-lead forecasts. This variation in the predicted
risk of such events changes from 1 year to the next
for both SSW and SPV events and varies between
25 and 90% across the 20 winters considered. Given
that we discard the first month of the forecasts, these
events therefore show potential predictability, at least
in a probabilistic sense, well beyond the previously

identified deterministic limit of a few weeks. To quan-
tify the predictability further, we would ideally take
many observed events from a very long sequence of
winters and quantify the frequency of an observed event
as a function of forecast probability. However with the
limited number of observed events over the period used
here, this is not possible due to the small sample size.
Instead, we create a more statistically stable estimate
of predictability using the forecast ensemble data alone
(sometimes called perfect predictability) and resam-
pling individual members for each year to create 1000
series of proxy observations. We then calculate how
much the risk of a SSW event or SPV event changes
on average (with replacement of the observed proxy
member) in the years when an event occurred in the
proxy observations. The result of this calculation is
almost identical for both SSW and SPV events and
the forecast probability of an event rises by 12% on
average from 47% in winters in which there is no event
to 59% in winters in which an event occurs. Although
this is a modest shift in probability, the large number of
samples involved means that this potential probabilistic
forecast skill is significant beyond the 95% level.

3. Relationship with the surface NAO

The latest generation of seasonal forecast systems has
begun to show consistent and statistically significant
skill for seasonal predictions of the winter NAO (Scaife
et al., 2014) and its hemispheric equivalent of the Arc-
tic Oscillation (AO; Riddle et al., 2013; Athanasiadis
et al., 2014; Kang et al., 2014; Stockdale et al., 2015).
The stratosphere is expected to contribute to this skill
(Orsolini et al., 2011; Folland et al., 2012; Smith et al.,
2012) due to its influence on the tropospheric NAO and
AO, which is present in our model (e.g. Fereday et al.,
2012). The seasonal forecasts examined here are consis-
tent with this idea because the predicted surface NAO
shows a significant interannual correlation of −0.43
with the predicted frequency of SSW events (Figure 2).
As expected, the correlation with the predicted fre-
quency of SPV events shows the opposite sign, with
an increase in predicted SPV events coinciding with an
increase in predicted NAO. However, the correlation in
this case is only 0.23 and is not statistically significant
for the 20 years available here.

The impact of the predicted occurrence of a SSW
event or SPV event on predicted winter NAO values
is shown in Figure 3. Distributions of predicted NAO,
conditioned on the occurrence or absence of a SSW,
are shown in the upper panels of Figure 3 and indi-
cate a mean shift of −6.5 hPa when a SSW occurs.
This is a large value given that the interannual stan-
dard deviation of the NAO is around 8 hPa. A similar
result holds for the SPV events, with a mean shift of
+4.8 hPa when a SPV event occurs in forecast mem-
bers. Both shifts are statistically significant beyond the
99% level due to the large sample size. While very low
or very high NAO values can still occur irrespective of
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Figure 2. Correlation between ensemble mean NAO forecast and risk of SSW (left), and between ensemble mean NAO forecast
and risk of SPV (right) events. Results are over the 20 winters from 1992/1993 to 2011/2012 and are significant at the 95% level in
the SSW case. The correlation with SPV risk is not statistically significant but does show the expected sign. Winters are labeled by
the year of the corresponding January.

Figure 3. Distribution of ensemble forecasts of the surface
NAO. Upper panels show NAO forecasts with (red) and with-
out (black) SSW events. Lower panels show NAO forecasts with
(red) and without (black) SPV events. There are 480 individual
forecasts in the distributions (20 winters× 24 members). Verti-
cal lines show the distribution means. Differences between the
means with and without events are significant beyond the 99%
level according to a one-sided t-test.

the occurrence of a stratospheric event, and this does
not mean that forecast NAO signals originate in or are
driven by the stratosphere, these large shifts in sur-
face climate confirm that the ensemble forecast surface
winter NAO is strongly conditional on events in the
stratosphere.

4. Impact on surface forecast skill

We have seen that on average, the occurrence of a
strong (SPV) or weak (SSW) stratospheric event gives
large conditional changes in the predicted surface NAO
toward positive or negative values. Here, we quantify
how this affects forecast skill. To do this, we calcu-
late the forecast skill with and without members that
include a SSW (Figure 4). In the case of SSW events,
this produces a striking result: the full ensemble mean
correlation skill of the NAO (0.62, Scaife et al., 2014)
vanishes if SSW events are excluded. The remaining
ensemble mean shows a correlation skill of just 0.09
which is statistically insignificant. A smaller (but sta-
tistically insignificant) reduction occurs if SPV events
are instead omitted from the ensemble. Skill in these
NAO forecasts is therefore conditional on the inclusion
of SSWs.

While this result is striking, we must interpret it
carefully. Given the downward propagating and lagged
influence of the stratosphere on the troposphere, the
lack of NAO skill without SSW events is consistent
with the stratosphere playing a key role in NAO pre-
dictability. However, it does not necessarily mean that
the source of NAO forecast skill originates in the strato-
sphere (see Sun et al., 2012). Second, after members
containing SSW events are removed, the ensemble size
is reduced by about half (the frequency of SSW events
in the hindcasts) and so the skill will inevitably drop
due to the smaller ensemble size (Scaife et al., 2014,
Figure 3). We therefore tested whether the correlation
of 0.09 represents a significant reduction in skill given
the smaller ensemble size. To do this, we resampled
ensembles of the same average reduced size and calcu-
lated their ensemble mean correlation with the observed
NAO. Using 1000 resampled ensembles of the same
average reduced size, 99% resulted in a correlation that
exceeds the case with no SSW events, confirming that
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Figure 4. Relationship between SSW (upper) and SPV (lower) events and seasonal winter forecasts of the NAO. Panels on the
left show standardized ensemble mean forecasts for each winter including members with stratospheric events (red) and excluding
members with stratospheric events (blue). Observed NAO values are in black. Panels on the right show the difference in ensemble
mean NAO predictions when SSW events are included (upper right) and when SPV events are included (lower right). Large forecast
impacts are seen in 1997/1998 and 2009/2010 for SSW events and 2003/2004 and 2006/2007 for SPV events.

removing SSW events very likely leads to a genuine
reduction in forecast skill.

Some winter forecasts are much more strongly influ-
enced than others by the occurrence of stratospheric
events. The influence of stratospheric SSW or SPV
events on each winter NAO forecast is shown in the
histograms in Figure 4. Members containing SSW
events decrease the ensemble mean NAO forecast in all
winters, as expected. However, forecasts for the winters
of 1997/1998 and 2009/2010 are particularly strongly
affected. There was a very high forecast probability of
SSW events in these two winters (92 and 75% respec-
tively) and both are El Niño winters. We can therefore
explain this result by the well-known increase in strato-
spheric sudden warmings during El Niño (Brönnimann
et al., 2004; Taguchi and Hartmann, 2006; Bell et al.,
2009; Butler and Polvani, 2011; Domeisen et al., 2015)
and the need for this stratospheric response in order to
generate a strong surface NAO signal in the Atlantic
(Toniazzo and Scaife, 2006; Cagnazzo and Manzini,
2009; Ineson and Scaife, 2009; Butler et al., 2014). It is
interesting to note that the very negative NAO forecast
for winter 2010/2011 was unaffected and this winter
is also an outlier in the correlation plot in Figure 2.

This is consistent with evidence for an Atlantic Ocean
rather than stratospheric origin of the negative NAO
in this particular winter (Maidens et al., 2013). The
occurrence of SPV events is associated with higher
forecast NAO values in all winters but the effect was
largest in 2003/2004 and 2006/2007 (Figure 4). We
have no simple explanation for why these winters are
particularly influenced but it will be interesting to see
if the same winters are highlighted in future seasonal
forecast systems.

5. Conclusions

Deterministic forecast skill for stratospheric sudden
warmings has been demonstrated out to around 2 weeks
lead time in several previous studies. Here, we use a
seasonal forecast system with a good simulation of cli-
mate variability in the stratosphere to provide evidence
of potential predictability of SSW and SPV occurrence
well beyond this deterministic limit, with the risk of an
event varying between 25 and 90% between different
winters in forecasts out to 4 months ahead. Perfect pre-
dictability is however still modest and demonstration of

© 2015 Crown copyright. Atmos. Sci. Let. 17: 51–56 (2016)
Atmospheric Science Letters published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society



Seasonal winter forecasts and the stratosphere 55

actual skill by comparing against observed occurrence
of events requires further work and more cases.

The impact of stratospheric variability on surface
winter forecasts is as expected, with SSW/SPV events
being associated with lower/higher ensemble mean
surface NAO forecasts for winter. The occurrence or
absence of a stratospheric event is associated with a
shift of several hPa in the surface NAO, a substantial
fraction of the interannual variability of the NAO itself.
A striking result is that the previously reported skill
for seasonal NAO predictions (Scaife et al., 2014)
is conditional on the inclusion of forecast members
containing SSW events. This is consistent with the
idea (though does not conclusively demonstrate) that
a well-resolved stratosphere is important for winter
forecast skill in the Atlantic basin. This result may also
be robust across forecast systems and timescales (e.g.
Sigmond et al., 2013; Stockdale et al., 2015).

The El Niño winters of 1997/1998 and 2009/2010
were periods of high risk of a SSW event, whereas
the winters of 2003/2004 and 2006/2007 were winters
with a high risk of a SPV event. Winter 2009/2010
is already known to have been highly disturbed in the
stratosphere and this was important for seasonal winter
forecasts of this event (Fereday et al., 2012). However,
the observed 1997/1998 winter did not quite reach the
threshold for SSW categorization. Assuming a good
simulation of the teleconnection and the background
wave field (Fletcher and Kushner, 2011) so that the
modeled ENSO teleconnection is realistic (e.g. Fereday
et al., 2012), the multiple seasonal realizations used
here suggest that we were unlucky not to see a SSW
in that winter. More generally, the results shown here
suggest that the year to year risk of SSW and SPV events
in future winters is likely to be predictable on seasonal
timescales, months ahead of the actual event.
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