Welcome to the NOAA Institutional Repository |
Stacks Logo
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.
 
 
Help
Clear All Simple Search
Advanced Search
Value-added Impact of Geostationary Hyperspectral Infrared Sounders on Local Severe Storm Forecasts-via a Quick Regional OSSE
  • Published Date:
    2018
  • Source:
    Advances in Atmospheric Sciences, 35(10), 1217-1230.
Filetype[PDF-3.36 MB]


Details:
  • Description:
    Accurate atmospheric temperature and moisture information with high temporal/spatial resolutions are two of the key parameters needed in regional numerical weather prediction (NWP) models to reliably predict high-impact weather events such as local severe storms (LSSs). High spectral resolution or hyperspectral infrared (HIR) sounders from geostationary orbit (GEO) provide an unprecedented source of near time-continuous, three-dimensional information on the dynamic and thermodynamic atmospheric fields-an important benefit for nowcasting and NWP-based forecasting. In order to demonstrate the value of GEO HIR sounder radiances on LSS forecasts, a quick regional OSSE (Observing System Simulation Experiment) framework has been developed, including high-resolution nature run generation, synthetic observation simulation and validation, and impact study on LSS forecasts. Results show that, on top of the existing LEO (low earth orbit) sounders, a GEO HIR sounder may provide value-added impact [a reduction of 3.56% in normalized root-mean-square difference (RMSD)] on LSS forecasts due to large spatial coverage and high temporal resolution, even though the data are assimilated every 6 h with a thinning of 60 km. Additionally, more frequent assimilations and smaller thinning distances allow more observations to be assimilated, and may further increase the positive impact from a GEO HIR sounder. On the other hand, with denser and more frequent observations assimilated, it becomes more difficult to handle the spatial error correlation in observations and gravity waves due to the limitations of current assimilation and forecast systems (such as a static background error covariance). The peak reduction of 4.6% in normalized RMSD is found when observations are assimilated every 3 h with a thinning distance of 30 km.
  • Document Type:
  • Main Document Checksum:
  • Supporting Files:
    No Additional Files
You May Also Like: