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ABSTRACT

AHalo Photonics Stream Line XRDoppler lidar has been deployed for the Indianapolis Flux Experiment

(INFLUX) to measure profiles of the mean horizontal wind and the mixing layer height for quantification of

greenhouse gas emissions from the urban area. To measure the mixing layer height continuously and

autonomously, a novel composite fuzzy logic approach has been developed that combines information from

various scan types, including conical and vertical-slice scans and zenith stares, to determine a unified mea-

surement of the mixing height and its uncertainty. The composite approach uses the strengths of each

measurement strategy to overcome the limitations of others so that a complete representation of turbulent

mixing is made in the lowest ’2 km, depending on clouds and aerosol distribution. Additionally, submeso

nonturbulent motions are identified from zenith stares and removed from the analysis, as these motions can

lead to an overestimate of themixing height. Themixing height is compared with in situ profilemeasurements

from a research aircraft for validation. To demonstrate the utility of themeasurements, statistics of themixing

height and its diurnal and annual variability for 2016 are also presented. The annual cycle is clearly captured,

with the largest and smallest afternoon mixing heights observed at the summer and winter solstices, re-

spectively. The diurnal cycle of the mixing layer is affected by the mean wind, growing slower in the morning

and decaying more rapidly in the evening with lighter winds.

1. Introduction

The mixing height (MH) is a crucial value for nu-

merical weather prediction (NWP) modeling and air

quality monitoring. Interpretation of in situ measure-

ments of trace gases requires knowledge of the depth

through which the trace gases are well mixed (Lin et al.

2003; Locatelli et al. 2015). Quantification of emissions

using mesoscale inversions is particularly sensitive to

accurate representation of the MH (Lauvaux and Davis

2014). The MH also affects the profiles of temperature,

moisture, and momentum in the lower atmosphere,

which are imperative for accurate forecasts from NWP

output. The parameterization of planetary boundary

layer (PBL) processes and the vertical extent of mixing

in NWP models affects predictions of severe storms

(Cohen et al. 2015); cloud cover, which is important for

solar power production (Cintineo et al. 2014); and the

mean wind through entrainment at the top of the mixed

layer (Tennekes and Driedonks 1981). Additionally, a

small daytime MH may lead to strong heating over a

shallow depth and have been observed during heat

waves (Kunkel et al. 1996). Thus, accurate measure-

ments of the MH are necessary for air quality studies

and validation of NWP output.

However, measuring the MH both continuously and

accurately is difficult. Radiosondes provide an in-

stantaneous snapshot of the temperature, moisture, and

wind profile, which can be used to estimate the MH

using various parcel methods (Seibert et al. 2000);

however, the vertical profile may not be representative
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of the mean MH in general, especially if the radio-

sonde ascends through a pronounced updraft or down-

draft. Radar wind profilers have been shown to

accurately measure the MH during convective condi-

tions (Angevine et al. 1994), but they are generally un-

able to measure the MH at night. Similarly, ceilometers

and other backscatter lidars have shown promise in

continuouslymeasuring theMHduring the day (Münkel
et al. 2007; Haeffelin et al. 2012), but they have difficulty

distinguishing the nocturnal mixing layer (ML) from the

residual layer at night and during morning and evening

transition periods (Schween et al. 2014).

Doppler lidar observations have been used to esti-

mate the MH, most often using either backscatter or

turbulence information from vertical stares (e.g., Hogan

et al. 2009; Barlow et al. 2011; Huang et al. 2017). Tucker

et al. (2009) evaluates the accuracy of various techniques

and finds that vertical velocity variance generally pro-

vides the most accurate measure of the MH. However,

because of minimum range issues and the presence of

nonturbulent motions (e.g., gravity waves), vertical ve-

locity variance profiles alone are insufficient to identify

the MH. Vakkari et al. (2015) shows that using the

variability along a low-angle conical scan reduces the

minimum range, so the MH may be identified when it is

below the minimum range of a vertical stare; these MH

estimates from conical scans generally agreed with MH

estimates from vertical measurements when there was

overlapping coverage. Pichugina et al. (2008) uses

vertical-slice scans to measure the horizontal velocity

variance, which may be used to quantify mixing all the

way down to the surface to detect a shallow MH

(Pichugina and Banta 2010). However, the shallow

conical and vertical-slice scans alone may not be able to

measure turbulence through a deep enough layer to

penetrate the top of the mixed layer. To overcome the

challenges and limitations of each individual scan

strategy, a composite approach leveraging the advan-

tages of each scanning strategy is necessary to provide

continuous measurements of the MH.

To take advantage of all measured quantities from

different scan types, a fuzzy logic approach is introduced

here. This technique blends all the data together from

multiple scans to determine a unified measurement of

the MH and the uncertainty of the estimate. Bianco and

Wilczak (2002) used a similar approach to combine

several variables measured by wind profiling radar to

find the top of the convective PBL. The algorithm pre-

sented here has been initially developed to deter-

mine the MH for the Indianapolis Flux Experiment

(INFLUX),which is amulti-institution collaborative project

to measure the greenhouse gas emissions from the metro-

politan area of Indianapolis, Indiana (Davis et al. 2017).

For INFLUX, a Halo Photonics Stream Line Doppler lidar

has been deployed to suburban Indianapolis tomeasure the

mean horizontal winds, turbulence, and the MH.

The paper is organized in the following manner. The

distinction between the PBL and MH, as well as mea-

surement of each, is discussed in section 2. The experi-

ment, instrument, scanning strategies, andmeasurements

are described in section 3. The operation of the algorithm

itself is thoroughly described in section 4. An inter-

comparison between the Doppler lidar MH and in situ

measurements is shown in section 5. A brief climatology

of the MH over Indianapolis in 2016, demonstrating the

utility of these measurements, is provided in section 6.

The strengths and limitations of this algorithm, along

with areas for further research and improvement, are

discussed in section 7, and a summary of the algorithm

and results is proved in section 8.

2. Definition and measurement of the mixing
height

While the PBL and the mixing layer are closely re-

lated, the two are not always identical or interchange-

able with each other. According to the American

Meteorological Society (2017), the PBL is defined as

‘‘the bottom layer of the troposphere that is in contact

with the surface of the earth.’’ Thus, the PBL is the layer

of the air directly influenced and responsive to surface

forcings (Stull 1988). The mixing layer is the depth of air

near the ground where pollutants or other passive

tracers are vertically dispersed by convection or me-

chanical turbulence within about an hour (Seibert et al.

2000), where the MH is the top of this layer. During

vigorously convective conditions in the unstable PBL,

the mixing layer can be characterized as ‘‘well mixed,’’

in which passive tracers are quickly mixed and relatively

constant with height throughout the entire mixing layer.

During well-mixed time periods, the mixing layer and

PBL are often considered identical. Conversely, the

PBL height is often ill-defined during the morning or

evening transition periods and stable conditions, as the

depth to which surface forcings influence the atmo-

sphere is ambiguous and has been identified in multiple

ways that are not always in agreement (see Vickers and

Mahrt 2004).

Various definitions for the PBL height are largely the

result of different ways in which the PBL is measured

depending on the type of instrument used. The PBL

height can be determined in different ways from radio-

sonde vertical profiles of temperature, humidity, and

wind (Seidel et al. 2010), such as the use of a parcel

method during strong convection (Holzworth 1964) or

analysis of surface inversions and the wind profile during
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stable conditions (Joffre et al. 2001). Sodar measure-

ments of the PBL are largely based on the backscatter,

which is proportional to the temperature structure

function parameter C2
T ; thus, sodar PBL heights are

sensitive to local heat and momentum fluxes and gra-

dients in temperature and wind speed (Beyrich 1997).

Similarly, PBL heights from radar wind profilers are

largely based on peaks in the refractive index structure

function parameterC2
n, which is typically large at the top

of the convective PBL, where a humidity gradient is

often present (Cohn and Angevine 2000). Lidar back-

scatter has been used extensively to measure PBL

heights (e.g., Menut et al. 1999; Davis et al. 2000; Banks

et al. 2015; Huang et al. 2017). A more thorough ex-

amination of the methods for measuring the PBL height

and MH specifically, including a discussion of the ad-

vantages and limitations of different instrumentations

and techniques, is provided by Seibert et al. (2000).

Since the PBL is often poorly defined, especially under

stable conditions, it is a difficult quantity to measure con-

tinuously. However, the MH is a clearly defined quantity

that can be quantified continuously with the appropri-

ate measurements. Herein, the presented algorithm is

designed to measure the MH as defined by Seibert et al.

(2000, p. 1002): ‘‘The mixing height is the height of the

layer adjacent to the ground over which pollutants or any

constituents emitted within this layer or entrained into it

become vertically dispersed by convection or mechanical

turbulence within a time scale of about an hour.’’ Since

these MHmeasurements are primarily used for air quality

applications, this definition is refined during well-mixed

convective time periods to be the mean height that pol-

lutants are dispersed. Using this definition, Doppler lidar

measurements of turbulent quantities and other contextual

information can be used to directly determine the MH.

3. Doppler lidar deployment and measurements

The INFLUX began in 2010 with the primary goal of

measuring citywide greenhouse gas emissions at a high

spatial (1 km) and temporal (weekly or finer) resolution.

Tomake thesemeasurements, a suite of instrumentation

has been installed in and around the Indianapolis met-

ropolitan area to measure trace gas quantities, sensible

and latent heat fluxes, and meteorological quantities, in

addition to other episodic measurements, such as re-

search aircraft observations. To complement these

measurements, a Halo Photonics Stream Line Doppler

lidar was deployed in Indianapolis in 2013 primarily to

provide the mean wind profile in the lower part of the

atmosphere and turbulence information, including the

MH.Amore thorough overview of the INFLUX project

in general is provided by Davis et al. (2017).

For INFLUX, the lidar has been installed on the roof

of a building four stories (’21 m) above ground level in

Lawrence, Indiana, 17 km to the northeast of downtown

Indianapolis (see map in Fig. 1). With a southwesterly

mean wind direction, the lidar is situated climatologi-

cally downwind of the urban core. The site is near the

edge of the metropolitan area, with a state park to the

north and west. The lidar has been running nearly con-

tinuously since August 2013 with the exception of a

6-month gap at the end of 2015, when the system was

being upgraded to a Stream Line XR. Since the system

upgrade enhanced its sensitivity, the scanning strategy

was modified to take advantage of this improvement.

Data presented here were taken after the upgrade; thus,

only a description of the operation of the Stream Line

XR is provided. Details about the lidar design are given

in Pearson et al. (2009), and principal system parameters

are provided in Table 1. Since 2016, the Doppler lidar

has operated with 48-m range gates to a maximum range

of 10 km. The system operates at 10 kHz, and 5000 pulses

are accumulated so that range-resolved line-of-sight and

backscatter intensity estimates are recorded at 2Hz.

The lidar has been operating in a scan sequence that

repeats every 20min continuously. The scan pattern

consists of conical [plan position indicator (PPI)] scans

at elevation anglesf (above the horizon) of 38, 108, 35.38,
and 608; vertical-slice [range–height indicator (RHI)]

scans to the south and east; a zenith stare (lasting 10min

during the day, 4min at night); and quasi-horizontal

stares atf5 208 to the south and east at night. The scans,
their key measured variables, and their height coverage

are summarized in Table 2. Based on the scan geometry,

the vertical resolution of the measurements is generally

dense near the ground (’5m) and reduces with in-

creasing altitude. With sufficient aerosol loading, the

combined scans provide coverage from a few meters

above the ground to the top of and sometimes above the

ML. Thus, minimum range issues typically associated

with vertically pointed lidars are not pertinent.

The measurements taken by the various scans are

used to produce vertical profiles of the mean wind, tur-

bulence, and signal intensity. Profiles of the mean zonal

u, meridional y, and vertical w winds are produced by

applying the velocity–azimuthal display (VAD) tech-

nique (Browning andWexler 1968) using radial velocity

yr measurements at different azimuthal angles u. The

measured wide-band signal-to-noise (SNR) can be used

to estimate profiles of the relative aerosol backscatter.

This is done by normalizing SNR profiles by a range

function, which is how the SNR varies in range from the

lidar in constant aerosol loading. The range function is

calculated as the mean SNR for each separate range

gate, using measurements from low f (,38) angles
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during convective periods when aerosols can be as-

sumed to be well mixed. While the range function

itself varies based on atmospheric conditions, includ-

ing refractive turbulence (Frehlich and Kavaya 1991;

Belmonte and Rye 2000) and depolarization of the

backscatter (Sakai et al. 2000), the normalization of

SNR produces range-corrected intensity (RCI) profiles

that are adequate to identify gradients at theMH.While

profiles of RCI may be made from any scan type (RHIs,

PPIs, etc.), only RCI profiles from vertical and shallow

stares are used here. Additionally, the variance of the

SNR (SNR02) can be useful to identify the MH, since

variance is often large at the MH as clean free tropo-

sphere air is entrained into the convective ML (Hooper

and Eloranta 1986). Thus, profiles of SNR02 have also

been calculated from the stares.

Each of the scans used in INFLUX provides some

information on the amount of turbulent mixing in the

atmosphere. From the PPI scans, the variance of the

residuals of the VAD fit (y02r ) at each range gate is di-

rectly proportional to the variances of u, y, and w

(u02, y02, and w02, respectively) (Eberhard et al. 1989).

Values of y02r are more sensitive to w02 for high f scans

and more affected by u02 and y02 at low f. At f5 35:38,
the y02r is the turbulence kinetic energy (TKE; Eberhard

et al. 1989). Profiles of u02 and y02 can be made at user-

defined bins (5m here) from RHI scans to the east and

south, respectively (Banta et al. 2006; Pichugina et al.

2008). The vertical stares provide continuous measure-

ments of w at 2Hz, allowing for a straightforward time

series analysis to calculate w02. Similarly, the shallow

quasi-horizontal stares allow for calculation of u02 and y02

for the two look angles by assuming that the contributions

of w02 is negligible at f5 208. An SNR threshold

of223dBwas used to remove highly noisy radial velocity

data, after which uncorrelated noise �02 in the calculated

velocity variances was removed for the PPI scans and

stares. This is done by applying a structure function fit

to the autocovariance of w in the time series and re-

siduals of the VAD fit along a range bin around the PPI,

similarly to the technique described by Lenschow et al.

(2000). In addition to removing instrument noise, this

structure function fit corrects for averaging effects over

the pulse volume and accumulation time (Bonin et al.

2016). With this noise removal technique, it is assumed

that the lower frequency portion of the inertial subrange

is resolved and that turbulence is frozen for the time and

space for which the structure function fitting is applied

(typically,10 s, corresponding to the 308 sector of PPI).
When a portion of the inertial subrange is not captured,

FIG. 1. Location of the Doppler lidar (yellow star) overlaid on the land usage from the 2011 National Land Cover

Database (Homer et al. 2015). Major land uses are developed areas (red, darker indicating denser development),

cultivated crops (light brown), water (blue), pasture/hay (yellow), and deciduous forest (light green).

TABLE 1. System specifications for the Halo Photonics Stream

Line XR.

Parameter Value

Wavelength (mm) 1.5

Pulse energy (mJ) 80

Pulse duration (full width at half

maximum; ns)

350

Pulse repetition frequency (kHz) 10

Telescope diameter (mm) 75

Focus length Infinity

Sampling frequency (MHz) 50

Bandwidth (m s21) 619.4

Velocity resolution (m s21) 0.038
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such as during stable conditions or far ranges in PPI

scans where the distance between adjacent beams be-

comes large, the value of �02 may be overestimated and

the atmospheric velocity variance undermeasured.

Further details on these turbulence measurement tech-

niques and their operation, noise removal, and relative

accuracies can be found in Bonin et al. (2017).

4. Algorithm description

a. Fuzzy logic overview

To take advantage of all the measured quantities from

the different scanning strategies, all of the observations

need to be combined together in some manner for a

unified determination of the MH. Fuzzy logic is natu-

rally suitable for combining different measured vari-

ables together for determining the physical properties

of a sample. Additionally, fuzzy logic avoids depending

on a single threshold that is valid for all conditions,

which results in large sensitivity to the MH estimate

(Schween et al. 2014). Within the field of atmospheric

science and remote sensing, fuzzy logic has been used

extensively, especially within the radar community. For

polarimetric weather radar, fuzzy logic has been used for

hydrometeor classification (Vivekanandan et al. 1999;

Liu and Chandrasekar 2000), identification of non-

precipitation echoes and radar artifacts (Gourley et al.

2007; Mahale et al. 2014), and discrimination between

stratiform and convective precipitation (Yang et al.

2013), to name a few uses. Additionally, fuzzy logic has

been used to measure the convective PBL depth using

quantities measured by a radar wind profiler (Bianco

and Wilczak 2002). While fuzzy logic has been used ex-

tensively in the atmospheric sciences with radar mea-

surements, this is the first time to the authors’ knowledge

that fuzzy logic has been applied to Doppler lidar.

Fuzzy logic is essentially the mapping of multiple in-

put variables to determine the quality or characteristic

of a measurement (Mendel 1995). The input variables

are related to an output characteristic through mem-

bership functions, which vary from zero to one. A

membership value of one indicates that a measurement

is a member of a certain classification. Membership

values from different inputs are aggregated together

through a weighted mean, after which the aggregate is

defuzzified to infer a characteristic of the measurement.

While fuzzy logic can be used to determine many dif-

ferent possible classifications (e.g., as in hydrometeor

identification; Vivekanandan et al. 1999), herein we use

it to determine whether turbulent mixing is present in a

measurement. The vertical extent of turbulent mixing is

used to identify the MH. Since the scan pattern de-

scribed in section 3 takes 20min to complete and all of

the data from these scans are used together, the MH

measurement is intrinsically a 20-min average.

b. Nonturbulent motion detection

Before the MH can be determined, it is imperative to

identify and separate nonturbulent fluctuations in the

mean wind (u0, y0, and w0) from those that are turbulent.

Mahrt (2014) provides a thorough discussion of non-

turbulent submeso motions, some of which are resolved

by Doppler lidar, such as drainage flows (e.g., Post and

Neff 1986) and internal wave motions (e.g., Banakh and

Smalikho 2016). These submeso motions and other flow

features can contaminate turbulence measurements

(Bonin et al. 2017). Drainage and heterogeneous flows

in complex terrain particularly affect turbulence mea-

surements taken with PPIs and RHIs, as the spatial

variability is used to calculate turbulence quantities.

Since Indianapolis is practically flat (terrain varies by

’30 m over a 6-km-radius circle from the lidar), local

flows are not apparent in the PPI and RHI scans used

here. However, waves with periodic alternating rising

and sinking motions have been frequently observed

during INFLUX, particularly within the stable PBL and

TABLE 2. The 20-min scan sequence used in INFLUX after the redeployment in January 2016 that repeats continuously. For the height

range, the lower number indicates the minimum height, which is a function of the scan geometry. The larger number is the typical height

where the SNR is greater than 223 dB; this height varies considerably depending on conditions, such as aerosol loading and cloudiness.

Duration and number of beams are approximate quantities, and vary slightly with each repetition of the scan.

Scan Duration (min) No. of beams Key measured variables Height range (m) Height resolution (m)

PPI at f5 38 2 230 u, y, y02r 25–150 2.5

PPI at f5 108 2 230 u, y, y02r 40–300 8.3

PPI at f5 35:38 2 230 u, y, y02r , TKE 90–900 27.7

PPI at f5 608 2 230 u, y, y02r 125–1500 41.6

RHI to the south 1 100 y, y02 0–200 5

RHI to the east 1 100 u, u02 0–200 5

South stare at f5 208 3 (night only) 350 y, y02, RCI, SNR02 62–600 16.4

East stare at f5 208 3 (night only) 350 u, u02, RCI, SNR02 62–600 16.4

Zenith (vertical) stare 10 (day)/4 (night) 1000 (day)/370 (night) w02, RCI, SNR02 140–2000 48
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at the top of a developing convective ML as is shown in

Fig. 2. These wavelike motions need to be identified so

that they are not misconstrued as turbulent mixing,

which would result in the MH being overestimated.

For purposes here it is not necessary to parse out the

exact velocity variance from atmospheric turbulence

from wave motions, which would require wavelet anal-

ysis or multispectral resolution techniques (Vickers and

Mahrt 2003; Viana et al. 2010). Instead, it is only nec-

essary to determine whether turbulent mixing is occur-

ring within a layer. Within the PBL turbulent energy is

apparent across a wide range of frequencies as it cas-

cades from larger scales to smaller scales, as is reflected

in the velocity spectrum (Kaimal et al. 1976). Energy

from pure wave motions is confined to the frequencies of

thewaves in the packet. Since observed lower-atmospheric

waves have periods on the order of minutes to tens of

minutes (e.g., Finnigan et al. 1984; Viana et al. 2009; Toms

et al. 2017), simply evaluating the w variance at high fre-

quencies or applying a high-pass filter removes effects from

waves alone, while some variance from turbulent motions

existing within the inertial subrange remains.

For each range gate in the zenith stare, values ofw02 in
total (across all frequencies) and at high frequencies

(denoted by the subscript HF), defined here as the fre-

quency f . 0:0167 Hz (period less than 1min), are cal-

culated from thew spectrum above the noise floor. Since

the noise can be assumed to be white (Frehlich and

Yadlowsky 1994), the noise floor is �02, as determined

using the structure function fit from the autocovariance

of w, is equally distributed across all frequencies in the

power spectrum. Example profiles of w02
HF and total w02

during a period when waves were observed above the

MH are shown in Fig. 2 to demonstrate how profiles of

w02
HF can be used to differentiate between turbulent and

nonturbulent motions. The power spectral density

(PSD), used to calculate w02
HF, within the turbulent and

wave layers is also provided in Fig. 2 to demonstrate the

differing spectral characteristics. Since the distributions

of the velocity power spectrum are a function of the

wind speed U (Kaimal et al. 1976), values of w02
HF are

scaled by U in a given layer. A layer of air is flagged as

a ‘‘wave’’ if two criteria are met: 1) w02
HF/U is small

(,0.0025m s21) and 2) w02 . 0:02m2 s22 (x1 for that

variable, as defined in section 4c). These criteria are

chosen to ensure 1) any turbulent mixing is small and

2) the submeso motions are large enough to affect the

retrieval of the MH. The scaling by U also ensures that

large convective eddies when winds are weak are not

misconstrued as wave motions. For layers that are flag-

ged as waves, velocity variances from other scans (RHIs,

PPIs) are disregarded in all further analysis.

c. Turbulent layer identification

After submeso motions have been detected using

vertical stares, data from all the scans can be combined.

To make all of the turbulence quantities comparable,

the measurements are fuzzified, or transformed into

values that vary between zero and one, according to

their membership function. A membership value of one

indicates that the measurement is part of a turbulently

mixed classification, while zero indicates that a mea-

surement is not. An example of the half-trapezoidal-

shaped membership functions that are used here is

shown in Fig. 3. The membership functions have two

parameters—x1 and x2—that determine for what values

the function increases above zero and reaches a maxi-

mum of one. The values of x1 and x2, which are given in

Table 3, are centered and based on threshold values

used for identifying the MH in previous studies (i.e.,

Tucker et al. 2009; Barlow et al. 2011; Vakkari et al.

2015). These values vary depending on the input quan-

tity andwhat type of scanwas used for themeasurement.

For example, even though both RHIs and shallow stares

measure the same quantities (u02 and y02), contamination

from �02 can be easily quantified and removed using es-

tablished techniques from the stare but not from the

RHIs. Thus, the range between x1 and x2 is larger for the

RHIs. Similarly, x1 and x2 for y02r from the VAD re-

siduals is dependent on f, since higher scans are less

sensitive to u02 and y02r but more dependent onw02, which
is typically smaller than the horizontal variances.

FIG. 2. Example of wave motions above and at the interface of theML on 17 Oct 2016. (left) Vertical motion (w, m s21) observed from a zenith

stare and (middle) calculated profiles of total w02 and w02
HF ( f . 0:0167 Hz). (right) PSD within the turbulent (360m) and wave (840m) layers.
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Since measurement heights from different scan types

vary depending on the geometry, the fuzzified values are

linearly interpolated to a common 5-m-height grid.

These values are aggregated by taking the mean of the

fuzzified values. While some versions of fuzzy logic use

weighted means, all inputs are weighted equally here.

This aggregate is then used to identify a first guess for

the MH ziFG. This value for ziFG is the lowest height

where the aggregate is ,0:5. The threshold of 0.5 is

chosen because it naturally indicates that half of the

inputs indicate that turbulent mixing is occurring.

Likewise, by using the lowest height where the threshold

is met ensures that the turbulent layer is connected to

the surface.

Examples of the different measures of turbulence and

the aggregate produced by combining these measu-

rements are shown in Fig. 4 for data collected on

17 October 2016. This day was chosen to demonstrate

the utility of combining and using measurements from

the different scans for a complete representation of the

entire PBL, with zenith stares measuring to the top of

the PBL and low elevation scans filling in the measure-

ment gap below the minimum range of the zenith stares.

Additionally, nonturbulentmotions above theMH, such

as shown in Fig. 2, are apparent on this day and flagged as

such so that they are not misconstrued as turbulent mo-

tions when incorporated into the fuzzy aggregate. These

waves are apparent in Fig. 4a from 1400 to 2300 UTC

between ’1500 and 2000m where w02 is .0.1m2 s22,

but the w02
HF/U is simultaneously small, indicating no

turbulence in the layer. The aggregated mean member-

ship function from all the measures of turbulence is

shown in Fig. 4f, from which ziFG is determined. Gener-

ally, the aggregatedmean is smooth in height and time at

the lower heights (,500m), since it is well covered by all

the different scan types; thus, more inputs are used in the

average. At higher heights the aggregate can be discon-

tinuous in time, as often only zenith stare measurements

are used as inputs. These observations during the day are

subject to sampling limitations, as the vertical extent of

the measured w02 is closely related to the maximum

height of an updraft, causing fluctuations inw, during the

10-min stare.

d. Use of other indicators for MH

During well-mixed periods, vertical profiles of other

measured quantities that are well mixed themselves (i.e.,

roughly constant with height above the surface layer and

below the MH) can be used to improve the MH mea-

surement. Specifically herein, vertical profiles of the

mean horizontal wind and RCI are used to refine the

measurement of the MH. Large gradients of these

quantities are often apparent at the interface of the well-

mixed layer and the free troposphere. Additionally,

cleaner and drier air being entrained into the mixing

layer frequently results in a large SNR02 at the MH

(Menut et al. 1999; Hennemuth and Lammert 2006).

Herein, these aforementioned profiles of mean wind,

RCI, and SNR02 are referred to as ‘‘indicators’’ of tur-

bulent mixing; while these quantities are not a direct

measure of turbulence itself, their profiles can show

where the air is well mixed. These indicators are often a

more accurate measure of the mean MH (defined as the

height where quantities are well mixed) during strongly

convective conditions than profiles of turbulence quantities.

FIG. 3. Half-trapezoidal membership function for w02 from ver-

tical stares is similar to the other membership functions. Parame-

ters x1 and x2 determine for what values the function increase

above zero and reaches a maximum of one.

TABLE 3. Membership function values of x1 and x2 for different variables used for the Halo Photonics Stream Line Doppler lidar

during INFLUX.

Scan type Variable (units) x1 x2

Zenith stare w02
HF/U (m s21) 0.0025 0.01

Zenith stare Total w02 (m2 s22) 0.02 0.08

Shallow stare

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u02
HF

2
1 y02HF

2
� �r

/U (m s21) 0.005 0.03

Shallow stare Total

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u022 1 y02

2
q

(m2 s22) 0.04 0.16

PPI y02r (m2 s22) 0:021 0:02 cosf 0:081 0:08 cosf

RHIs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u022 1 y02

2
q

(m2 s22) 0.10 0.25
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To demonstrate this, profiles of w02, SNR02, and RCI

calculated from 10-min time series from zenith stares are

shown in Fig. 5. Perturbation in the instantaneous MH

caused by updrafts and downdrafts are visualized in

Figs. 5a,b. Strong updrafts extend above the mean MH,

resulting in instantaneous enhancements in RCI and

fluctuations in w. Statistics calculated from this period,

provided in Fig. 5c, show that w02 can be large (w02 . x2)

above the mean MH, as a result of these updrafts that

extend above the mean height where aerosols are

well mixed.

A Haar wavelet (Haar 1910) covariance transform

on a vertical profile can be used to detect sharp changes

in a given quantity. Haar wavelet covariance transforms

have been extensively applied to backscatter profiles

from lidars to determine the MH during convective

conditions (e.g., Cohn and Angevine 2000; Davis et al.

2000; Brooks 2003). Similarly, a Haar wavelet transform

is applied to the profiles of RCI here to detect gradients

in the aerosol content at the MH. The dilation of the

Haar wavelet used here is 200m. A wavelet transform

can also be employed on profiles of u and y to detect

changes at the topof awell-mixed layer.Anexampleofu, y,

and the vector-summedHaar wavelet (dilation5 200m, as

well) transform operated on profiles of each component

separately is shown in Figs. 6a,b. In the wavelet transform

of the wind profile, pronounced peaks are apparent both at

the MH (1250m) and near the surface, where friction

FIG. 4. (a)–(e) Example of several measures of turbulence that are fuzzified using their membership functions in

Table 3, and (f) the resulting aggregate used to identify ziFG on 17 Oct 2016. Height scale changes in (c) and (d) to

show how the height coverage and resolution vary depending on the scan.
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causes the wind speed to sharply decrease near the ground.

These peaks in the wavelet transform of both u, y, and RCI

are used to refine the measurement of the MH.

The location of up to the five largest local peaks in the

profiles of SNR02 and wavelet transforms of both u, y,

and RCI are selected for further analysis. While these

peaks are often associated with the MH, their location

can be far away (.1 km) from the turbulent layer. This

frequently happens at night, when the mixing layer is

shallow but the top of the residual layer, where aerosols

are well mixed from the previous day, extends well

above the MH. Thus, there is a large gradient in RCI at

the top of the residual layer that is not associated with

the mixing layer. This can be seen in Fig. 7c, in which the

wavelet transform of RCI shows a pronounced peak at

1000–1500m between 0000 and 1200UTCwhen theMH

remains below 300m. To prevent these peaks from

being misconstrued as the MH, peaks are considered

further only if they are located near ziFG (specifically

0:75ziFG , zpeak , 1:25ziFG).

The peaks are incorporated into this fuzzy logic

technique by forming a second-generation aggregate. In

FIG. 5. Time–height cross sections of instantaneous (a) RCI and (b) w observed during 2150–2200 UTC 9 Aug 2017. Profiles of SNR02

(black), RCI (blue), andw02 (red) calculated over this 10-min period are shown in (c). Final determinedmeanMH (zi) is shown (horizontal

magenta line).

FIG. 6. (a) Profile of u and y at 1910 UTC 17 Oct 2016 with (b) corresponding magnitude of

the vector-summed Haar wavelet transform operated on u and y separately. Black circles in

(b) indicate the peaks used to create (c) the corresponding membership function for the given

profile.
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contrast to the membership functions used in section 4c,

which are based on the local value of the quantity,

membership functions here are dynamically created for

each time step considering the location and size of the

peaks. This process is done for each type of peak (i.e.,

SNR02 and the wavelet transform of u, y, and RCI)

separately. An example membership function for a

corresponding wind profile is shown in Fig. 6c. A

membership value of one, indicating solidly within the

turbulent mixing layer, is assigned to all heights in the

profile below the lowest picked peak. A membership

value of zero, indicating above theMH, is assigned to all

heights above the highest peak. In between picked

peaks, the membership function decreases in steps. The

size of the step is the magnitude of the peak divided by

the sum of all the peak magnitudes. If no peak is located

near ziFG in a given profile, then no membership func-

tion is created and the input is not used in the second-

generation aggregate.

The second-generation aggregate is produced by

taking a weighted mean of the membership values used

in the first-generation aggregate and the membership

values described above for u, y, SNR02, and RCI profiles.

Since these indicators are a more direct measure of the

depth where aerosols and momentum are well mixed,

their membership values are weighted twice as much

as those of the direct measurements of turbulence in

section 4c, which capture the maximum updraft height

and not necessarily the mean mixing depth. An example

of the second-generation aggregate and the indicators of

mixing are shown in Fig. 7. During well-mixed convec-

tive conditions between 1400 and 2200 UTC, the MH

can generally be tracked using the three shown in-

dicators. By using these three indicators combined, the

limitations of any one are mitigated. For example, at

1500 UTC the SNR02 clearly shows the continuous

growth of the mixing layer, while the wavelet transform

on RCI detects only the larger gradient associated with

intermittent clouds at 1 km.

Similar to how ziFG is found, the final determination

of the MH zi is the lowest height where the second-

generation aggregate falls below 0.5, as shown in

Fig. 7d. Again, this ensures that the turbulent layer is

connected to the surface. In Fig. 8, the difference be-

tween the first- and second-generation aggregates is

shown, along with ziFG and zi. This shows the impact of

incorporating the indicators into the fuzzy logic. At

night (0000–1200 UTC), the indicators hardly impact

the zi measurement, since the layer is not well mixed.

Conversely, the impact of these indicators is clearly

visible during the day, when the measurement of zi is

more continuous than ziFG and zi is generally lower

than ziFG. Both of these features are related to the fact

that turbulence profiles are not sufficient alone to

properly measure the convectively well-mixed layer.

Thermal plumes extend beyond the mean height where

quantities are well mixed, resulting in turbulent mo-

tions above the mean MH. This leads to a small high

bias in ziFG compared to the true MH, which varies in

time depending on the altitude to which the convective

plume reaches. Additionally, the second-generation

aggregate is typically larger above zi and smaller be-

low zi, indicating that the second-generation aggregate

decreases more slowly with height. This difference is

primarily due to the fact that more inputs, each giving a

slightly different result, are combined into the second-

generation aggregate.

e. Reliability metrics

Since the algorithm produces continuous measure-

ments of zi regardless of the quality of the input data, it

is necessary to create metrics useful in assessing the

quality and accuracy of the zi output. Uncertainty esti-

mates for zi are created for each time step to reflect the

degree of agreement between the various inputs. The

lower and upper uncertainty bounds for zi are set to

the lowest height where the second-generation aggre-

gate falls below 0.75 and 0.25, respectively; these bounds

are rather arbitrary and could be changed depending on

the level of uncertainty between the different inputs

desired. When the inputs are in general agreement with

each other, such as in the example in Fig. 7d, the un-

certainty in zi is small. Generally, the uncertainty is

largest during the afternoon, when the PBL is deep, and

during the evening transition period, when the MH can

quickly decrease between different scans within the

20-min scan cycle.

The uncertainty bounds themselves are subject to the

quality of the input measurements. If the observations

themselves are affected by rain or by low aerosol load-

ing, then both the zi and its uncertainty estimatesmay be

unreliable. Thus, other flags are necessary to assess the

validity of the measurement. Rain generally causes a

large w02 as a result of differing fall speeds measured

based on a distribution of hydrometeor sizes, often

leading to an anomalously large zi. A flag for pre-

cipitation is created if the mean column-averaged

w,21m s21 during a vertical stare. This flag is not

perfect, as drizzle and snow have smaller fall velocities

and may not be detected; additionally, virga may affect

the zi measurement but may not be detected, since it is

not affecting the entire column.

Flags are also produced to indicate whether the

measurement of zi is an upper or lower limit if there are

no lidar observations below or above zi, respectively. If

the MH is very shallow (,20m) or nonexistent, no
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turbulence may be detected by the lidar even at its

lowest measurement height. In this case a flag is created,

indicating that the reported zi is an upper limit; that is,

there is no measurable mixing at or above zi, but no data

are available below zi to determine the exact MH or

even the existence of a mixing layer. Conversely, it is

possible that the lidar inputs indicate continuous mixing

up to the reported zi, but no lidar data are available

above zi to confirm that the true MH is not higher. This

happens when the mixing layer is cloud topped and

when aerosol loading is low. A cloud-topped mixing

layer is indicated if zi is collocated with a cloud, which

are detected in an RCI profile when the wavelet trans-

form is less than20.5, indicating a large increase in RCI

with height. This can be seen in Fig. 7c between 1500 and

1900 UTC at ’1000 m, where a cloud is collocated with

zi. When aerosol loading is low and the MH is suffi-

ciently deep, the lidar may not be sensitive enough to

detect the MH. These periods are identified and flagged

as a lower limit for zi if the layer is turbulently mixed

from the surface to the highest usable data (range gate

below height where �02 becomes .1m2 s22), but there

are no coincident gradients in RCI or the other in-

dicators. If zi is not flagged as a lower limit, upper limit,

or cloud topped, then the measurement is ‘‘good.’’

5. Comparison with in situ measurements

Other field measurements for INFLUX provide oc-

casional opportunities to validate measurements from

the Doppler lidar. Occasionally, research aircraft flights

are conducted around the Indianapolis area to quantify

FIG. 8. Difference between the second-generation aggregate

(Fig. 7d) and the first-generation aggregate (Fig. 4f). Values of ziFG
(red) and zi (black) are shown for comparison.

FIG. 7. (a)–(c) Examples of several indicators of turbulent mixing that are combined with the first-generation

aggregate shown in Fig. 4f to produce (d) a second-generation aggregate used to estimate zi (cyan line, with cor-

responding lower and upper uncertainty denoted by the dashed black andwhite lines, respectively). Data shown are

from 17 Oct 2016.
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greenhouse gas emission rates from the urban area (e.g.,

Heimburger et al. 2017). During some of these flights,

the aircraft performs helical ascents and descents over

the lidar site, allowing aircraft and lidar profiles to be

compared. The aircraft is outfitted with a suite of sen-

sors, including a cavity ring-down spectrometer for

in situ measurements of carbon dioxide, methane, and

water vapor (Crosson 2008), and amicrobead thermistor

for temperature observations. Profiles of these mea-

surements can be used to determine the MH, based on

where trace gases are well mixed and on the potential

temperature Q. Unfortunately, there are an insufficient

number of aircraft profiles to perform a statistical

comparison of the MH, since the lidar has been up-

graded in the beginning of 2016, after which the zi
measurements are more trustworthy because of the in-

creased sensitivity.

Given the limited dataset, aircraft profile measure-

ments are intercompared with the corresponding

Doppler lidar zi in Fig. 9. Data collected during a helical

ascent and a descent, with a circle radius of’2 km, over

the lidar site provide two independent profiles in quick

succession. During this period the lidar zi remained

nearly constant at 1550m. Depending on the quantity

used to identify the MH, the MH could be interpreted

to be located anywhere from 1350m (from the methane

and water vapor profiles during the ascent) to 1770m

(from the carbon dioxide profile during the descent). A

strong capping inversion often located near the MH is

evident near 1500m during both flights. The lidar zi and

its uncertainty are located in the middle of the indicated

MH from the different profiles, validating the mea-

surement. The large change in the profiles between the

ascent and descent, taken minutes apart, demonstrates

the uncertainty in using quasi-instantaneous soundings

to determine theMH. Any individual profile may not be

representative of the mean conditions, especially under

strongly convective conditions when the apparent MH

at a given location and time may be affected by a local

upward or downward perturbation from an updraft or

downdraft. This representativeness issue of individual

profiles from soundings, specifically of radiosondes, has

been discussed by Hennemuth and Lammert (2006).

Conversely, the lidar uses profile observations collected

over the 20-min scan cycle to produce a single mea-

surement of the MH, yielding a more robust estimate of

the mean zi.

While a case is presented here to demonstrate the

validity of zi measured by Doppler lidar, a statistical

comparison of zi against another in situ or remote sensor

would provide more insight into any systematic biases,

limitations, and the average error of zi. At the Indian-

apolis site, there are no routine measurements available

nearby (within ’10 km) for a robust statistical analysis.

In the future, a more comprehensive analysis is planned

through comparison with PBL heights derived from a

radar wind profiler and radiosonde measurements.

6. Mixing height statistics in 2016

Since zi has been measured nearly continuously for an

extended time (.1 year), its diurnal and seasonal vari-

ability can be uniquely investigated from a statistical and

climatological standpoint. This brief analysis highlights

the primary advantages of automated determination of

zi continuously using the described method for large

datasets. Before the following statistics were calculated,

1.5% of the data were removed when precipitation was

detected and flagged. For 2016, the daily afternoon and

nocturnal mean zi have been calculated and are shown

in Fig. 10. The annual cycle in the afternoon mean zi is

clearly visible, as it reaches a peak around the summer

solstice and reaches a minimum around the winter sol-

stice. The nocturnal zi shows an opposite cycle, as it is

generally deeper in winter than in summer. This can be

attributed to the fact that the near-surface winds are

typically stronger in winter (not shown), which generally

maintains a mechanically mixed PBL (Sun et al. 2012;

Bonin et al. 2015; Mahrt et al. 2015), and the sky is

cloudier, limiting surface cooling. In addition to the

seasonal cycle, there is large variability in the afternoon

and nocturnal zi on a day-to-day basis as they respond to

synoptic scale forcings.

With zi being measured every 20min, the diurnal

cycle of zi can be analyzed as well. Since the magnitude

of the afternoon zi can vary greatly (’200–3000m)

depending on the season and synoptic pattern, it is

necessary to normalize the zi values by the daily max-

imum zi, ziMAX, to make the diurnal evolution of

zi comparable among different days. Composites of the

daily cycle are centered on sunrise and sunset to un-

derstand how the zi evolves around the morning and

evening transitions. Using observations from all of 2016,

separate composites are made for low (U, 5 ms21), mod-

erate (5ms21,U, 10 ms21), and high (U. 10 ms21)

wind speeds in the lowest 1 km, as shown in Fig. 11. In

interpreting these plots, the composites are the most

meaningful in the hours around sunrise and sunset; since

the length of daylight varies between ’9 and 15 h per

day during the year, the composites are a combination of

different times of day further from the normalization

time. Thus, data 9 h after sunrise are not identical to 3h

before sunset.

The diurnal cycle of zi is clearly visible in Fig. 11.

Generally, zi begins to increase shortly after sunrise as

heating begins and zi quickly decreases just before
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sunset as turbulence decays. The nocturnal zi is gener-

ally deeper with increasing wind speeds, as turbulence is

mechanically generated and better sustained. Subtle but

notable differences are also evident in the zi evolution in

the morning and evening depending on U. When the

wind speed is low, zi grows slowly after sunrise for a few

FIG. 9. Profiles of (a) carbondioxide, (b)methane, (c)water vapor, and (d) potential temperaturemeasuredbyaircraft during anascent (blue) and

descent (green) over the INFLUXDoppler lidar site on 13May 2016. Data from the ascent were collected during 2032–2045UTC, and the descent

followed between 2046 and 2054 UTC. Shown are zi from the lidar (red), and the upper and lower uncertainties of zi (black horizontal lines).

FIG. 10. Afternoon and nocturnal mean zi from Indianapolis in 2016. Shown are the daily means (thin lines) and

a 31-day moving average (thick lines). Afternoon mean zi is calculated from 2.5 to 5 h before sunset for each day,

while the nocturnal mean is calculated from 1 h after sunset to sunrise.
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hours compared to windier conditions, after which its

depth rapidly increases. This is likely attributed to the

fact that a pronounced surface-based temperature in-

version often forms over land when winds are weak

(Bonin et al. 2015), and most of the initial heating in the

morning would be used to erode the inversion over a

shallow layer. This inversion does not often form when

the mean wind speed is larger (Bonin et al. 2015); thus,

heating in the early morning can be dispersed through a

deeper layer, causing zi to increase shortly after sunrise.

The timing of the afternoon and evening transition is

also dependent onU. On average, zi reaches amaximum

4.5 h before sunset when U, 5 m s21, while zi reaches a

maximum later at 2.5 h before sunset whenU. 10 ms21.

Thus, the evening transitional period is generally de-

layed when winds are stronger, as mechanically gener-

ated turbulence impedes stabilization (Blay-Carreras

et al. 2014).

7. Discussion

The presented algorithm has many advantages over

other individual approaches to determine the MH. This

composite technique combines information from all the

scan angles, mitigating detection issues when the MH is

below theminimum range of a zenith pointed lidar while

also maintaining sensitivity to detect a deep MH from

the zenith measurements. The fuzzy logic method

combines multiple techniques used separately in pre-

vious studies to obtain a unified determination of the

MH, even though each measurement alone (Haar

wavelet on RCI, w02, etc.) may give a different estimate

of the MH. The uncertainty in the MH can be related to

how the different measures converge onto the same

value of the MH. Since the Doppler lidar is directly able

to measure mixing processes, it is straightforward in

distinguishing gradients in RCI as the MH or top of the

residual layer. While this distinction is possible with

backscatter lidars, it is not trivial (de Bruine et al. 2017).

Additionally, the weighting of the inputs can be modi-

fied based on definition and application of the MH

measurements. While gradients in RCI and the hori-

zontal wind are weighted heavily here given the air

quality application, as they indicate the mean height to

which quantities, including pollutants, are mixed, the

direct measures of turbulence could be assigned a larger

weighting for a different objective.

Despite these advantages over other traditional ap-

proaches to determine theMH, there are still challenges

and limitations of this technique that will need to be

addressed in the future. Themethod in which turbulence

is measured from the PPI and RHI scans inherently

relies on homogeneity in the mean flow (Bonin et al.

2017).While this assumption can be often safely made in

Indianapolis, where the terrain is flat, it is often not valid

in areas with complex terrain. This heterogeneity leads

to inaccurate measures of turbulence and ultimately to

poor measurements of zi. Thus, heterogeneity in the

mean flow needs to be distinguished from turbulence

features in PPI and RHI scans. Vakkari et al. (2015)

propose a method to measure mixing from PPIs in

complex terrain, whichmay be useful when applying this

composite method in areas with heterogeneous flow.

While the results here have been shown only from a

Halo Photonics Stream Line XR Doppler lidar, this

technique is currently being similarly applied to mea-

surements from a Leosphere Windcube 200S, the high-

resolution Doppler lidar (Grund et al. 2001), and a

FIG. 11.Mean (a) growth and (b) decay of theML categorized by themeanwind speed in the lowest 1 kmover the

12-h period centered at sunrise or sunset. Values of zi for each day are normalized by ziMAX before the mean is

calculated.
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custom-built lidar currently under development. With a

similar scanning pattern as used here, this algorithm

should be applicable to measurements from Doppler

lidar systems as well. As the fuzzy logic technique is

applied to the different systems operating with varying

parameters (pulse width, accumulation time, pulse rep-

etition frequency, etc.) and scan cycles, the membership

functions in Table 3 are adjusted. For example, the up-

per and lower limits for the membership function for w02

are generally lowered for a longer pulse width or accu-

mulation time, as smaller turbulent motions are aver-

aged out by theDoppler lidar. This fuzzy logic technique

can also be used with limited inputs, such as only data

from zenith stares. When this strategy is implemented,

the fuzzy logic combines information from only w02 and
RCI to determine a unified measure of zi but with the

same minimum range limitations as any technique

from a zenith stare alone.

8. Conclusions

A new fuzzy logic–based composite technique to

determine the MH from Doppler lidar data has been

presented. The method is able to take advantage of

the strengths of each measurement and scan strategy

to overcome the limitations of others. For instance,

shallow conical scans can be used to take measure-

ments at high vertical resolution near the surface and

compliment zenith stares that can take measurements

several kilometers into the atmosphere. Thus, the

MH can be detected autonomously under a wide va-

riety of conditions, such as when mixing is only a few

tens of meters to when it is several kilometers deep.

Within the algorithm nonturbulent submeso motions

are spectrally identified so that they are not mis-

construed as turbulence, leading to an overestimate

of the MH.

Measurements collected for INFLUX are used to

demonstrate the algorithm. While sample detailed data

from only one day are shown here for brevity, time–

height cross sections of wind, SNR, andw02 with the zi for
all of 2016 through the present are available online (https://

www.esrl.noaa.gov/csd/groups/csd3/measurements/influx16/)

to show the algorithm operation for a variety of conditions.

Measurements of theMHfromIndianapolis in 2016areused

to investigate and quantify both the annual and diurnal

variability of theMH.The afternoonMHwas largest around

the summer solstice; however, the nocturnal MH tended to

be deeper in winter. The timing of the growth and decay of

theMHis closely related to themagnitudeof themeanwind.

The deepening of the MH in the morning is delayed but

ultimately more rapid, and the decay is quickened when

winds are lighter.

This algorithm can be and is being adapted to different

types of Doppler lidars operating different scanning strate-

gies. Efforts are underway to further validate zi from the

Doppler lidar against other measurements, such as from

radiosondes and radar wind profilers. These measurements

of the MH are being used within the larger context of

INFLUX to measure greenhouse gas emissions and to

validate numerical weather prediction model output.
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