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SUMMARY

As human population size and demand for seafood
and other marine resources increase, understanding
the influence of human activities in the ocean
and on land becomes increasingly critical to the
management and conservation of marine resources.
In order to account for human influence on marine
ecosystems while making management decisions,
linkages between various anthropogenic pressures and
ecosystem components need to be determined. Those
linkages cannot be drawn until it is known how different
pressures have been changing over time. This paper
identifies indicators and develops time series for 22
anthropogenic pressures acting on the USA’s portion of
the California Current ecosystem. Time series suggest
that seven pressures have decreased and two have
increased over the short term, while five pressures
were above and two pressures were below long-term
means. Cumulative indices of anthropogenic pressures
suggest a slight decrease in pressures in the 2000s
compared to the preceding few decades. Dynamic
factor analysis revealed four common trends that
sufficiently explained the temporal variation found
among all anthropogenic pressures. This reduced set of
time series will be a useful tool to determine whether
links exist between individual or multiple pressures
and various ecosystem components.

Keywords: cumulative effects, energy development, human
activities, marine ecosystems, multiple pressures, ocean
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INTRODUCTION

Human activities in, on and around the ocean are varied
and growing. These activities generate many benefits,
including production of food, employment, energy and
livelihoods (Guerry et al. 2012). However, they are also
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associated with pressures on the ecosystem that have negative
consequences, such as loss or modification of habitat,
depletions and introductions of species, physical, visual and
auditory disturbances, and toxic and non-toxic contamination
(Eastwood et al. 2007). Despite the increasing urgency of
these influences (Wilson et al. 2005; Halpern et al. 2007),
full accounting of how anthropogenic pressures in the marine
environment have changed over time is rare.

Importantly, these pressures do not act upon the
ecosystem independently, but rather collectively. They are
disparate and broadly based, ranging from terrestrial-based
pollution, commercial shipping activities, and offshore energy
development to fisheries and coastal development, all of which
exert cumulative effects on the ecosystem and could benefit
from a holistic management approach (Vinebrooke et al. 2004;
Crain et al. 2008; Halpern et al. 2008). Quantifying the
cumulative effects from multiple pressures is a challenging
task, however, because there is a limited understanding of
how pressures interact and whether the cumulative effects are
additive, synergistic or antagonistic (Darling & Côté 2008;
Hoegh-Guldberg & Bruno 2010). The strength and direction
of these interactions may also have different consequences for
different taxa or ecosystem components (Crain et al. 2008).
Additionally, the intensity and trends of many anthropogenic
pressures are likely correlated with each other due to ultimate
drivers such as human population growth, seafood demand
or economic conditions, and so are best understood in the
context of one another (see for example Link et al. 2002).

Previous studies that aim to evaluate the effect of cumulative
pressures on marine ecosystems have primarily focused
on spatially-explicit analyses which have revealed pressures
hotspots in ecosystems across the globe (Ban & Alder
2008; Halpern et al. 2008, 2009; Stelzenmüller et al. 2010;
Hayes et al. 2012). These analyses are particularly useful
for describing patterns of spatial variation among individual
and cumulative pressures; they provide a framework for
identifying vulnerable habitats or regions and focusing limited
management resources on these regions of concern. These
spatially-explicit analyses, however, generally provide only a
‘snapshot’ in time which can make it challenging to determine
what management actions are necessary.
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Without an understanding of the legacy of anthropogenic
pressures in an area, it is difficult to interpret current
and potential future conditions. For instance, the ecological
consequences of oil extraction in a previously untouched area
like the North Slope of Alaska are likely to be very different
than in a historically high-use environment such as the North
Sea. Without a temporal reference of the current intensity
of the pressures, it is unknown whether the intensities of
these pressures are at levels of concern or whether these
pressures are increasing, decreasing or remaining the same.
Temporal analyses can provide this important context and
help focus management actions on pressures that might be at
unacceptable levels (Rockström et al. 2009) or that may exhibit
unacceptable changes over time. Time series data for many
human-related pressures are however, often buried in state
and federal agency reports, described at small spatial scales,
and measured inconsistently among local, state and federal
entities. Thus, it is important to develop a standardized set
of time series that reflect the current intensity and historical
trends of these pressures that could also be used to evaluate the
cumulative intensity of these pressures at scales appropriate
for management.

Here, we developed standardized time series of indicators
for 22 anthropogenic pressures acting across the entire USA’s
portion of the California Current Large Marine Ecosystem
(hereafter, the California Current ecosystem [CCE]). These
time series were used to quantify and evaluate the intensity
and temporal trends of each pressure. We then used several
approaches to describe the relative intensity and trends of
these pressures as a whole. First, we used simple additive
models to quantify the relative status and trends of cumulative
pressures in the CCE. Second, we used multivariate models
to determine (1) whether pressures were correlated, (2) how
the composition of pressures changed over time, (3) whether
there were shared trends in the time series of pressures, and
(4) whether these trends were related to specific drivers such
as coastal population abundance or economic activity. Our
synthesis, and corresponding methodological approaches to
quantify the intensity and trends of these pressures, provide
a foundation for future integrative analyses on ecological
components (such as risk analysis and management strategy
evaluations) across the CCE.

METHODS

Indicators of anthropogenic pressures

We developed indicators for 22 anthropogenic pressures in
the CCE. The pressures selected were derived primarily from
those identified in spatially-explicit analyses by Halpern et al.
(2009) and from vulnerability analyses by Teck et al. (2010);
they ranged in scope from land-based pressures, such as
inorganic pollution and nutrient input, to at-sea pressures,
such as commercial shipping and offshore oil and gas activities.
Ultimately, we evaluated 41 different indicators and selected
the best indicator to describe the intensity and trends of each

pressure. Indicators were evaluated (Appendix 1, Table S1,
see supplementary material at Journals.cambridge.org/ENC)
using the indicator selection framework developed by Levin
et al. (2011), Kershner et al. (2011) and James et al. (2012).
Briefly, we evaluated each indicator according to 18 criteria
using the scientific literature to determine whether there was
support for each criterion for each indicator. This resulted
in a matrix of references and notes with a corresponding
value of literature support (1 for ‘support’, 0.5 for ‘ambiguous
support’, 0 for ‘no support’; Appendix 1, Table S1, see
supplementary material at Journals.cambridge.org/ENC).
These values were summed across criteria for each indicator
and the highest scoring indicator was chosen for each pressure.

Data for all indicators were compiled from state and
federal reports and databases to create the longest possible
time series (Table 1). Compatible data from the states
of California, Oregon and Washington were pooled to
characterize pressures at the scale of the CCE. For some land-
based pressures (Appendix 2, see supplementary material at
Journals.cambridge.org/ENC), data from other states were
included if watersheds in these states drained into the Pacific
Ocean (such as Idaho, Montana and Wyoming). The Fraser
River in Canada drains into the upper reaches of the CCE and
may contribute a significant amount of pressures associated
with runoff and input of freshwater and sediments to coastal
habitats. However, there were numerous complexities trying
to combine datasets from the USA and Canada for nearly all
relevant pressures. To reduce the effects of differences in the
datasets, we limited our analysis to USA data.

The status of each indicator was evaluated against two
criteria: recent short-term trend (increasing, decreasing or
remaining the same over the last five years) and short-
term status relative to the mean and variance of long-term
conditions (higher than, lower than or within historic levels)
(Levin & Schwing 2011). An indicator’s trend was considered
to have changed in the short term if the modelled trend over
the last five years of the time series showed an increase or
decrease of more than one standard deviation (SD) of the mean
of the entire time series. An indicator’s status was considered
to be above or below historical levels if the mean of the last
five years was greater than or less than one SD from the mean
of the full time series, respectively. We used the mean and
standard deviation of the entire series, as opposed to some
earlier period of comparison (such as the first five years of
the dataset), because there were no good temporal reference
points for these pressures that made sense to compare the
most recent five years of data against. The long-term mean and
standard deviation of a time series serves as a ‘moving window’
temporal target that is widely used in marine management
applications (Samhouri et al. 2012). Defining the ‘short-
term’ as the last five years of the dataset is consistent with
other management review processes that occur at the scale
of large marine ecosystems (see for example Essential Fish
Habitat reviews [National Marine Fisheries Service 2013]
and National Oceanic and Atmospheric Administration’s
Integrated Ecosystem Assessments [Levin & Schwing 2011]).
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Table 1 Top indicators for anthropogenic pressures in the California Current ecosystem (CCE) (Appendices 1 and 2 provide evaluation and selection, source of data and calculations
of indicators for each pressure, see supplementary materials at Journals.cambridge.org/ENC). ∗Pressures used in cumulative pressures index and principal components analysis, CA =
California, OR = Oregon and WA = Washington.

Pressure Indicator Definition Time Sampling
series frequency

∗Aquaculture: finfish Finfish production Estimates of Atlantic salmon production in CCE waters 1986–2011 yearly
∗Aquaculture:

shellfish
Shellfish production USA shellfish (clams, mussels and oysters) production 1985–2010 yearly

∗Atmospheric
pollution

Deposition of sulphate Annual precipitation-weighted mean concentrations of sulphate measured at sites in CA, OR
and WA

1994–2010 yearly

∗Benthic structures No. offshore oil and gas wells Total number of offshore oil and gas wells in production 1981 - 2009 yearly
∗Coastal engineering Human coastal population Population size of coastline counties in CA, OR, WA 1970–2012 yearly
Commercial shipping

activity
Volume of water disturbed Calculated using draft, breadth and distance travelled within CCE of domestic and foreign

vessels
2001–2010 yearly

Dredging Dredge volumes Dredge volumes for individual private contracts and Army Corps operated dredge projects in
WA, CA and OR

1997–2011 yearly

∗Fishery removals Total landings Tonnes of all species landed by commercial and recreational fisheries in CA, OR and WA 1981–2011 yearly
∗Freshwater retention Impoundment storage

volume
Total reservoir storage volume in CA and Pacific Northwest water resource regions 1900–2011 yearly

Habitat modification Distance trawled Kilometres trawled by the limited-trawl groundfish fishery in CA, OR and WA 1999–2004 yearly
∗Inorganic pollution ISA-toxicity-weighted

chemical releases
Total pounds of inorganic pollutants disposed of or released on site to the ground or water for

‘1988 core chemicals’ weighted by toxicity scores and impervious surface area (ISA) in the
drainage watersheds of the CCE

1988–2010 yearly

∗Invasive species Tonnes of cargo Tonnes of cargo moved through ports in CA, OR and WA 1993–2010 yearly
∗Light pollution Average night-time visible

light
Data are cloud-free composites of average visible night-time lights made using all the available

archived DMSP-OLS smooth resolution data for each calendar year
1994–2010 yearly

Marine debris Predicted counts of debris Estimates from the National Marine Debris Monitoring Program separated into north and south
CCE estimates

1999–2007 yearly

∗Nutrient input Nitrogen and phosphorus
input

Total farm and non-farm nitrogen and phosphorus input from fertilizer used in counties within
CCE watersheds

1945–2010 yearly

Ocean-based
pollution

Commercial shipping activity
combined with tons of
cargo

Combines ‘Commercial shipping activity’ and ‘Invasive species’ datasets 2001–2010 yearly

∗Offshore oil
activities

Offshore oil and gas
production

Normalized sum of the number of barrels of oil and cubic feet of gas produced from offshore
wells in CA

1970–2010 yearly

∗Organic pollution Toxicity-weighted
concentrations

Toxicity-weighted concentrations of 16 pesticides measured in water samples from
stream-water sites in WA, OR and CA

1993–2008 yearly

Power plants Saline water withdrawal
volumes

Average daily withdrawal volumes of saline water from thermoelectric power plants in the
Pacific Northwest and California regions

1955–2005 Every 5 years

Recreational beach
use

Beach attendance Summed beach attendance from CA, OR and WA 2002–2011 yearly

∗Seafood demand Total consumption Total consumption of edible and non-edible fisheries products in the USA 1962–2011 yearly
∗Sediment retention Impoundment storage

volume
Same as ‘Freshwater retention’ 1900–2011 yearly
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The historical status of each indicator should be placed
in context with the amount of data available for each time
series. For shorter time series, the mean of the last five
years was not likely different from the mean of the entire
time series; thus, the relative status for indicators with
short time series was more closely related to the availability
of data and not historic trends. However, indicators were
chosen because they were the most fundamentally sound
datasets (Appendix 1, Table S1, see supplementary material
at Journals.cambridge.org/ENC) and most of the indicators
chosen will continue to be measured, thus providing
meaningful comparisons into the future.

Summarizing anthropogenic pressures as a whole

We employed three different methods to examine the status
and trends of pressures as a whole. First, we calculated
a cumulative pressures index using a subset of pressures.
Second, we used principal components analysis to examine
correlations and temporal shifts among pressures. Last, we
used dynamic factor analysis to determine whether the
22 pressures could be reduced to a smaller number of common
trends.

Cumulative pressures index
In order to calculate a cumulative pressures index, we
determined the longest period for which there were the most
pressures with continuous data available. For the years 1994–
2008, we had annual data available for 15 of the 22 pressures
(Table 1). Data from these time series were normalized
(mean = 0, SD = 1) across the years 1994–2008 so that all
pressures were on the same scale. We then used two methods
to calculate a cumulative pressures index. The first method
was an additive model in which all 15 normalized pressure
values were summed for each year.

The second method weighted the relative importance of
each pressure according to vulnerability scores determined by
Teck et al. (2010). Briefly, vulnerability scores were developed
through surveys of experts, in which experts estimated the
value of five components of ecosystem vulnerability based on
the relative exposure and sensitivity of a habitat to a specific
pressure. These five values were then combined to create a
single vulnerability score for each habitat to each pressure.
In our analysis, we used the mean vulnerability scores for
each pressure averaged across all habitat types (‘Score mean’
in table 6 of Teck et al. (2010)). We then normalized mean
vulnerability scores of all pressures listed in Teck et al.
(2010) to a scale of 0 to 1 and used the scores relevant to
our 15 pressures as weightings. Mean vulnerability scores
were averaged across pressure categories when more than one
related to one of our 15 pressures (for example, four nutrient
input pressures were identified in Teck et al. 2010). Finally,
we multiplied each normalized pressure value in the time
series by its respective weighting value and summed across all
pressures for each year.

Correlations and temporal shifts among pressures
We used principal components analysis (PCA; PRIMER
6.0; Clarke & Gorley 2006) to identify correlations among
pressures and to reduce the number of multivariate
dimensions to a smaller set that explained most of the variance
of the datasets. Because PCA cannot accommodate missing
values, we used the same set of 15 pressures from 1994–2008
that we used above to get the greatest number of pressures
across the longest period of time. Loadings greater than
0.30 were considered relevant for interpretation of the results
(Tabachnick & Fidell 1996). We used the principal component
scores across years to examine how the importance of each axis
changed over time.

Common trends among pressures
We used dynamic factor analysis (DFA; Zuur et al. 2003a, b) to
characterize underlying common trends among the time series
of anthropogenic pressures. The objective of DFA is to reduce
the number of multivariate dimensions needed to describe
patterns in data, based on time series models that explicitly
account for temporal autocorrelation common in time series
data. The DFA framework consists of two models: it combines
(1) a random-walk model that captures the underlying shared
trends among a set of time series and any covariates, and (2)
a model that describes how well each time series is described
by each underlying trend.

In the DFA framework, a set of one or more hidden common
trends (linear combinations of a set of random walks) shared
by the time series data explains their temporal variations (Zuur
et al. 2003a). DFA is particularly useful for our set of time
series because it can account for missing values; thus, we can
incorporate a larger number of pressures across a longer period
than was possible for the cumulative pressures index or the
PCA. Because DFA allows for the inclusion of covariates, we
could also explore explanatory drivers of the pressures such
as population size and economic growth.

Using the MARSS package in R (Holmes et al. 2012;
R Development Core Team 2012), we tested models
with 1–5 common trends and models including zero, one
or two covariates (coastal human population abundance
and gross domestic product of the USA’s West Coast).
Preliminary analyses tested five commonly used variance-
covariance matrix structures available in the MARSS
package and suggested ‘diagonal and equal’ was the most
appropriate (Appendix 3, see supplementary material at
Journals.cambridge.org/ENC). This model structure had
observation variances (along the diagonal) that were equal
and covariances that were equal to zero.

Prior to the analysis, time series of all 22 pressures (Table 1)
were normalized across the period of interest (1985–2011).
We limited the time series to this period because longer time
series have proportionately greater influence than shorter time
series in determining common trends and only a third of the
indicators had longer time series (Table 1). We used Akaike’s
model selection criterion (AICc; Burnham & Anderson 1998)
values to determine the fewest common trends and covariates
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Figure 1 Examples of the status and trends of anthropogenic pressures in the California Current ecosystem. Each pressure is represented by
specific indicator datasets (Table 1 and Appendix 2, see supplementary material at Journals.cambridge.org/ENC). Arrows to the right of
each panel represent whether the modelled trend over the last five years (shaded) increased (↗) or decreased (↘) by more than 1 SD or was
within 1 SD (↔) of the long-term trend. Symbols below the arrows represent whether the mean of the last five years was greater than (+),
less than (-) or within (•) 1 SD of the mean of the full time series (dotted line). Solid lines are ±1 SD of the mean of the full time series.

required to explain the full set of time series. We used an
oblique rotation method (promax) to calculate factor loadings
as it helped separate factor loadings among trends better
than the default orthogonal method (varimax). DFA factor
loadings > 0.2 were considered relevant for interpreting
whether pressures were represented by a specific trend (Zuur
et al. 2003b). Loading values represent coefficient values that
when multiplied by the respective trend value and summed
across all trends produce fitted values for each year for each
pressure (Appendix 3, Fig. S27, see supplementary material
at Journals.cambridge.org/ENC).

For the covariate ‘coastal population abundance’, we used
data from the USA Census Bureau (2010–2012: http://www.
census.gov/popest/data/datasets.html) and the National
Bureau of Economic Research (1970–2009: http://www.
nber.org/data/census-intercensal-county-population.html).
We limited data to ‘coastal’ counties in California, Oregon
and Washington, as defined by National Oceanic and
Atmospheric Administration (http://www.census.gov/geo/
landview/lv6help/coastal_cty.pdf). For the covariate ‘gross
domestic product’ (GDP), data were summed annually across
the states of California, Oregon and Washington from 1963–
2011 (Bureau of Economic Analysis; http://www.bea.gov/
iTable/index_nipa.cfm) using ‘Regional Data’ by state across
all industries.

RESULTS

Indicators of anthropogenic pressures

Indicators of anthropogenic pressures in the CCE (Table 1)
were chosen based on rankings in the indicator evaluation
matrix (Appendix 1, S1, see supplementary material at Journ-
als.cambridge.org/ENC). Descriptions, status and trends

of individual indicators are described in Appendix 2 (see
supplementary material at Journals.cambridge.org/ENC),
but examples of indicator time series show that the short-
term status and trend of anthropogenic pressures in the
CCE varied widely (Fig. 1). Most indicators showed either
significant short-term trends or their current status was
at historically high or low levels (Fig. 2). Indicators of
inorganic, organic and ocean-based pollution, commercial
shipping activity, recreational use, invasive species and
habitat modification all weakened over the short-term, while
indicators of dredging and marine debris (in the northern
CCE) intensified; all of these pressures remained within
historic levels. In contrast, indicators of seafood demand,
sediment and freshwater retention, power plant activity and
coastal engineering remained relatively constant over the
short-term, but were above historic levels, while indicators
of offshore oil and gas activity and related benthic structures
were at historically low levels. Nutrient input and shellfish
aquaculture were at historically high levels, but nutrient input
weakened over the last five years of its time series (Figs 1
and 2), while shellfish aquaculture has continued to intensify
(Fig. 2 and Appendix 2, Fig. S2, see supplementary material
at Journals.cambridge.org/ENC).

Cumulative pressures index

The ‘additive’ and ‘weighted’ methods provided qualitatively
similar estimates (Fig. 3). However, the additive index showed
a positive trend (adjusted r2: 0.51, F1,13 = 15.7, p = 0.002),
whereas the weighted index showed no trend (adjusted r2:
0.12, F1,13 = 2.9, p = 0.110) across the entire period. Using the
same criteria to define the recent short-term status and trends
of individual pressures, there was a short-term decrease in

http://www.census.gov/popest/data/datasets.html
http://www.census.gov/popest/data/datasets.html
http://www.nber.org/data/census-intercensal-county-population.html
http://www.nber.org/data/census-intercensal-county-population.html
http://www.census.gov/geo/landview/lv6help/coastal_cty.pdf
http://www.census.gov/geo/landview/lv6help/coastal_cty.pdf
http://www.bea.gov/iTable/index_nipa.cfm
http://www.bea.gov/iTable/index_nipa.cfm
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Figure 2 Short-term status and
trends of anthropogenic pressures
in the California Current
ecosystem. The short-term trend
indicates whether the indicator
increased, decreased or remained
the same over the last five years.
The short-term status indicates
whether the mean of the last five
years was higher, lower, or within
historical levels of the full time
series. Data points outside the
dotted lines (± 1.0 SD) are
considered to be increasing or
decreasing over the short term or
the current status is higher or
lower than the long-term mean of
the time series. Numbers in
parentheses in the legend are the
number of years of data for each
pressure. The ‘Cumulative
pressures’ indicator (see Fig. 3) is
the additive sum of 15 of these
pressures, which had annual data
from 1994–2008 (asterisks).

Figure 3 Indices of cumulative pressures from 1994–2008 using 15
anthropogenic pressures (asterisks in Fig. 2) which had data during
this period. Each index was normalized prior to plotting to place
them on the same scale. ‘Additive’ is the sum of all pressure values
each year; ‘Weighted’ is the sum of pressure values multiplied by
their respective weighting values (derived from Teck et al. 2010)
(see Fig. 1 for description of symbols, lines, and shading).

cumulative pressures using the weighted index, whereas there
was no significant change in the short-term trend using the
additive index (Fig. 3). The short-term status for both indices
was within historic levels of this time series.

Correlations and temporal shifts among pressures

The first two axes of the PCA explained c. 68% of the
total variation in the same 15 1994–2008 time series used
to calculate the cumulative pressures index, and the first four

axes explained 86% (Appendix 3, Fig. S25, see supplementary
material at Journals.cambridge.org/ENC). Plotting the scores
of the first two principal components across time showed
clear changes in the composition of pressures over this period
(Fig. 4). In the 1990s, there was strong influence by oil and gas
activities, light pollution and benthic structures, while coastal
engineering, seafood demand, nutrient input, aquaculture and
organic and inorganic pollution became more important to this
multivariate measurement in the 2000s. The change in the
position of the PCA score observed in 2002 can be attributed
to a particularly large increase in atmospheric pollution that
year and the abrupt change that occurred in 2006 was related
to large increases of inorganic (Appendix 2, Fig. S12, see
supplementary material at Journals.cambridge.org/ENC) and
organic (Appendix 2, Fig. S20, see supplementary material at
Journals.cambridge.org/ENC) pollution.

Sediment retention and freshwater input also loaded
heavily on PC1, but in the complete time series for these
pressures, they are relatively stable from 1994 to 2008
(Appendix 2, Figs S9 and S22, see supplementary material
at Journals.cambridge.org/ENC) and thus would have little
influence on any changes in cumulative pressure if the entire
time series could have been used. ‘Fisheries removals’, which
was quite variable during this time period, was the only
pressure that did not load significantly on PC1 or PC2, but
loaded heavily on PC3.

Common trends

Model selection criteria revealed a model with either four or
five common trends with no covariates sufficiently explained
the time series of pressure indicators (Table 2). Because the
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Figure 4 Principal components
analysis using indicators of 15
anthropogenic pressures (asterisks
in Fig. 2) that had data from
1994–2008. Pressures identified
along each axis had eigenvectors >

0.3 for one of the first two principal
components, while the values in
parentheses are the loading values
for the predominant principal
component for each pressure (see
Fig. 2 for abbreviations).

Table 2 Model selection criteria from the top ten dynamic factor analysis models using all 23 indicator time series from 1985 to 2011
and comparing among different variance-covariance structures (R matrix), 1–5 trends and with 0–2 covariates. K = number of parameters;
AICc = Akaike information criterion corrected for small sample sizes; �AICc = difference between each model and the lowest AICc from
all possible models; population = coastal population abundance estimate; GDP = gross domestic product of the USA’s west coast states.
(See Appendix 3, see supplementary material at Journals.cambridge.org/ENC for description of each R matrix structure.)

R matrix Trends Covariate(s) K AICc �AICc Akaike weight Cumulative Akaike weight
Diagonal and equal 4 None 87 875.5 0.00 0.49 0.49
Equal variance-covariance 5 None 107 877.2 1.68 0.21 0.70
Diagonal and equal 5 None 106 877.4 1.89 0.19 0.89
Diagonal and equal 3 Population 90 879.6 4.12 0.06 0.95
Equal variance-covariance 4 None 88 881.9 6.42 0.02 0.97
Equal variance-covariance 3 Population 91 882.7 7.19 0.01 0.98
Diagonal and equal 2 Both 92 884.5 8.97 0.01 0.99
Diagonal and equal 4 Population 110 885.4 9.90 0.00 0.99
Diagonal and equal 3 GDP 90 885.8 10.30 0.00 1.00
Equal variance-covariance 2 Both 93 887.3 11.75 0.00 1.00

model with four trends was more than twice as likely to be
the best model as the two models with five trends, we used
the 4-trend model to describe the common trends below.
The 4-trend model had tight fits with most of the indicator
time series, though a notable exception was ‘Fisheries
removals’ (Appendix 3, Fig. S27, see supplementary material
at Journals.cambridge.org/ENC).

Trend 1 showed a relatively monotonic increase from
1985 to the early 2000s followed by a more variable period
during the rest of the 2000s (Table 3). Eight pressures
had their highest loadings on this trend and were not
related to any other trend. These pressures were related
to food supply, construction and energy production. Most
of these pressures were positively correlated with trend 1,
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Table 3 Common trends and factor loadings identified from the four-trend dynamic factor analysis model using 23 pressures and time-
series data from 1985 to 2011. ǂPressures related to each trend (absolute value of factor loadings > 0.2). ∗Trend most related to each pressure.
Negative loadings mean that a pressure is related to the inverse of the trend shown above each column. Factor loadings are the coefficients
that when multiplied by the trend value and summed across all trends produce predicted values for each pressure.

Broad category of pressures Pressures

Terrestrial pollutants Atmospheric pollution 0.01 –0.53ǂ∗ 0.12 0.28ǂ
Inorganic pollution − 0.12 0.01 0.09 0.77ǂ∗

Organic pollution − 0.19 − 0.01 0.00 1.02ǂ∗

Nutrient input 0.17 0.12 − 0.19 0.39ǂ∗

Transportation Dredging 0.05 − 0.03 0.14 − 0.58ǂ∗

Commercial shipping − 0.01 0.27ǂ − 0.43ǂ∗ 0.36ǂ
Ocean–based pollution − 0.01 0.47ǂ − 0.48ǂ∗ 0.17
Invasive species − 0.08 0.60ǂ∗ − 0.15 0.07

Coastal disturbance Marine debris (south) 0.02 − 0.34ǂ∗ − 0.11 − 0.13
Marine debris (north) 0.00 0.38ǂ − 1.36ǂ∗ 0.04
Recreational use 0.26ǂ 0.05 − 0.89ǂ∗ − 0.18
Light pollution − 0.10 0.08 − 0.41ǂ∗ − 0.20
Habitat modification − 0.09 − 0.18 − 0.62ǂ∗ − 0.14

Food Fisheries removals 0.22ǂ∗ − 0.01 − 0.19 − 0.14
Shellfish aquaculture 0.15 0.22ǂ 0.25ǂ − 0.31ǂ∗

Finfish aquaculture 0.29ǂ∗ − 0.06 − 0.05 − 0.20
Seafood demand 0.22ǂ∗ 0.11 0.06 − 0.01

Construction Coastal engineering 0.27ǂ∗ − 0.01 0.04 − 0.13
Freshwater retention 0.28ǂ∗ − 0.12 0.03 − 0.08
Sediment retention 0.28ǂ∗ − 0.12 0.03 − 0.08
Benthic structures − 0.27ǂ∗ 0.03 0.11 − 0.01

Energy Oil and gas activities − 0.26ǂ∗ 0.04 − 0.12 0.07
Power plant activity 0.08 − 0.45ǂ 0.14 0.54ǂ∗

but oil and gas activities and related benthic structures
were negatively correlated (Table 3; Appendix 3, Fig. S28,
see supplementary material at Journals.cambridge.org/ENC).
Trends 2–4 showed a variety of peaks and valleys at various
times throughout the period. Six of eight pressures that loaded
heavily on trend 2 also loaded heavily on trend 3 or 4 (Table 3),
suggesting some correlation among these three trends in
certain periods. Pressures associated with transportation and
coastal disturbance tended to have higher loadings on trend
3, while pressures associated with the input of terrestrial
pollutants were generally related to trend 4 (Table 3).

Because all four trends were estimated simultaneously,
we cannot statistically determine which trend was most
important; however, comparing the results from models with
one, two and three common trend(s) with the trends found
in the 4-trend model (Zuur et al. 2003a) suggested that trend
1 was the most important as it was nearly identical to the
trend found in the 1-trend model and other monotonic trends
found in the 2- and 3-trend models (Appendix 3, Fig. S29, see
supplementary material at Journals.cambridge.org/ENC).

The inclusion of covariates did not significantly increase
the fit of the DFA model to the pressures time series data in

the top three models, but trend 1 from the 4-trend model was
highly correlated with both covariates (population abundance
versus trend 1: r = 0.98; GDP versus trend 1: r = 0.95).

It is important to note that the strength of the relationship
between each pressure and each common trend is a function
of the length of each time series. For example, the time series
for marine debris in the northern CCE was strongly related to
the inverse of trend 3 and less positively related to trend 2 for
only a short period of that trend (data for marine debris only
available from 1999 to 2007; Tables 1 and 3). In contrast, the
time series for seafood demand (data available from 1962 to
2011; Table 1) was related to trend 1 across the entire period
from 1985–2011 (Table 3).

DISCUSSION

One central tenet of ecosystem-based management is to
address the multiple activities occurring both on land (for
example agricultural and industrial practices) and in the ocean
(such as fishing and energy exploration) that affect various
components of marine ecosystems (Leslie & McLeod 2007).
Spatial analyses have quantified individual and cumulative
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pressures across the CCE (Halpern et al. 2009), but prior
to this work there have not been companion analyses
conducted to determine the temporal status and trends of
these anthropogenic pressures.

In this study, most indicators of pressures showed either
significant short-term trends or their current intensity was
at historically high or low levels. Taken together, these
results support two primary conclusions: (1) decreasing trends
of several pressures (such as shipping related indicators,
industrial pollution and recreational activity) potentially
reflect slowing economic conditions during the economic
recession that began around December 2007 (see Grusky et al.
2011), and (2) most pressures at historically high intensity
levels have levelled off and are not continuing to increase. An
exception to these general conclusions is shellfish aquaculture,
which continues to increase despite being at historically high
levels. The time series for seafood demand and dredging also
suggest that these pressures will be increasing at historically
high levels if current trends continue over the next few years.
In addition, new pressures related to wind/wave/tidal energy
will need to be incorporated into this framework as activities
associated with these technologies will undoubtedly increase
over the next several decades.

Since each of the catalogued pressures is associated with
one or more human activities, the connotation of their status
and trend depends on one’s perspective. For example, a
decreasing trend in fisheries removals may be positive for
some conservation outcomes, while at the same time, it could
be negative in the short term for human well-being in coastal
communities (Levin et al. 2009). Understanding the trade-
offs resulting from dynamic changes in these pressures for the
social, economic and biological components of the ecosystem
is essential for making informed management decisions (Link
2010; Kaplan & Leonard 2012). The time series developed
here can be used to inform such decisions in the USA’s portion
of the CCE, and to populate science-based decision support
tools that link biological components of marine ecosystems
with human communities and economies.

In addition to quantifying the intensity and trends of
individual pressures, the ultimate goal of this work was to
reduce the large number of pressures to a manageable number
of trends that could subsequently be used in integrative
analyses that investigate linkages between pressures and
state variables across the CCE. In our first method that
calculated two indices of cumulative pressures across the
CCE, we found statistical differences in the status and trends
between the additive and weighted models, but they provided
qualitatively similar results. These results suggest that, at the
scale of the USA’s portion of the CCE, either model could
be useful for capturing the overall variation in cumulative
pressures. The weighted model may be most useful when
examining relationships between cumulative pressures and
specific species where the sensitivity of each species to each
pressure could be used as weightings (see Maxwell et al.
2013). For resource managers interested in the potential
impacts of these pressures in specific habitats, habitat-specific

vulnerability scores for each pressure (Teck et al. 2010) could
be used instead of the average vulnerability score across all
habitats. The habitat-specific vulnerability scores would be
weighted by the proportion of area of each habitat within
the region of interest in order to calculate the weighting for
each pressure. In this application, the difference between
additive and weighted models could be quite significant
depending on the relative size of the habitats present in the
region-of-interest and their relative vulnerability to various
pressures.

A clear limitation of any analysis attempting to combine
multiple pressures into a cumulative index is the lack of
data on the strength and form of interactions between them
(Halpern & Fujita 2013). Without a clear understanding
of the potential synergistic and antagonistic interactions
among multiple pressures (Crain et al. 2008; Darling & Côté
2008; Brown et al. 2013), an additive index can be used to
describe the cumulative effect of multiple pressures acting
on the system (Halpern et al. 2009). However, an increasing
body of work has more realistically described effects of
multiple pressures on fish populations, as well as on fisheries
(Kaplan et al. 2010; Ainsworth et al. 2011; Brown et al.
2013), and there has been increasing effort to empirically
evaluate the strength and direction of interactions among
multiple pressures (Lefebvre et al. 2012; Lischka & Riebesell
2012; Sunda & Cai 2012). This research will help better
understand cumulative effects of multiple pressures on various
species, habitats and ecosystems, and reduce uncertainty in
quantifying these effects.

Of the two multivariate approaches to reduce the number
of pressures into a manageable number of trends, principal
components analysis (PCA) allowed us to reduce a set of 15
pressures down to two principal components that explained
68% of the variation. The analysis showed large changes in
the composition of pressures during the 1994–2008 period.
The relative changes among pressures may reflect changes
in regulatory actions, business practices, economic activity,
technological advances and social norms over this period. The
principal component score framework has been suggested as a
way to measure the relative status of an ecosystem and to derive
specific control rules, analogous to single species management
(Link et al. 2002). As the PCA score moves around in
multidimensional space, managers could determine whether
this point falls outside of acceptable conditions (Rockström
et al. 2009; Samhouri et al. 2011, 2012). Once this occurs or is
approached, pressures that are correlated with the movement
outside the acceptable range could be subject to regulatory
actions or incentives to reduce these pressures on the marine
ecosystem.

However, we caution against the use of PCA as a way to
reduce or combine multiple variables when those variables
are time series (see Link et al. 2002; Sydeman et al. 2013)
for two primary reasons: (1) PCA assumes that each year
is independent from the year before and after, thus it does
not account for autocorrelation that is present in time series
data, and (2) PCA does not allow for missing data, which are
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common in time series data, thus reducing the set of time
series that can potentially be used or adding in uncertainty
associated with using averaged or predicted data to fill in
missing values. In contrast, DFA is an analogous dimension-
reducing methodology that explicitly accounts for the nature
of time series data and can explicitly account for missing data,
as well as incorporate the effects of explanatory variables (Zuur
et al. 2003b; Holmes et al. 2012).

Using DFA, we were able to include all pressure time
series and increase the number of years in the analysis from
15 to 27 compared to the cumulative pressures index and
the PCA. The DFA reduced the 23 pressure time series to
four underlying common trends. Ideally, this analysis would
remove the effects of assumed drivers (covariates) and then
reveal correlations between each pressure and one common
trend. In our analysis, the covariates did not help remove
underlying variation, but only seven of the 23 pressures were
related to multiple common trends, making interpretation of
the results more reasonable. Despite its flexibility in dealing
with missing data and autocorrelation within time series, the
correlations of these seven pressures with multiple trends
highlights a caution in over-aggregating pressures data into
a single index or even into a few common trends, as highly-
variable pressures can load significantly onto multiple trends.
In addition, the pressures are only related to the specific period
of the trend for which there are pressure data. Alternative
nonlinear approaches for reducing the dimensionality of large
data sets have shown promise, in some instances, of being able
to explain more of the total variance in the data (for example
Kenfack et al. 2014) or in estimating the true dimensionality of
the data set (for example Tenenbaum et al. 2000) compared to
the linear methods we used, but nonlinear methods have also
been prone to detect nonlinearities and multi-modal trends
where none exist (Christiansen 2005; Andersen et al. 2009).

A second goal of ecosystem-based management is to
identify thresholds and/or reference points of pressures that
affect ecosystem state variables. Recent studies have begun
to identify thresholds for individual pressures on marine
ecosystem components (Samhouri et al. 2010; Large et al.
2013), but there has been no attempt at identifying thresholds
across multiple pressures. Reducing 23 pressure time series
to four common trends provides a way forward to identify
relationships, including thresholds, between pressures and
ecosystem components. The trends presented here, for
example, could be used by themselves or in conjunction with
oceanographic indices to explore the parameter space which is
favourable for the dynamics of specific ecosystem components
or could be used as covariates in models to help account
for ‘unknown factors’ that are not measured directly in most
studies (see for example Auth et al. 2011).

Importantly, we do not fully understand the relationship
between most ecosystem components and the intensity levels
of these pressures, either individually or collectively; thus, it is
difficult to predict whether changes in ‘pressures’ will translate
to detectable changes in ‘impacts’ on an ecosystem component.
Also, given that many of these pressures are correlated (such

as pressures that load on the same DFA trend), it may be
difficult to disentangle effects of individual pressures and
appropriately identify management responses. Each of these
concerns highlights the need for increased empirical testing
of the effects of these pressures on ecosystem responses.

It was surprising that the covariates coastal population
abundance and economic activity did not significantly
improve the fit of DFA models to the time series of
anthropogenic pressures. However, trend 1 appeared to
explain the greatest amount of variation across the set of
pressures and was highly correlated with both covariates.
Coastal population abundance and gross domestic product
may be drivers of anthropogenic pressures as a whole in
the CCE but institutional controls (laws and governance),
market forces, technological advances and/or cultural norms
likely interacted with these drivers at various times during
this period to modify the relationship between pressures and
drivers. For example, implementation of the Clean Water
Act (http://www.epw.senate.gov/water.pdf) over the years
has provided incentives and regulations which reduced the
magnitude of certain industrial pollutants (Adler et al. 1993;
Houck 2002), even though it likely reduced profits in the
short-term. Similarly, social norms have changed the way
some people feel about littering our roadways and waterways
(Lee & Kotler 2011; Naquin et al. 2011), thus reducing per
person littering in some regions even though the numbers
of humans and the amount of waste produced has continued
to increase over time (USEPA [United States Environmental
Protection Agency] 2011; Brogle 2012). At some point, we
expect our governing institutions, technological capabilities
and/or social awareness to modify the effects of pressures
ultimately caused by increases in the number of humans on
the planet.

CONCLUSIONS

Despite the uncertainties about the strength and direction of
interactions among pressures, it is important to understand
how the intensities of multiple pressures have been changing
over time. The determination of common trends among
pressures can help reduce the number of variables included
in ecosystem assessments and may help identify common
drivers for multiple pressures. Incorporating numerous
anthropogenic pressures into the framework of ecosystem-
based management is necessary to understand linkages
between these pressures and various biological components,
and more importantly, will allow identification of thresholds
(Samhouri et al. 2010; Large et al. 2013) and consideration
of trade-offs among socioeconomic, cultural and biological
components of the ecosystem (Rosenberg & McLeod 2005;
Link 2010). Combining spatial and temporal patterns of
anthropogenic pressures will provide a better understanding
of how pressures are changing over time and space and allow
managers to make better use of limited funding and resources.
Recently developed ‘end-to-end’ ecosystem models (such as
Atlantis; Fulton et al. 2011) and coupled ecological/economic

http://www.epw.senate.gov/water.pdf
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models (Kaplan & Leonard 2012) allow examination of the
effects and interactions of anthropogenic, oceanographic and
climatic pressures on multiple ecological components and
human communities. Our analyses highlight the great variety
of trends in anthropogenic pressures and may be useful for
improving hindcasts of ecosystem dynamics in these end-
to-end models. Now, marine ecologists, fisheries scientists,
and social scientists need to develop creative methods to test
the validity of model results in the field in order to increase
resource managers’ and stakeholders’ confidence in their use
as part of the decision-making process.
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