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ABSTRACT

Analysis of the cloud components in numerical weather predictionmodels using advanced data assimilation

techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA)

system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to as-

similate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation

operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the

WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water

path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of

cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-

hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice

water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of

temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is

also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature

and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One

reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the

impact of cloud information from the previous cycles spun up by the WRF Model.

1. Introduction

Initialization of the cloud components in numerical

models is important because these quantities are the

cumulative products of atmospheric moisture and hy-

drometeor transport plus complicated nonlinear

physical processes associated with cloud development

and decay (Raymond et al. 1995; Errico et al. 2007;

Bauer et al. 2011; Pincus et al. 2011; Kerr et al.2015;

Jones and Stensrud 2015). Several cloud analysis sys-

tems have been used to create an initial state, including

hydrometeors for numerical weather prediction (NWP)

models (Albers et al. 1996; Benjamin et al. 2004; Hu

et al. 2006a,b; Auligné et al. 2011). However, Auligné
et al. (2011) pointed out that ‘‘cloud distributions and

mixing ratios are retrieved through non-variational ad-

justments of moisture and/or temperature’’ in the cur-

rent cloud analysis systems and ‘‘more studies are

required to retrieve hydrometeors in balance with the

model prognostic variables.’’

Over the past decade, additional attention has also

been paid to directly analyzing cloud components for

NWPmodels using advanced data assimilation techniques.
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Many researchers have worked to initialize model hy-

drometeors with radar (reflectivity) data using three-/

four-dimensional variational (3D/4D-Var) data assimi-

lation and ensemble Kalman filter (EnKF) data assimi-

lation systems. The variational systems used for radar

reflectivity assimilation include the Advanced Research

and Prediction System 3D-Var (Gao and Stensrud

2012), the high-resolution radar data assimilation system

at the Naval Research Laboratory (Zhao and Jin 2008),

the variational Doppler radar analysis system (Sun and

Crook 1998), and the data assimilation (DA) system for

the Weather Research and Forecasting (WRF) Model

(WRFDA) 4D-Var system (Wang et al. 2013b; Sun and

Wang 2013). Although the 4D-Var and EnKF methods

show great potential, these approaches still suffer from

unaffordable computer costs for operational NWP.

Thus, the 3D-Var is still widely used in research com-

munities and operational centers.

In addition to radar observations, satellite data are

another source of observations to initialize cloud con-

densates for NWP models. There are two different ap-

proaches to assimilate satellite data. One approach is the

direct assimilation of satellite radiances. Assimilating

radiances directly can avoid uncertainties and discrep-

ancies in the retrieval algorithms that differ from satellite

to satellite (Derber and Wu 1998). Because of the un-

certainty of modeling the hydrometeors in NWP and the

inaccuracy of the Radiative Transfer Model (RTM) in

simulating the cloudy radiance, it is difficult to assimilate

radiances in the presence of clouds. Most NWP centers

and researchers concentrate on the assimilation of clear-

sky microwave and infrared radiances (e.g., Liu et al.

2012; Xu et al. 2013). Considerable progress in directly

assimilating cloudy radiances for initializing hydrome-

teors has been reported by several research groups

(Vukicevic et al. 2004; Pavelin et al. 2008; McNally 2009;

Polkinghorne and Vukicevic 2011; Stengel et al. 2013;

Kostka et al. 2014; Okamoto et al. 2014; Prates

et al. 2014).

The other approach is to use retrieved products. The

primary drawback to using retrievals in a data assimi-

lation framework is the associated difficulty in assessing

uncertainties inherent in that retrieval. However, in

contrast with challenges in the direct radiance assimi-

lation for analyzing hydrometeors (Errico et al. 2007;

Auligné et al. 2011; Auligné and Wang 2012), the sat-

ellite cloud products (such as cloud liquid water path

and cloud ice water path) are in fact usually retrieved

from visible and (near) infrared radiances that might be

not well simulated in RTM and thus are not directly

assimilated in most of the current data assimilation

systems (Kostka et al. 2014). Assimilating retrieved

cloud products is more resource friendly because the

observation operator for assimilating retrievals is simpler

than that used for radiance assimilation (Migliorini 2012).

Moreover, satellite cloud retrievals can provide a reliable,

largely untapped source of information on the cloud and

the atmospheric state not generally available from other

sources (Weisz et al. 2007; Benedetti and Janisková 2008).
Recently, cloud water path retrievals from the Geosta-

tionary Operational Environmental Satellite (GOES)

have been assimilated using the Data Assimilation Re-

search Testbed (DART) ensemble Kalman filter; a severe

weather event case study showed that assimilating cloud

water path improved representation of both themagnitude

and spatial orientation of precipitation (Jones et al. 2013).

Wang et al. (2013a,b) enhanced the WRFDA system

to initialize hydrometeors and presented results from

assimilating radar reflectivity. However, radar re-

flectivity data have limited spatial coverage and contain

no information on cloud liquid water, and even data from

the cloud radar may be less accurate in high-level cloud

ice. The objective of this paper is to further develop

WRFDA to assimilate satellite cloud liquid water path

and ice water path for initializing cloud liquid water and

ice water mixing ratios, and assess the impact of assimi-

lating the cloud products on short-term NWP forecasts.

The structure of this paper is as follows. The cloud

products and assimilation methodology are described in

section 2. Experimental setup and results are presented

in section 3. A summary and discussion are given in the

final section.

2. Cloud products and assimilation methodology

a. Global Geostationary Gridded Cloud products

The global cloud products used here are the Global

Geostationary Gridded Cloud (G3C) products from the

NASA Langley Cloud and Radiation Research Group

(Minnis 2007; Minnis et al. 2008). The G3C products

include cloud liquid and ice water paths and cloud-top

and cloud-base pressure, among others, which are re-

trieved from up to five geostationary satellites. The

cloud properties are retrieved for each cloudy pixel us-

ing the techniques described by Minnis et al. (2011a).

They are then averaged on a uniform grid of 0.258 lat-
itude by 0.31258 longitude. Both pixel and gridded data

are available. The G3C set includes data from the

Geostationary Operational Environmental Satellites

(GOES-East and GOES-West), and the European

Meteorological Satellite (Meteosat) Second Genera-

tion, the Chinese Fengyun (FY-2C), and the Japanese

Multifunctional Transport Satellite (MTSAT) satellites.

The products provide coverage at all latitudes equator-

ward of 608 latitude. The G3C products are sampled to
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achieve a resolution of between 8 and 10 km, depending

on the satellite. Full-disk or nearly full-disk data from

the satellites are available, at a minimum, each hour

from each of the five satellites.

In this study, the cloud ice water path and cloud liquid

water path, which represent the amount of cloud water

or cloud ice present in an integrated column, are as-

similated independently. For simplicity, cloud water

path (CWP) is used to represent the ice water path and

cloud liquid water path. At a given location, either cloud

liquid path or cloud ice water is available. To evaluate

the quality of CWP, we compared it with an independent

cloud retrieval dataset from the Moderate Resolution

Imaging Spectroradiometer (MODIS; Platnick et al.

2003). The MODIS products have high spatial (1 km)

resolution but are only available at two local times each

day over a given region. Two examples, at 0300 UTC 11

and 18 July 2011, are shown in Fig. 1. The spatial dis-

tributions of clouds in G3C are similar to MODIS. The

CWP frequency histograms (Figs. 1c, f) show that 1) in

the main cloud area (between 40 and 1000 gm22), the

CWP frequency distribution fromG3C is close to or less

than that from MODIS; and 2) in thin cloud areas

(CWP , 40 gm22) and thick cloud areas (CWP .
2000 gm22), the frequency distribution of the cloud

water path from G3C exceeds that from MODIS. The

discrepancies are likely due to viewing angle, resolution,

calibration, and retrieval method differences. Although

the MODIS products have higher horizontal resolution

than their G3C counterparts, the G3C has the merits of

greater temporal resolution and global coverage.

b. Assimilating cloud liquid/ice water path

The three-dimensional variational component of the

WRFDA system (Barker et al. 2012) is used in this

study. It is designed to find an analysis that minimizes

the following cost function:

J(x)5
1

2
(x2 xb)TB21(x2 xb)

1
1

2
[y2H(x)]TR21[y2H(x)] , (1)

FIG. 1. CWP distribution of (a),(d) G3C and (b),(e) MODIS, and (c),(f) CWP frequency histogram of G3C MTSAT (solid) vs MODIS

(hollow). Panels (a)–(c) are at 0300 UTC 11 Jul; (d)–(f) are at 0300 UTC 18 Jul 2011.
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where x is the analysis model vector, xb is the back-

ground model vector, y is the observation vector, H is

the nonlinear observation operator mapping model

space to the observation space, and B and R are the

background and observation error covariance matrices,

respectively.

To assimilate cloud liquid and ice water paths, the

observation operators of cloud ice water path and cloud

liquid water path, HCIP and HCLP, are defined as

HCIP(qi)5
1

g

ðCTP
CBP

qi dp and (2)

HCLP(ql)5
1

g

ðCTP
CBP

ql dp , (3)

where CBP and CTP are retrieved cloud-base pressure

and cloud-top pressure, respectively. The CBP and CTP

are used to constrain the analysis increments inside the

cloud regions. The terms qi and ql represent the cloud

ice and cloud water mixing ratios of the atmospheric

state, respectively. The cloud control variables are cloud

liquid water mixing ratio and cloud ice water mixing

ratio.1

c. Observation error specification and cloud product
quality control

The cloud product observation error was estimated

using both observation minus background and obser-

vation minus analysis information (Desroziers et al.

2005). In the proposed formulation of Desroziers et al.

(2005), the observational error variance is the expecta-

tion of observation minus background multiplied by

observation minus analysis:

E[doa(d
o
b)

T]5R . (4)

To estimate observational error variances, 6-h WRF

forecasts initiated from GFS analyses at 0000 UTC

during a 10-day period from 10 to 20 July 2011 were

first produced, and then the first guess of the observa-

tional error variances was roughly estimated as the

variances of the observation minus the 6-h WRF fore-

casts. Using this first guess of observational error as in-

put to WRFDA, analyses are obtained for calculating

observation departure from analyses. With the obser-

vation departures from background and analyses, the

final estimations of the observational error variance are

obtained using Eq. (4). In general, the cloud ice water

path error is in the range of 100–500 gm22, while the

cloud liquid water path error is around 50–100 gm22. In

this study, the constants with values of 300 and 60 gm22

are used for cloud ice path and cloud liquid path ob-

servations, respectively. Here, it is noted that the errors

for the cloud liquid water and ice water are noticeably

different. Jones et al. (2013) used a constant value of

50 gm22 CWP error in their EnKF system. The value of

60 gm22 for cloud liquid water path in this research is

very close to that value. The observation error values

estimated here are also consistent with reports from

other studies. It was shown that uncertainties in cloud

liquid water path estimated from surface and satellite

microwave retrievals are between 30 and 100 gm22

(Dong et al. 2002; Painemal et al. 2012; Xi et al. 2014),

and standard deviation of ice water path for global ice

cloud mean is about 250 gm22 (Minnis et al. 2011b).

Quality control is an essential step for successfully

assimilating the CWP data. To ensure that only good

quality data were assimilated, the cloud products un-

derwent the following quality-checking process. First,

two quality assurance (QA) flags relevant to cloud liquid/

ice water paths provided in the G3C products were used

to filter the data. More details on G3C product retrieval

algorithm and quality were descripted in Minnis et al.

(2011a) and detailed production description can be

found online as well (http://cloudsgate2.larc.nasa.gov/).

The data were selected while the general QA 5 1 and

the confidence QA. 1. This ensures that only good and

very good products will be assimilated. Second, a maxi-

mum check was carried out. The observations with a

value greater than 2500 gm22 were discarded. Last, a

background check was performed where the observa-

tions were rejected if the absolute values of observation

departures from background exceeded five times (default

value in WRFDA) the observation error.

3. Experimental setup and results

a. Experimental setup

Data assimilation cycle and forecast experiments were

conducted to assess the impact of the G3C CWP data on

short-term regional numerical weather prediction using

the Advanced Research WRF Model, version 3.5.1

(V3.5.1). The experiments cover a 10-day period from 10

to 20 July 2011. During this period, sustained rainfall

occurred in the Yangtze–Huaihe area and Korean

Peninsula. The accumulated precipitation exceeded

100mm over most of the region. The establishment and

maintenance of a blocking system over north China and

1Hydrometeor control variables of cloud liquid water mixing

ratio, ice watermixing ratio, rainwatermixing ratio and snowwater

mixing ratio had been developed by Wang et al. (2013a,b). How-

ever, only cloud liquid water and rainwater were mentioned in

their papers.
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the northward movement of a South China Sea low

pressure system that brings warm and moist air along a

low-level jet are directly related to continuous heavy

rain (Liu et al. 2014). The model domain used herein

consists of 3603 240 grid points with 12-km spacing. The

physical process schemes were the same as the opera-

tional Rapid Update Cycle data assimilation and fore-

casting system used at the Beijing Meteorological

Bureau since 2008 (Wang et al. 2013a). Background

error statistics were generated via the National Meteo-

rological Center method (Parrish and Derber 1992) us-

ing the utility ‘‘gen_be’’ packages in the WRFDA

system (Barker et al. 2012).

Two continuous rapid update cycle (3 hourly) assim-

ilation experiments were conducted. The control ex-

periment (EXP-CON) assimilated the National Centers

for Environmental Prediction (NCEP) operational

Global Telecommunication System (GTS) dataset,

which is the same as in Xu et al. (2013). In the second

experiment (EXP-CWP), the satellite-derived cloud

liquid path and cloud ice path were assimilated along

with the GTS observation dataset used in the EXP-

CON. We made 24-h forecasts with initial conditions at

0000, 0600, 1200, and 1800 UTC every day.

b. Verification against GTS observations

Cloud ice water path accounts for the highest per-

centage of the observed CWP in the 10-day experiment

period. Hence, analysis of cloud ice watermixing ratio in

the upper model levels was mostly modified by the CWP

assimilation. The modification of cloud liquid and ice

water initial conditions can influence the subsequent

temperature and humidity forecasts through phase

change and interaction with radiation processes and

further affect forecasts of other prognostic variables. In

this subsection, temperature, humidity, and wind anal-

yses and forecasts at model upper levels were first ex-

amined to estimate impact of the CWP assimilation.

Analyses and forecasts are verified against the GTS

data. Figures 2a–h show the time series of root-mean-

square error (RMSE) of analyses and 12-h forecasts in

temperature, u and y wind, and specific humidity at

200hPa. In the first four cycles (12 h), the differences in

RMSE between the two experiments are rather subtle.

However, after the fifth cycle, the RMSE of the analyses

is noticeably reduced and positive impacts last over the

reminder of the data assimilation period (Fig. 2, left

column). The positive impact of assimilating CWP can

be seen in the 12-h temperature and wind forecasts as

well (Fig. 2, right column). The impact of cloud assimi-

lation on 12-h humidity forecasts (Fig. 2d) appears to be

neutral. The above results suggest that the assimilation

of the cloud products reduces the errors in temperature,

humidity, and wind analyses and increases the forecast

accuracy of 12-h forecasts of temperatures and wind at

200 hPa. It also found that the surface temperature and

humidity analyses are improved (Fig. 3, left column).

The analysis error reduction in moisture and tempera-

ture, which will provide accurate thermal and instability

conditions for convection initiation, is thus expected to

lead to improved precipitation skill (Koch et al. 1997;

Parsons et al. 2000). The improvements in 12-h surface

temperature and humidity forecasts are very slight

(Fig. 3, right column).

Figure 4 shows averaged RMSE profiles for temper-

ature, specific humidity, and u and y wind for analyses

and forecasts. For temperature, at the upper levels

(above 300 hPa), both the analyses and the 12- and 24-h

forecasts are improved by assimilating the CWP. For

humidity analyses, we see the improvements below

200hPa as a result of assimilating CWP. However, there

is no significant difference between the two experiments

in the humidity forecasts.

For the wind analysis and forecasts, it is seen that the

RMSE between 100 and 300 hPa in the experiment

assimilating cloud liquid/ice water paths is less than

that from the control experiment. In addition, the im-

provement in model upper-level wind forecasts lasts up

to 24 h.

c. Verification against GFS analyses

To better understand the effects of cloud ice path and

cloud liquid water path assimilation, the vertical struc-

tures of temperature and humidity analyses and fore-

casts from the two data assimilations are compared with

the final (FNL) global tropospheric analyses produced

by the NCEP GFS (http://rda.ucar.edu/datasets/ds083.0/).

The GFS final analysis is selected as a reference because

the GFS final analyses are accurate enough to describe

large-scale systems, since the most complete set of obser-

vations including satellite radiances were assimilated to

produce the final analysis.

Here we will focus on the thermal and moisture ver-

tical structure comparisons since accurate vertical ther-

mal instability and moisture conditions are crucial for

convection initiation andmaintenance (Koch et al. 1997;

Parsons et al. 2000), especially for summertime heavy

rainfall events over Asia (e.g., Zhang and Zhang 2012).

Figure 5 shows the 10-day-averaged south–north

section of the averaged temperature difference be-

tween EXP-CWP analyses/forecasts and the GFS anal-

yses. A total of 41 analyses and WRF forecasts during

the 10 days are used in the calculation. It is seen that the

experiment EXP-CON shows a cold bias between the

30th (;388 hPa) and 36th levels (;170 hPa), whereas it

shows a warm bias between the 20th (;783 hPa) and

AUGUST 2015 CHEN ET AL . 1813
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a) b)

c) d)

e) f)

g) h)

FIG. 2. Time series of RMSE at 200 hPa for (a),(b) temperature; (c),(d)

specific humidity; (e),(f) u wind; and (g),(h) y wind for (left) the analyses

and (right) the 12-h forecasts.
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30th levels (;388 hPa) for both analysis and forecasts.

Figure 6 shows the 10-day-averaged south–north section

of the averaged temperature difference between the

EXP-CWPanalyses/forecasts and theEXP-CONanalyses/

forecasts. In comparing Fig. 5 and Fig. 6, it is seen that

EXP-CWP clearly reduces the cold temperature bias

close to and above the 30th level (;388hPa), and it re-

duces the warm bias between about the 20th (;783 hPa)

and 30th levels (;388 hPa). It is noted that the im-

provement on the temperature field lasts up to 24h.

As for relative humidity, the experiment EXP-CON

shows a dry bias above about the 18th level (;836 hPa)

and a wet bias below about the 18th level in both analysis

and forecasts (Fig. 7). The dry bias is obviously reduced by

assimilating cloud liquid water path and cloud ice water

path (Fig. 8). The improvement lasts up to 24h.

In summary, it is found that assimilation of cloud ice

water and liquid water paths greatly reduced the dry

moisture bias, the cold temperature bias close to and

above 30th level, and the warm bias below the 30th level.

These improvements on vertical thermal and moisture

fields are beneficial to the maintenance of snow and ice

condensates above themid–upper-level atmosphere and

increase vertical thermal instability, which will increase

a) b)

c) d)

FIG. 3. Time series of RMSE for (a),(b) surface temperature and (c),(d) surface specific humidity for (left) the

analyses and (right) the 12-h forecasts.
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cloud and precipitation skill, as will be shown in

section 3d.

d. Cloud and precipitation verifications

In the above subsections, it is shown that the most

improved regions are in the upper-level atmosphere

around 388–170hPa. Further examination of cloud liq-

uid water path data and cloud ice path data showed that

data amount of the cloud ice water path is much greater

than the cloud liquid water path, which results in cloud

ice increments in upper model levels. Figure 9 shows the

south–north section of the averaged ice water mixing

ratio difference between EXP-CWP and EXP-CON. It

is seen that, for analysis (Fig. 9a), the ice water is

increased between the 26th (;550hPa) and 35th levels

(;204hPa), with a maximum close to the 30th level. For

forecasts (Figs. 9b–g), the differences are also mainly in

these levels, but themaximumof the differences gradually

decreased with forecast time. This is because the cloud

liquid/ice water paths retrieved from visible and (near)

infrared radiances mainly represent the upper-air cloud

water status near the cloud top, whereas the retrievals are

based on the visible and (near) infrared radiance. This also

explains why the major improvements in the temperature

and u and y wind for analyses and forecasts are also be-

tween 300 and 150hPa (Figs. 4, 6, and 8).

Since there is no three-dimensional hydrometeor

observation/product over the model domain to directly

FIG. 4. Averaged vertical RMSE profile for analyses and 12- and 24-h forecasts in comparison with GTS observation:

(a) u wind, (b) y wind, (c) temperature, and (d) specific humidity.
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FIG. 5. South–north section of 10-day-averaged temperature difference (8C) between EXP-CON and FNL for

(a) analysis and (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, and (g) 24 h.

AUGUST 2015 CHEN ET AL . 1817



FIG. 6. South–north section of average temperature difference (8C) between EXP-CWP and EXP-CON for

(a) analysis and (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, and (g) 24 h.
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FIG. 7. South–north section of 10-day-averaged relative humidity difference (%) between EXP-CON and FNL for

(a) analysis and (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, and (g) 24 h.
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FIG. 8. South–north section of 10-day-averaged relative humidity difference (%) between EXP-CWP and

EXP-CON for (a) analysis and (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, and (g) 24 h.
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FIG. 9. South–north section of averaged ice water difference (g kg21) betweenEXP-CWPandEXP-CON for

(a) analysis and (b) 3, (c) 6, (d) 9, (e) 12, (f) 18, and (g) 24 h.
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verify the hydrometeor analysis, the G3C products are

used to verify the WRF cloud fields at analysis and

forecast times. Figure 10 shows the biases (absolute

values) of WRF-simulated cloud ice water path and

cloud liquid water path relative to the G3C products. A

total of 41 analyses and WRF forecasts during the

10 days are used to calculate the biases. It is seen that the

bias in cloud ice water path at analysis time was signifi-

cantly reduced in EXP-CWP, and the improvement lasts

12 h. Meanwhile, the impact on the cloud liquid water

path is slight because the data amount of cloud liquid

water path is less than the cloud ice water path.

The precipitation was verified against the China

Hourly Merged Precipitation Analysis (CHMPA),

which has an hourly and 0.18 latitude 3 0.18 longitude
temporal–spatial resolution (Shen et al. 2014). The

averaged 24-h accumulated precipitation over the

10-day period from CHMPA and the two experiments

are shown in Fig. 11. It can been seen that EXP-CON

shows less precipitation than the observations, which

indicates the system has a dry bias as shown in the

relative humidity analysis (Fig. 7). It is seen that the

location and spatial distribution of precipitation fore-

cast by EXP-CWP are much closer to the observations

than that from EXP-CON. Additionally, the pre-

cipitation intensity forecast near the rainfall center was

improved as well.

To provide a quantitativemeasure of the precipitation

forecast skill, the effect of assimilating CWP on pre-

cipitation forecasts was assessed using the threat score

(TS). Figure 12 shows TS for different precipitation

thresholds. Relative to EXP-CON, EXP-CWP notice-

ably improved the forecast skill of the 6-h accumulated

precipitation up to 24h. Additionally, the positive im-

pacts on TS at large thresholds are more obvious after

the 6-h forecasts.

The above results indicate that assimilating cloud

products has obvious positive impacts on short-term

numerical weather forecasting. One reason that leads to

the improved analysis and forecast is that the 3-hourly

rapid update cycle carries over the impact of cloud in-

formation from the previous cycles spun up by theWRF

Model. This is shown in the time series of RMSE in

Fig. 2. It is also confirmed by a sensitivity experiment

with a 6-hourly cycle that showed less impact of the

CWP assimilation (figure not shown).

4. Summary and discussion

This paper aims to further develop WRFDA to as-

similate satellite cloud products for initializing cloud

liquid water and ice water mixing ratios and assess the

effect of assimilating the cloud products on short-term

NWP. The updated WRFDA system is tested by as-

similating the G3C cloud liquid/ice water path data that

FIG. 10. Biases (gm22) of cloud ice water path and cloud liquid

water path verified against G3C.

FIG. 11. Averaged 24-h accumulated precipitation: (a) Climate Prediction Center (CPC) morphing technique (CMORPH) precipitation

analysis, (b) EXP-CWP, and (c) EXP-CON.
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were retrieved from the visible and (near) infrared

geostationary satellite radiances, which are not assimi-

lated in most of current data assimilation systems. Re-

sults indicate that assimilating the cloud liquid/ice water

path has a positive impact on temperature and wind

analysis and forecasts mostly noticeable at high model

levels. It is also shown that assimilating cloud liquid/ice

water path increases the accuracy of surface tempera-

ture and humidity analysis and precipitation forecasts.

One reason leading to the improvement in analyses and

forecasts is that the 3-hourly rapid update cycle carries

over the impact of cloud information from the previous

cycles spun-up by the WRF Model.

The cloud liquid/ice water path data assimilation

partially mitigates the limitation of the WRFDA cloud

analysis that usually depends on observations from the

operational weather radar network, which does not

observe cloud liquid water and might be less accurate on

high-level ice variables. Given the positive results in this

study, further research will focus on assimilating both

cloud products and radar observations to produce

analyses of hydrometeors for WRF. It is expected to be

more beneficial to adjust model thermal and dynamical

variables through cloud product assimilation by con-

sidering background error covariance of cloud conden-

sates and other model variables in a data assimilation

system. The multivariate background error covariance

will be employed to maximize the impact of the cloud

product and radar observations in future studies. This

can be achieved by using the WRFDA hybrid

variational-ensemble assimilation system (Wang et al.

2008) and/or improving the modeling of the climato-

logical background error covariance (Wang et al. 2014)

or the WRFDA 4D-Var system (Wang et al. 2013b;

Zhang et al. 2014). Although the above methods may

technically provide (flow dependent) multivariate

background error covariance that might improve anal-

yses and forecasts, it is of great interest to investigate

interactions between microphysics and model dynamics

for a deep understanding of cloud data assimilation.
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