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ABSTRACT

A new gridded dataset for wind and solar resource estimation over the contiguous United States has been
derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration
High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately
22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides phys-
ically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset
shows strong similarity to that previously provided by a Department of Energy-funded study, and it
includes estimates in southern Canada and northern Mexico. The solar resource dataset represents an
initial step towards application-specific fields such as global horizontal and direct normal irradiance. This
combined dataset will continue to be augmented with new forecast data from the advanced HRRR
atmospheric/land-surface model.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Today's global economy depends to a large extent upon a reli-
able electricity generation and distribution system. In the United
States (US) and indeed around the world, traditional power gen-
eration technologies such as coal, natural gas, and nuclear energy
are gradually being supplemented, and in some cases replaced, by
renewable energy generation systems [2,30]. Advancing technol-
ogy, as well as growing concern over anthropogenic global climate
change, is accelerating this transition to increasingly affordable
new power-generation systems.

While more desirable in terms of its smaller anthropogenic
footprint, renewable energy generation such as wind, solar, tidal,
and geothermal power rely on geophysical phenomena that are
variable in space and intermittent in time, posing unique chal-
lenges to the generation and distribution system. Among renew-
able resources, the US Department of Energy (DOE) has highlighted
wind energy in particular, setting a goal of achieving 20% of the
nation's electrical energy from wind by the year 2030 [31,32]. While
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less variable diurnally than solar energy, wind energy production is
still highly dependent upon favorable weather conditions. Grid
operators must anticipate so-called “ramp events”, in which the
renewable resource (wind or solar) undergoes a large change
(either positive or negative) in a short period of time [20].

Since power-generation infrastructure must generally be fixed
in location, it is very important for decision makers to have access
to the most accurate resource estimates achievable. For wind,
resource assessments are typically done using the “measure-
correlate-predict” (MCP) method, wherein a short period of wind
tower measurements is correlated with a long-term near-surface
wind record in order to predict the wind climatology at turbine
height [7]. The observation-based turbine-level wind datasets used
to identify potential sites for wind power installations are typically
brief in duration, and more importantly are very sparse in their
spatial coverage. Furthermore, one of the largest practically acces-
sible wind resources within US territory is offshore of the East Coast
(particularly in the vicinity of New England; [3,24,27]). Observa-
tions in this area are very limited. Satellite-based synthetic aperture
radar measurements (e.g. [22]), have shown promise for oceanic
regions; however, the associated retrieval techniques involve many
assumptions.

Observation-based solar resource assessments take advantage
of long-term radiation measurement networks such as the 14-
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station SURFRAD/ISIS network in the US [4]. Other observation
sources include the Cooperative Networks for Renewable Resource
Measurements (CONFRRM; [35]), the University of Oregon Solar
Radiation Monitoring Laboratory [36], a number of state moni-
toring networks (such as the Illinois Climate Network; [37]), and
observations supporting solar development by private companies.
Complementary satellite observations, conventional surface ob-
servations, and model analyses and forecasts [26] also play a role in
solar resource assessment.

In addition to a number of resource datasets developed by pri-
vate companies (e.g., 3Tier, SOLARGIS, Meteonorm), the DOE's Na-
tional Renewable Energy Laboratory (NREL) has developed wind
and solar resource maps for the period since the early 1990s. Maps
of the long-term average 80-m wind speed over the contiguous US
(CONUS), with 2.5-km horizontal resolution, were derived using
fine-resolution simulations and validation-based bias corrections
[12]. In addition, the National Solar Radiation Data Base (NSRDB),
containing data for over 1400 stations, has been developed based
on a number of statistical models [34]. Extending this effort for
wind resources, Draxl et al. [10] have recently produced a grid
integration dataset for wind energy, referred to as the WIND
Toolkit, which includes model-derived meteorological data and
simulated forecasts for over 100 000 land-based and offshore wind
power production sites.

For grid integration studies in a scenario with significant
penetration of both wind and solar, it is important to have access to
time-matched, gridded wind and solar data, which in turn deter-
mine wind and solar generation profiles (e.g., [19,25]). While
NREL's wind and solar datasets were derived using state-of-the-art
statistical and modeling techniques based on available observa-
tions, they have been derived independently of one another,
meaning that the wind and solar resource are not necessarily
meteorologically consistent when combined. That is, in regions
with few observations, the wind and solar resources could evolve
independently of one another, without necessarily representing a
meteorologically realistic state. In this paper, we present a unified
wind and solar dataset derived from a real-time, hourly-updating
numerical weather prediction (NWP) model developed by the
National Oceanic and Atmospheric Administration (NOAA). Modern
NWP systems continue to have both known and unknown errors
associated with their data assimilation and modeling components,
but they are able to perform increasingly well for diverse meteo-
rological situations (e.g., [6]). Our goal is to compare these new
results with the NREL maps over the CONUS land area and offshore
regions, and to demonstrate the expanded utility of a physically
consistent hourly solar and low-level wind dataset using recent
NWP refinements.

Section 2 describes background information for our study: the
configuration of the NWP model and its changes during the 3-year
period examined here, and some objective statistical verification of
the solar and low-level wind forecasts. Section 3 summarizes the
development of the archive of model output used for this study, and
describes the procedures for calculating the metrics to be shown.
Section 4 presents low-level wind results, and Section 5 presents
solar results. These results are summarized and discussed in Sec-
tion 6.

2. Background on the weather model/assimilation system

In this section, we provide background on the NWP system
configuration used for this study, and present objective verification
of the model's low-level wind and solar forecasts.

2.1. Hourly updating numerical weather prediction system — the
HRRR

The NOAA Earth System Research Laboratory (ESRL) Global
Systems Division (GSD) has developed a 13-km horizontal grid
NWP model called the Rapid Refresh (RAP; [6]). The RAP is run
every hour, out to 21 forecast hours, over a domain that covers all
of North America. The RAP replaced the earlier smaller domain
Rapid Update Cycle (RUC; [5]) as NOAA's operational rapidly-
updating forecast system in May 2012. Since 2010, a nested
version of the RAP on a 3-km horizontal grid has also been run
hourly in experimental mode at GSD, over a domain the covers the
entire CONUS; this nested version of the RAP is called the High-
Resolution Rapid Refresh (HRRR). The model domains are shown
in Fig. 1. An older version of the HRRR was implemented opera-
tionally within NOAA in September 2014; however, all of the re-
sults presented here are based on the experimental HRRR at ESRL/
GSD. The HRRR and RAP use specially developed versions of the
WRF-ARW model [28].

Driven by the need for rapidly-updating real-time forecasts, and
in a major difference from the NWP-derived meteorological dataset
associated with the WIND Toolkit, the RAP and HRRR assimilate
many different types of observations on an hourly basis within the
data assimilation procedure. Both models use a community-
supported data assimilation package, the Gridpoint Statistical
Interpolation (GSI), to carry out 3-dimensional hybrid ensemble/
variational data assimilation [6,18], combining latest observations
with a high-resolution 1-h forecast to create an initial condition for
the next model forecast. At the end of the assimilation, a cloud/
hydrometeor analysis [6] is carried out based primarily on satellite
cloud-top temperature and surface-based ceilometer data.

The HRRR assimilates radar reflectivity observations by applying
latent heating specified from 15-min reflectivity observations
during the hour prior to the initial time [1]. Conventional obser-
vations are then assimilated prior to the launch of the WRF forecast,
allowing a much more realistic local representation of the state of
the atmosphere near the beginning of the free forecast than can be
achieved by initializing from a large-scale analysis (such as the
European Centre for Medium-Range Weather Forecasting Interim
Reanalysis used by Draxl et al. [10]).

Draxl et al. [10] restarted their simulations monthly (as opposed
to hourly for the RAP and HRRR), using scale-selective grid nudging
back to the large-scale analysis every 6 h in order to prevent drift.
The RAP avoids drift through a partial cycling technique [6] which
involves a 6-h parallel spin-up cycle initialized from the Global
Forecast System (GFS) every 12 h. Draxl et al. [10] also used WRF-
ARW, like the HRRR and RAP, for all of their WIND Toolkit simula-
tions. Table 1 provides an overview of the physical parameteriza-
tions refined for and used in the HRRR; for additional details on
these schemes and their application for improved near-surface
forecast skill, the reader is referred to [6]. In general, the same
physics suite has been used for the HRRR since April 2013, with
subsequent internal refinements to each scheme.

The WIND Toolkit meteorological dataset aims to represent low-
level winds as accurately as possible, whereas RAP and HRRR
development is driven by a need for improved real-time forecasts
over a wide array of variables for many different applications. This
much broader perspective, while possibly resulting in worse fore-
casts for individual variables, provides a unified forecast product
from one NWP system. In this study, rather than reproduce the
work of Draxl et al. [ 10]; we aim to summarize the characteristics of
a combined wind and solar dataset, derived from a single, unified
NWP model.
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Fig. 1. Map of North America showing the computational domains of the earlier RUC (red), an earlier version of the RAP (blue), the current version of the RAP (white) and the HRRR
(green) models. The RAP is on a rotated latitude-longitude grid, and the HRRR is on a Lambert conformal grid. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)

Table 1

Important configuration changes within the 3-km HRRR during the 2013—15 period of study, compared to configuration of the 2-km WIND Toolkit WRF model. MYNN: Mellor-

Yamada-Nakanishi-Niino. LSM: land surface model. RRTM: Rapid Radiative Transfer Model. RRTMG: Rapid Radiative Transfer Model — Global.

Component 3-km High-Resolution Rapid Refresh 2-km WIND Toolkit
WREF-ARW version 1 Jan — 30 Mar 2013: WRFv3.3.1 WRF v3.4.1

30 Mar 2013 — 10 Apr 2014: WRFv3.4.1

10 Apr 2014 — 1 Jan 2015: WRFv3.5.1

1 Jan — 31 Dec 2015: WRFv3.6
Convective scheme/clouds 1Jan 2013 — 1 Jan 2015: None None

1 Jan — 31 Dec 2015: MYNN boundary layer clouds
Planetary boundary layer (PBL) scheme 1 Jan — 4 Apr 2013: Mellor-Yamada-Janjic
4 Apr 2013 — 10 Apr 2014: modified version of MYNN
10 Apr 2014 — 1 Jan 2015: MYNN with reduced thermal roughness over snow
1 Jan — 31 Dec 2015: further enhanced MYNN
Land surface model (LSM) 1 Jan — 13 Mar 2013: 6-level RUC LSM
13 Mar 2013 — 10 Apr 2014: 9-level RUC LSM
10 Apr 2014 — 1 Jan 2015: RUC LSM with increased resolution of top snow layer
1 Jan — 31 Dec 2015: further enhanced RUC LSM
Radiation scheme (shortwave) 1 Jan — 30 Mar 2013: Dudhia
30 Mar 2013 — 10 Apr 2014: Goddard (5 min calls)
10 Apr 2014 — 31 Dec 2014: RRTMG (15 min calls but with solar zenith angle interpolation)

Radiation scheme (longwave) 1 Jan 2013 — 10 Apr 2014: RRTM
10 Apr 2014 — 31 Dec 2015: RRTMG
Microphysics scheme 1 Jan — 30 Mar 2013: Thompson v3.3.1

30 Mar 2013 — 10 Apr 2014: Thompson v3.4.1

10 Apr 2014 — 4 May 2015: Thompson v3.5.1

4 May — 31 Dec 2015: aerosol-aware Thompson v3.6.1
Data assimilation (DA) configuration 1 Jan — 6 Apr 2013: radar downscaled from the RAP

6 Apr 2013 — 8 Apr 2014: 15-min radar DA + 3DVar with static model background error covariance

8 Apr 2014 — 31 Dec 2015: 15-min radar DA + hybrid ensemble/variational DA with 75%
flow-dependent covariance from 80-mem GFS ensemble/25% static covariance

Cycling 1 Jan 2013 — 31 Dec 2014: None
1 Jan — 31 Dec 2015: land surface only

Yonsei Univ. scheme

Noah LSM

Dudhia

RRTM

Eta

None

None
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In the remainder of this section, we present quantitative veri-
fication results to inform interpretation of the 80-m wind and
surface solar results in Section 4. A variety of verification metrics
have been used for wind [10] and solar [38] forecasting, but in this
study we focus on root mean squared (RMS) error and bias (forecast
minus observation). Examining higher-order statistics such as
skewness and kurtosis, or measures of ramp performance, repre-
sents an effort outside the scope of this work.

2.2. 10-m wind speed verification

Modern wind turbines, often 100—200 m tall, respond to the
wind in a layer that is far above any conventional in situ surface-
based meteorological observing systems. Thus, wind resource as-
sessments must rely upon observations from dedicated instru-
mented towers in the vicinity of a potential wind power site. In
cases where wind farm development proceeds beyond the initial
prospecting phase, these tower anemometer observations often
become highly “waked” by the growing number of turbines erected
in the surrounding area. This problem precludes the general use of
wind tower observations for model verification purposes. In order
to circumvent this issue, here we examine 10-m wind verification
results using the METAR surface observation network. This network
consists of about 1800 stations reporting hourly; exposure of these
instruments is generally good, as many of them are located at air-
ports away from tall trees or human-built structures.

In this study, we consider 1-h HRRR forecasts as our best esti-
mate of the state of the atmosphere regardless of the HRRR
initialization methods before or after spring 2013 (see Table 1).
One-hour forecasts are considered to be close enough to the initial
time that the model forecast error is still small and the forecast is
still strongly constrained by recent observations. At the same time,
the 1-h forecasts are also far enough from the initial time that the
model has had time to spin up realistic 3-km structures in the at-
mosphere consistent with the atmospheric physical processes
represented in the HRRR model, which is desirable for this wind/
solar dataset. Sufficient adjustment to attain physical consistency
with the atmospheric relationships represented in the model, after
the arrival of observations in the data assimilation procedure, re-
quires this 1-h forecast duration.
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Fig. 2. 10-m wind speed bias (red curve; forecast minus observation; m s~') and root-
mean-squared (RMS) error (blue curve; m s—') of HRRR 1-h forecasts over the full
HRRR domain during 2013—15. Verification is against METAR observations of 10-m
wind. A 30-day average is applied to reduce the amount of short-time-scale noise.
The thick black line represents an optimal bias of zero. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2 shows the root mean squared (RMS) error and bias
(forecast minus observation) of 1-h forecasts of 10-m wind speed
from the HRRR, as verified against METAR stations over the entire
HRRR domain. Values are averaged over 30-day periods to reduce
the amount of noise. It is seen that 1-h forecasts have become
increasingly unbiased over the three-year period of study, with
positive biases staying below about 0.4 m s~! over the past two
years. During the same time period, RMS error has been exhibiting
a similar decrease from a maximum of about 2.8 m s~ ! in late
spring 2013 to a minimum of about 2.4 m s~! in autumn 2014.
These results suggest that, while 1-h HRRR forecasts continue to
have a slight positive wind speed bias at 10 m, the magnitude of
the bias has been decreasing, and now resides within 0.5 m s~ ! of
zero.

2.3. 80-m wind speed verification

NREL operates a wind energy technology research facility at the
base of the eastern foothills of the Colorado Front Range known as
the National Wind Technology Center (NWTC); within this complex
are a number of instrumented tall towers for wind measurement.
One of these towers, referred to as M2 [14], measures wind speed
and direction at 80 m above ground level, providing a potential
dataset for verification of the HRRR forecasts that is not waked by a
dense network of wind turbines. The M2 tower is located at 39° 54’
38.34 north latitude and 105° 14' 5.28 west longitude, and at an
elevation of 1855 m above sea level. For the purposes of this study,
we did not undertake any quality control on the dataset; however,
the raw observations are considered to be of fairly high quality (C.
Draxl, personal communication).

For the 3-year period of study (2013—15), we found a mean
observed wind speed (1-min observations at the top of the hour) of
4.77 ms~!, which is very close to the 4.85 m s~ found by Draxl et al.
[10] using the 5-min 80-m observations during the period
2007—12. We verified the 1-h HRRR forecasts for this period against
the M2 observations using bilinear interpolation [10]. Fig. 3 shows
the hourly M2 observations, HRRR 1-h forecasts, and the bias of the
HRRR forecasts (HRRR forecast minus observation). A 30-d running
mean is applied to smooth out the comparison. The HRRR exhibits a
relatively constant positive bias of 0—1 m s~! during the study
period. The 1-h HRRR forecasts exhibit a wind speed mean bias of
0.65 m s~ ! and a wind speed RMS error of 3.84 m s~ !; these
numbers compare favorably with the bias of 0.95 m s~! and RMS
error of 424 m s~! found by Draxl et al. [10] for the WIND Toolkit
model during 2007—12.

To investigate the diurnal cycle of the HRRR wind speed bias at
80 m, we calculate a mean diurnal cycle of the verification statistics
(Fig. 4). Fig. 4a shows that observed wind speeds reach their
maximum in the afternoon hours; the HRRR 1-h forecasts generally
reproduce this evolution, although the forecasted winds are too
high, reaching a peak bias in the early morning. The RMS error
remains relatively constant around 4 m s~! during most of the day,
but exhibits a relative minimum around midday (consistent with
the behavior of the WIND Toolkit model [10]).

Since the NWTC facility is subject to frequent bursts of gusty
winds and erratic mountain-wave-induced turbulence, particularly
during the cool season, we believe that the M2 dataset represents
one of the more challenging turbine-level wind verification data-
sets available. However, a comparison of HRRR 80-m wind forecasts
with 100-m wind observations from a tall tower farther away from
complex terrain (the Boulder Atmospheric Observatory near Erie,
Colorado [17]) indicates generally consistent results (not shown).
Verification of the HRRR forecasts using additional relatively
unwaked tall tower measurements from other parts of the country
would help to generalize these results; however, these datasets will
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Fig. 3. 80-m wind speed observed (blue curve; m s~!), forecasted by the HRRR with 1-h lead time (red curve; m s~'), and bias (black curve; forecast minus observations; ms~') at
the NWTC M2 tower (see text) during 2013—15. A 30-day running mean is applied to reduce the amount of short time-scale noise. (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)

likely need to be quality-controlled, representing an effort beyond
the scope of this preliminary work.

Intensive development work is ongoing within the RAP/HRRR
development team to improve low-level wind forecasts, particu-
larly through enhancements to the parameterization of planetary
boundary layer (PBL) behavior; these efforts will continue to miti-
gate the high 80-m wind speed bias evident in Fig. 3.

2.4. Solar radiation verification

As mentioned above, high-quality solar radiation measurements
are very sparse within the CONUS. In this section, we present some
performance statistics for the HRRR as verified against measure-
ments taken from the SURFRAD/ISIS networks [4]. The HRRR
currently outputs only the shortwave irradiance components
(direct, diffuse, and global horizontal).

Diurnal Cycle of 80-m Wind Speed

\W
w

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

——O0BSPD ——HRRR SPD

b)

15

05
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Fig. 5a shows the downward shortwave irradiance RMS error
and bias (forecast minus observation; W m~2) averaged over all 14
of the SURFRAD/ISIS sites for HRRR 1-h forecasts. Obviously, there is
an annual cycle in both forecast RMS error and bias since these
metrics scale with the magnitude of the observed downward
shortwave irradiance. Average biases reach up to about
40-50 W m~2 during the spring, and become as low as about
10—20 W m~? in the autumn. Note that the average bias is always
positive, indicating that the HRRR has deficient cloud cover and/or
aerosol loading. Significant data assimilation and model physics
improvements were implemented in the HRRR in early 2015, with
many of them stemming from a DOE-sponsored Solar Forecast
Improvement Project wherein the RAP/HRRR NWP system was
evaluated for forecasts of solar irradiance with a view towards
improving forecasts for solar energy users. The reduced bias in 2015
compared to previous years is attributed to these changes [6].

Diurnal Cycle of 80-m Wind Speed Bias
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Fig. 4. Diurnal cycle of (a) observed (blue curve; m s~') and forecasted by the HRRR with 1-h lead time (red curve) 80-m wind speed (m s~*), (b) 80-m wind speed bias (m s!), and
(c) 80-m wind speed RMS error (m s~!) at the NWTC M2 tower during the period 2013—15. All times are in local time (mountain standard time). (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Surface downward shortwave irradiance bias (red curves; forecast minus observation; W m~2) and RMS error (blue curves; W m~2) of (a) HRRR 1-h forecasts as verified
against SURFRAD/ISIS measurements over the period 13 Jul 2013—31 Dec 2015, and (b) ESRL/GSD HRRR 1-h forecasts (solid lines) and 1-h forecasts from a parallel prototype version
of the HRRR (dashed lines) over the period 1 Jan — 31 May 2016. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Fig. 5b shows verification from early 2016, plotting both the GSD
HRRR and a more advanced prototype parallel version of the HRRR.
This newest version of the HRRR, which will replace the prior
version at ESRL/GSD in 2016, incorporates a more advanced treat-
ment of subgrid-scale cloudiness using a mass-flux parameteriza-
tion within the PBL scheme, and also includes a statistical cloud
scheme capable of representing more general fractional cloudiness
(including stratus and cirrus [8]).

3. Methodology

This study takes advantage of a three-year archive of HRRR
forecasts. Our archive currently contains a large variety of 2-
dimensional fields, both kinematic and moisture-related. For this
study, only results related to the 80-m wind field and the surface
downward shortwave irradiance are presented. While it is likely
that wind fields at levels other than 80 m are of interest to the
renewable energy community, at this time the HRRR forecast
archive contains only the wind field at 10 and 80 m heights.
Archival of the 3-dimensional HRRR forecast files would have
permitted analysis at additional levels, but these files are prohibi-
tively large by today's standards, and keeping multiple years on
disk would not be practical at this point. Future years of the dataset
will contain the radiation components, direct normal irradiance
(DNI) and diffuse horizontal irradiance (DHI).

To calculate the summary long-term average fields presented in
this study, the raw data are analyzed using a simple running
calculation method. The 1-h forecasts are processed chronologi-
cally, keeping a record of sums and total number of forecasts for the
calculations. An additional wind-related metric, useful for wind
farm operators and utility managers, is the fraction of hours that
the 80-m wind speed exceeds certain thresholds relevant to turbine
operations. For this calculation, the procedure simply keeps a re-
cord of the number of “yes” exceedances of each threshold, and
divides this number by the total number of forecasts, at each grid
point. We use three thresholds of interest, guided by the typical
power curves presented by Clack et al. [9]: 4 m s~ ! (a point near the
bottom of a typical power curve where only a small amount of
power is generated from a wind turbine), 12 m s~! (a point near the
top of a typical power curve where the turbine is producing nearly
maximum power), and 25 m s~ ! (a point near the cut-out speed of a
typical wind turbine's power curve). Fig. 6 shows these power
curves as determined by Clack et al. [9]. The fraction of time that the
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Fig. 6. Typical power curves (normalized power versus wind speed) derived by Clack
et al. [9].

80-m wind speed exceeds these thresholds is potentially more
useful to renewable energy users than the simple arithmetic
average wind speed. Note that the specific values of the cut-in and
cut-out speeds vary significantly among turbine models; our
dataset is general enough to derive results for different wind speed
thresholds.

4. 80-m wind speed maps

In this section we present maps of 3-year average 80-m wind
metrics.

4.1. CONUS overview

Fig. 7a shows the average 80-m wind speed from 1-h HRRR
forecasts during the three years 2013—15. The average wind ranges
between less than 4 m s~! in some parts of Washington, Oregon,
California, and western Mexico (as well as in sheltered valleys in
the complex terrain of the interior western US) to nearly 10 ms~! in
the windiest regions (just offshore of Capes Blanco (Oregon) and
Mendocino (California), in the higher ranges of the Rocky Moun-
tains from northern New Mexico into British Columbia and Alberta,
east of the Rockies from Colorado, Wyoming, and Montana to
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NREL. Spatial resolution of wind resource data: 2.0 km.
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Fig. 7. (a) Average 80-m wind speed (m s~!) from 1-h forecasts from the HRRR over the period 01 Jan 2013—31 Dec 2015; major airport hubs are identified by small white circles. (b)

NREL average 80-m wind speed (m s '; [12]).

Alberta, in the Tehachapi Mountains of southern California, and in
the mountains of Baja California Norte). In the eastern CONUS, and
in the mountainous western CONUS, the highest average winds
generally occur in areas of high terrain, with lighter average winds
in the adjacent valleys and lowlands. The central CONUS clearly
comprises the largest region of high average wind speed, at least
over land. Even in the Great Plains, higher average winds are
apparent along local ridges in the terrain. The offshore wind
resource is very high both off the east and west coasts; however,
engineering requirements dictate that most development so far has
been off the east coast [23]. Note also that the Great Lakes

(especially Superior) have relatively high mean wind speeds
(greater than 8 m s~ 1).

The average 80-m wind derived from the HRRR (Fig. 7a) can be
compared with the same field calculated by NREL ([ 12]; our Fig. 7b),
at least over the CONUS. The HRRR tends to have higher average 80-
m wind speeds than the NREL dataset in most of the CONUS east of
the Mississippi River; the HRRR is generally 0.5—1 m s~ ! higher, but
occasionally as much as 1.5—-2 m s~ ! higher. In the Plains states
(particularly in the High Plains), however, the HRRR has lower
average 80-m wind speeds than the NREL dataset (generally
0.5—1 m s~ ! lower). Throughout the mountainous western CONUS,
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the two datasets are more similar, although the HRRR appears to
have higher maxima on the highest ridges. It is unclear how many
of the differences seen here are due to the limited 3-year duration
of our HRRR dataset, or a wind speed bias in HRRR 1-h forecasts at
80-m height (as described in Section 2.3). In general, the HRRR
dataset shows strong overall similarity to the [12] graphic for US
wind energy resource.

We can also compare the HRRR forecast dataset with the results
from the WIND Toolkit ([10]; our Fig. 8) for one year of overlap
(2013). The WIND Toolkit offshore wind speeds look more similar to
the earlier [ 12] wind speeds, whereas over the southeastern CONUS
the WIND Toolkit has much stronger winds than either the HRRR or
the earlier NREL maps. Verification is difficult in this region due to
the lack of elevated wind measurements.

Fig. 9 shows the exceedance frequency of the 4 m s~ threshold
from the HRRR dataset. This map further highlights the terrain
dependence of the 80-m wind speed. Not many areas in the CONUS

[(—
4 45 5

) \J ¢ .
55 6 65 7 75 8 85 9 95 10

exceed this wind threshold more than 90% of the time, but there are
some regions where it is exceeded during 85% of the 3-year study
period. These include the eastern Pacific (off the coast of California),
local ridges in the plains (particularly in the southern plains of
Texas and Oklahoma), eastern Lake Superior, the Gulf Coast of south
Texas, and the Atlantic coast. The 12 m s~ ! threshold is exceeded
much more rarely than the 4 m s~! threshold (Fig. 10). Large por-
tions of the southeastern CONUS and the west coast states exceed
this threshold less than 5% of the time. Over-land regions exceeding
this threshold more than 30% of the time are limited to ridges of
high terrain in the Rockies, Appalachians, Cascades, Sierra Nevada,
and the mountains of Baja California, and small portions of the high
plains. Significant areas of the Great Lakes exceed the 12 m s~
threshold over 15% of the time.

For completeness, we computed exceedance frequencies for a
third threshold: 25 m s, a typical cut-out speed for turbines to
prevent damage, which is shown in Fig. 11. Note that the color scale

Fig. 8. (a) Average 80-m wind speed (m s~') from 1-h forecasts from the HRRR over the period 01 Jan — 31 Dec 2013; major airport hubs are identified by small white circles. (b)

WIND Toolkit average 80-m wind speed (m s~!) over the same period.
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Fig. 9. Percent of time that the 80-m wind speed from the HRRR 1-h forecasts exceeds the threshold of 4 m s~ over the period 01 Jan 2013—31 Dec 2015.
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Fig. 10. As in Fig. 9, but for a threshold of 12 m s~ .

is different in this map, with much lower values in order to high-
light relative differences in frequency. Over most of the CONUS, the
frequency of winds of this magnitude is less than 0.1%. Exceptions
are the regions of high terrain in the western CONUS, the Nantucket
and Cape Cod vicinity, the outer banks of North Carolina, and the
area around Cape Blanco on the coast of Oregon. It is important to
note that these frequencies may be highly variable from year to
year. Since the frequencies are so low, they can be significantly
affected by individual extreme events (such as tropical or extra-
tropical cyclones). For example, the swath of higher frequencies off
the west coast of Baja California is associated with the track of
Major Hurricane Norbert, peaking in intensity on 6 Sep 2014. Some
other regions of high frequency can similarly be traced to individual

wind events. As the time period of our ongoing HRRR archive
continues to lengthen, we expect that statistically significant
geographic features will begin to emerge.

4.2. Great Plains wind corridor

As described in the previous section, the central plains of the
CONUS are characterized by high average wind speeds, with
stronger winds confined to subtle ridges of high terrain, and lighter
winds occurring in lower river valley areas. Fig. 12 shows the dif-
ference between the exceedance frequencies of the 12 m s}
threshold during the daytime and the nighttime. The daytime
calculation includes all the HRRR 1-h forecasts valid from 15 to 00
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Fig. 11. As in Fig. 9, but for a threshold of 25 m s~

a
i
oo

N L w0
5 15 25 35 45 55 65 75 85 95

Fig.12. (a) As in Fig. 10, but for the central plains only and showing diurnal variation. (a) Calculated during the daytime hours (1-h forecast valid times of 15-00 UTC). (b) Calculated
during the nighttime hours (1-h forecast valid times of 03—12 UTC).
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Fig. 12. (continued).

UTC (i.e., those initialized from 14 to 23 UTC; Fig. 12a), and the
nighttime calculation includes all the HRRR 1-h forecasts valid from
03 to 12 UTC (i.e., those initialized from 02 to 11 UTC; Fig. 12b). The
daytime valid hours cover 09—18 local time (LT; UTC — 6h) in the
central CONUS time zone, and the nighttime valid hours cover 21-
06 LT.

In the daytime, it is apparent that the gradients in the fre-
quencies are quite small; the field is relatively smooth. There is a
tendency for more frequent high winds at higher elevations. This
result is physically logical, since the atmosphere is generally fairly
well mixed during the daytime, but winds do gradually increase
with elevation where high terrain intersects stronger mid-
tropospheric winds. During the night, however, the field looks
very different. The nighttime plot accentuates even the relatively
small elevation differences that commonly exist in the plains. Local
ridges of ~100 m higher elevation show up as having much more
frequent high winds than local valleys. This is because the
nocturnal boundary layer becomes decoupled from the surface, and
a southerly low-level jet (LL]) often forms nightly. Regions where
the terrain protrudes up closer to the LL] elevation naturally have
higher 80-m winds than local valleys.

Many specific terrain features (some of which have been pre-
viously documented) show up as having frequent high winds.
These include the Milk River Divide in southern Alberta, the Mis-
souri Escarpment in western North Dakota, the Coteau des Prairies
in eastern South Dakota and southwestern Minnesota, the Chey-
enne Ridge of southeastern Wyoming and western Nebraska, the

Raton Mesa of southeastern Colorado and northeastern New
Mexico, the Gypsum Hills of western Oklahoma, the Caprock
Escarpment in the Texas panhandle, and the Callahan Divide in
northwestern Texas. These local ridges or escarpments in the
terrain have more frequent high winds than the surrounding low-
lands. The Cheyenne Ridge and the area to its west, sometimes
referred to as the Wyoming wind corridor, appears particularly
dominant in these maps, due to the fact that the prevailing west-
erlies are enhanced in this area as a result of terrain blocking by the
high terrain of central Colorado [21]. Many of the terrain features
described here have already been implemented into wind farm
development plans.

4.3. Seasonal variability

In addition to the 3-year average statistics presented above, it is
also possible to break down the results by season to examine the
seasonal variability of the 80-m winds. For each of the 4 seasons,
there are 3 years of HRRR forecast data. Winter is considered to be
December-February (DJF; for this calculation we include Dec 2012
and exclude Dec 2015), spring March-May (MAM), summer June-
August (JJA), and autumn September-November (SON).

Fig. 13 shows the CONUS mean 80-m wind speeds from the
four seasons. In terms of offshore winds, the winter (Fig. 13a) is by
far the windiest season offshore of the East Coast. At all times of
year, there appears to be an elongated maximum in 80-m wind
speed approximately aligned along the Gulf Stream. Off the West
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Coast, the seasonal cycle is more complex. During the winter, the
strongest winds are found in the far northwestern corner of the
HRRR domain, several hundred miles offshore from Washington
and British Columbia; this is likely related to the location of the
midlatitude storm track. The emergence of a pronounced sum-
mertime wind speed maximum offshore of the northern Califor-
nia coast between Capes Blanco and Mendocino (Fig. 13c) is likely
due to the seasonal shallowing of the marine layer and associated
flow blocking by the relatively high Trinity Alps in far north-
western California; these mountains are much higher than the
surrounding inland areas to the north and south. Smaller-scale
wind speed maxima are seen year round just to the southwest
of many capes along the coast, including Capes Blanco and Men-
docino, and Points Arena, Sur, and Concepcion. Another year-
round feature is a notable zone of light winds in the Southern

401

California Bight. Note also that there are many interesting small-
scale tip jets and wake features apparent along the west coast of
Baja California; we hypothesize that the ones offshore are asso-
ciated with island wakes and the related flow blocking phenom-
ena occurring in stable stratification.

In the interior western CONUS, many valley locations actually
have their strongest winds in the spring (Fig. 13b), with lighter
winds during the other seasons. High terrain in the West, however,
experiences strongest winds during the winter. This may be related
to the fact that high terrain tracks more closely with jet stream
activity (strongest in winter), but valley locations are more likely to
be tied to surface cyclone activity (strongest in the spring in the
intermountain region; [15]). The springtime mixed layer is also
much deeper than in the winter, allowing stronger winds aloft to be
mixed down to the surface.

=
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Fig. 13. Average 80-m wind speed (m s~') from 1-h HRRR forecasts over the periods (a) December—February (DJF) 2012—15, (b) March—May (MAM) 2013—15, (c) June—August (JJA)

2013-15, and (d) September—November (SON) 2013—15.
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Fig. 13. (continued).

Over the plains states, the terrain dependence mentioned earlier
(higher wind speeds on ridges, lower wind speeds in local valleys;
Section 4.2) is seen at all times of year. However, there is a large
latitudinal shift in the location of the strongest winds among the
seasons. The strongest winds are seen in the transition seasons of
spring and autumn. In winter, the maximum is in the far northern
plains and northern high plains (central Montana and southern
Alberta; Fig. 13a), whereas in the spring and summer, this shifts
southwards to the southern high plains of Texas, Oklahoma, and
Kansas. In the autumn, the maximum again begins to shift north-
wards, to the northern plains (especially the Dakotas and northern
Nebraska).

Farther to the east, in the vicinity of the western Great Lakes, a
corridor of higher 80-m wind speeds exists for most of the year

(except in the summer). The latitude of the maximum wind speed
shifts slightly north and south with the seasons, but this swath is
generally through eastern Illinois and Wisconsin, southern Michi-
gan, northern Indiana and Ohio, into southeastern Ontario. Wind
speeds in the Appalachian Mountains show a strong seasonal cycle,
with the strongest winds in the winter.

The existence of a multi-year meteorological dataset raises the
question of whether the forecasted variable time series could be
correlated with circulation indices for El Nino and other interan-
nual oscillations. While this will be possible after we have archived
many years of data, the brevity of our dataset precludes such an
analysis at the moment. In the future, though, it should be possible
to investigate the correlation of HRRR short-range wind and solar
forecasts with the variation of circulation indices.
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5. Solar radiation results

Operational NWP models are only recently beginning to output
solar energy related variables, and model forecast evaluation for
such irradiance fields is at an elementary stage (e.g., [ 16]). Fig. 14a
shows the average incoming downward shortwave irradiance
(which is similar, but not identical, to the global horizontal irradi-
ance [GHI] due to GHI's inclusion of longwave irradiance) from
hourly 1-h HRRR forecasts for the entire 3-year period. Note that
averaging the entire period introduces many nighttime forecasts
for which the downward shortwave irradiance is equal to zero; this
reduces the averages everywhere. The spatial pattern of the average
agrees reasonably well with prior expectations, and with gridded
GHI fields calculated by NREL (Fig. 14b; [13]). Higher values occur in
the desert southwestern CONUS, and relatively low values occur in

b)

the northern and eastern portions of the country. This is related to
the climatological mean 500 hPa trough (and its associated
cloudiness) over the eastern CONUS. The lowest values in the HRRR
domain occur off the Pacific Northwest coast, associated with
extensive cloud cover (both marine stratus and stratocumulus in
the summer, as well as synoptic storm-related clouds during the
cool season). The sharpness of the gradient in irradiance along the
west coast is striking; sites just inland of the coast in southern
California experience an average of 6—7 kW h m~2 day~* while
sites just off the coast receive less than 5.5 KWh m~2 day .. There
are smaller gradients located near regions of high terrain; the rain
shadow effect of the Cascades is particularly prominent.

Direct comparison between the NREL dataset and the HRRR is
difficult, since both are based upon models and both have their
inherent biases. However the relatively higher values in the HRRR

KWH/M2/Day
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Fig. 14. (a) Average downward shortwave irradiance (KWh m~2 day ') from 1-h forecasts from the HRRR over the period 01 Jan 2013—31 Dec 2015; major airport hubs are
identified by small white circles. (b) NREL NSRDB average downward shortwave irradiance (KWh m~2 day~?).
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Fig.15. Mean bias of HRRR 1-h forecasts of downward shortwave irradiance (KWh m~2 day ) as verified against SURFRAD/ISIS stations over the period Aug 2013 through Dec 2015.

Major airport hubs are identified by small dots.

forecasts over most of the country (except for the interior south-
western US) agree qualitatively with the spatial pattern of HRRR
forecast biases calculated against SURFRAD/ISIS stations (Fig. 15).
Biases in HRRR forecasts are relatively low in the desert south-
western CONUS as well as the northern plains, while forecasts over
the Pacific Northwest, the Intermountain West, and the eastern
CONUS exhibit a more substantial high bias in incoming solar
irradiance. Ongoing work is aimed at improving the representation
of subgrid-scale cloud cover in the HRRR forecasts, which will
improve irradiance forecasts (see section 2.4). Substantial model
improvements for cloud and radiation forecasts have taken place
during 2015—2016, and we anticipate additional further re-
finements in irradiance forecasts in future versions of the HRRR. In
addition, radiation variables that are more useful to the industry
(particularly direct normal irradiance [DNI]) are now being output
in GSD's experimental HRRR, and are being archived for future
analysis.

6. Conclusions

The dataset presented in this study fills a unique niche in the
renewable energy community by providing meteorologically-
consistent time-matched estimates of the wind and solar
resource across the CONUS. The dataset has the added advantage of
being derived from an advanced version of a widely-used NWP
model.

Several shortcomings of the current dataset are currently being
addressed to increase its applicability to renewable energy related
problems. As mentioned above, additional important radiation
variables are now being output by the HRRR, raising the possibility
of future analysis of the variation and relationships between 80-m
wind, GHI, and DNI. Also, the longevity of the archive continues to
increase, providing greater statistical significance and a wider
range of meteorological situations.

The wind and solar dataset from the HRRR is publically available.
Additional information on the file formatting, as well as de-
scriptions of the underlying NWP model configuration, is available
at the website (http://rapidrefresh.noaa.gov/). The data itself, in

GRIB2 format, is available via the Unidata THREDDs Data Server
(TDS) interface (http://www.unidata.ucar.edu/software/thredds/
current/tds/) at the following URL: (http://esrl.noaa.gov/gsd/
thredds/catalog/data/retro/catalog.html). This dataset represents a
starting point for further exploration of the relationships between
wind and solar energy, and we anticipate the emergence of new
applications of the dataset as well.
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