10

11

12

13

14

15

16

17

18

19

20

A topological approach for quantitative comparisons of ocean model

fields to satellite ocean color data

Hannah R. Hiester™", Steven L. Morey®, Dmitry S. Dukhovskoy®, Eric P. Chassignet®,

Vassiliki H. Kourafalou®, Chuanmin Hu®

*Center for Ocean-Atmospheric Prediction Studies, Florida State University, 2000 Levy

Avenue, Building A, Suite 292, Tallahassee, FL 32306-2741, USA.

PRosenstiel School of Marine and Atmospheric Sciences, University of Miami 4600

Rickenbacker Causeway, Miami, FL 33149-1098, USA.

“Optical Oceanography Laboratory, College of Marine Science, University of South

Florida, 140 7th Avenue S, MSL119, St. Petersburg, FL 33701, USA.

"Corresponding Author: hhiester@fsu.edu

Highlights

* A topological metric is introduced for comparing differing but related geophysical
fields

* The metric is demonstrated by comparing satellite ocean color data to model salinity
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* The metric allows quantitative comparison of spatial characteristics of observed and

modeled fields
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Abstract

The aim of this work is to demonstrate a method for quantifying the agreement between
time-evolving spatial features evident in fields of differing, but functionally related,
variables that are more commonly compared qualitatively via visual inspection. This is
achieved through application of the Modified Hausdorff Distance metric to the evaluation
of ocean model simulations of surface salinity near a river plume using satellite ocean
color data. The Modified Hausdorff Distance is a metric from the field of topology
designed to compare shapes and the methodology provides quantitative assessment of
similarity of spatial fields. The Modified Hausdorff Distance can be applied for
comparison of many geophysical and ecological fields that vary spatially and temporally.
Here, the utility of the metric is demonstrated by applying it to evaluate numerical
simulations of the time-evolving spatial structure of the surface salinity fields from three
ocean models in the vicinity of large riverine sources in the northeast Gulf of Mexico.
Using the Modified Hausdorff Distance, quantitative comparison of modeled sea surface
salinity contours to contours of a gridded satellite-derived ocean color product is made
under the assumption that the modeled fields are related to optically significant quantities
that indicate the spatial extent of riverine influenced water. Three different ocean models

are evaluated and are compared individually to the satellite data. The sea surface salinity
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values and ocean color index values that most closely match (lowest Modified Hausdorff
Distance score) are identified for each model. The Modified Hausdorff Distance scores
for these best pairings are used to both determine which model simulates surface salinity
fields that most closely match the satellite observations and obtain an empirical
relationship between the two variables for each model. Furthermore, the best pairings are
compared between models allowing key differences in the simulated riverine water
distributions to be distinguished. The Modified Hausdorff Distance proves a robust and
useful diagnostic tool that has the potential to be utilized in many geophysical
applications and facilitate the use of satellite ocean color data for quantitative evaluation

of hydrodynamic ocean models.

1 Introduction

For decades satellite sensors have been used to detect the color of the ocean surface by
measuring light reflectance in different spectral bands (McClain, 2009). These ocean
color data products have been utilized to identify and analyze ocean features that affect
pigment and particulate content of the water and hence the ocean color, including oil
spills, algal blooms and river plumes (e.g. Hu et al., 2004; Androulidakis and Kourafalou,
2013; Liuetal. 2013; Hu et al., 2015a). They have also been integrated into observation
and detection systems for harmful algal blooms and oil spills (e.g. Stumpf et al., 2003;
Brekke & Solberg, 2005; Hu et al., 2015b). With both broad spatial and frequent
temporal coverage, satellite ocean color observations also have the potential to be
valuable resources for numerical ocean modeling, however the ocean circulation

modeling community has not fully capitalized on the utility of this data.
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Satellite ocean color data have been used for ocean model assessment qualitatively,
as patterns evident in the ocean color are often similar to, and may generally be visually
compared to, features in dynamical fields (e.g. Binding & Bowers, 2003; Gregg et al.,
2003; Chassignet et al., 2006; Liu et al., 2011; Schiller et al., 2011). Quantitative
comparisons generally rely on point-wise differences that demand the same field be used
and/or an empirical relationship between different but related fields is determined (e.g.
Binding & Bowers, 2003; Gregg et al., 2003; Gregg, 2008; Mariano et al., 2011;
Chaichitehrani et al., 2014; Zhang et al. 2014). While the types of statistical measures
derived from point-wise comparisons (e.g. biases or correlations) are useful, they do not
necessarily provide comparison of spatial distributions and/or shape that are related to
circulation patterns or dynamical processes, and neither are they expressly designed for
such a purpose. The objective of this work is to apply and demonstrate the potential of a
metric called the Modified Hausdorff Distance (MHD) to quantitatively compare spatial
and temporal patterns derived from satellite ocean color observations to ocean circulation
models in an effort to more fully utilize the vast amount of remotely sensed

oceanographic data.

2 Background

The MHD originates from the field of topology and is designed specifically to
compare shapes (Dubuisson & Jain, 1994). The MHD and Hausdorff distance, from
which the former is derived, are frequently used in imaging software for object location
and pattern recognition. (Huttenlocher et al., 1993; Huttenlocher & Rucklidge, 1993;
Rucklidge, 1997; Daoudi et al., 1999; Zhang & Lu, 2004). There has been some

application to analysis of geospatial data, an example being precipitation patterns where



88

&9

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

the Hausdorff distance forms one component of a Forecast Quality Index (e.g. Venugopal
et al., 2005; Nan et al., 2010) and application of the MHD for skill assessment of sea ice
models based on analysis of spatial distribution of sea ice concentration (Dukhovskoy et
al., 2015). However, the metric has not been widely utilized in oceanographic
applications. The particular application considered here compares ocean model surface
salinity fields with satellite ocean color data near a large river source, the Mississippi
River. This presents the opportunity to utilize ocean color data from satellites for
quantitative model assessment and intermodel comparison in a region with high spatial

and temporal variability of the salinity field.

The Mississippi River enters the northeast Gulf of Mexico (NEGoM) through
several channels along the end of the Mississippi Delta. This study focuses on the area
east of the Mississippi Delta, where the shelf is nearly non-existent, and small mesoscale
deep ocean eddies dominate the circulation field over the nearby DeSoto Canyon. The
domain for the analysis presented here extends from approximately 50 km west of the
Mississippi Delta eastward to Apalachicola Bay in North Florida, and from 28°N
northward to the coast (Figure 1). The surface salinity in this region is influenced by
several rivers and is dominated by outflow from the Mississippi River (Figure 2). During
the fall and winter months, the Mississippi River plume tends to be trapped closely to the
coast westward of the study domain (Morey et al., 2003a; Morey et al., 2005). In the
spring and summer, reversal of the climatological wind allows the plume to spread
eastward over the DeSoto Canyon region (Morey et al., 2003b; Walker et al., 2005).
Interaction with circulation features such as the Loop Current and Loop Current Eddies

leads to a complex structure, with salinity contours forming intricate shapes with
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Figure 1: Bathymetry and model domains. (a) Full Gulf of Mexico. The bathymetry is shown
for GoM-HYCOM configuration. Boxes represent domains for the DSC-ROS and NGoM
HYCOM. (b) Subdomain common to all models used for analysis. The bathymetry is shown
for the DSC-ROMS configuration. The squares denote river sources that are simulated in

each model.
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Figure 2: (a) Daily river discharge calculated from US Geological Survey data used for DSC-
ROMS transport. NGoM-HYCOM uses the same data source to calculate daily river transport
and has similar variation and magnitude. (b) Monthly climatology used for GoM-HY COM

river transport. (c): Temperature climatology calculated from NOAA tides and currents data

5 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

used for DSC-ROMS. For river locations see Figure 1.

filaments extending across the domain (Figures 3 and 4, Walker et al., 1996; Morey et al.,

2003b; Schiller et al., 2011; Androulidakis & Kourafalou, 2013). The geometry of these

fields presents a challenging system for the MHD to assess, making the region and the

system analyzed an excellent scenario for demonstration and evaluation of the utility of

the metric.
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Figure 3: Example 8-day averaged fields of typical winter (left) and summer (right) OCI (a-
b) and SSS fields from GoM-HYCOM (c-d), NGoM-HYCOM (e-f) and DSC-ROMS (g-h).
In the winter, the riverine-influenced water is more coastally trapped. In the summer, the low
salinity/high OCI water spreads out over the region. Animations for the entire time periods
from each of the above can be found at:
http://coaps.fsu.edu/~hhiester/Satellite_colormap.mp4 (satellite),
http://coaps.fsu.edu/~hhiester/GoM-HYCOM colormap.mp4 (GoM-HYCOM),
http://coaps.fsu.edu/~hhiester/NGoM-HYCOM _colormap.mp4 (NGoM-HYCOM) and
http://coaps.fsu.edu/~hhiester/DSC-ROMS _colormap.mp4 (DSC-ROMS).
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Figure 4: Examples of contours of the fields shown in Figure 3. The ocean model data have
been regridded to the 4-km grid of the OCI product. Animations for each of the above can be
found at:

http://coaps.fsu.edu/~hhiester/Satellite _contours.mp4 (satellite),
http://coaps.fsu.edu/~hhiester/GoM-HYCOM contours.mp4 (GoM-HYCOM),
http://coaps.fsu.edu/~hhiester/NGoM-HYCOM contours.mp4 (NGoM-HYCOM) and
http://coaps.fsu.edu/~hhiester/DSC-ROMS contours.mp4 (DSC-ROMS).
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3 Data and Methods

This study demonstrates application of the MHD for comparing satellite-derived and
ocean model fields of different, but related quantities. In particular, an ocean color
product derived from satellite optical data is compared to salinity fields from three
different models to evaluate the models’ representations of the distribution of riverine
water. In this section, the MHD and Hausdorff distance (from which the MHD is derived)
are introduced, the ocean color product and the model simulations are described, and the

application of the MHD and diagnostic techniques are detailed.

3.1 The Hausdorff distance

The Hausdorff distance is a topological metric commonly used in the context of
visual imaging for pattern recognition and shape matching, with utility for applications
such as facial recognition (Huttenlocher & Rucklidge, 1993; Huttenlocher, et al., 1993;
Rucklidge, 1997; Daoudi et al., 1999; Zhang & Lu, 2004). The Hausdorff distance is very
sensitive to outliers within a data set and modified versions (the Modified Hausdorff
Distance) of the metric that have a more robust response to both outliers and noise have
been investigated (Dubuisson & Jain, 1994; Mattern et al., 2010). Here, following
Dubuisson & Jain (1994) and Dukhovskoy et al. (2015), the version of the MHD used is

given by
MHD = max{d(A, B),d(B,A)}, (D
where

1

d(A,B) = m

> d(@B); d(a,B) = infocpd(a, ), (2)

acA

10
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and

1

d(B,A):E

> d(A4,b); d(4,b) = infucsd(a,b) (3)

beEB

with A4 the set of points on one contour, B the set of points on a second contour and d(a,b)
the distance between those points (here, great circle distance, km). In simple terms, it
may be considered to be the largest of the average of the minimum distances between
each point on contour A and contour B and the average of the minimum distances
between each point on contour B and contour A. The MHD increases as the shapes
become increasingly different and decreases as they become more similar. It is noted that
the MHD is a topological distance and d(a,b) in equations 2 and 3 can be any appropriate
distance depending on the application. However, in general, the value of the MHD

should be viewed simply as a score with a lower value indicating a better match.

The version of the MHD above has been shown to outperform more traditional
statistical approaches such as Root Mean Square Deviation and Mean Dispersion in
sensitivity tests for rotation (within angles <30°), translation, scaling and noise
(Dukhovskoy et al., 2015). An appropriate response to these properties is an important
component of application of the metric. Dukhovskoy et al. (2015) show an increase in
MHD score as rotation and translation cause a greater difference in shape, which is
desired for this application. For river plume comparison, orientation and location of
certain features (e.g., filaments) in surface salinity contours are important characteristics

and manifest as differences in rotation (orientation) and translation (location) of contours.

11
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Dukhovskoy et al. (2015) also show that the MHD is robust to noise, with
contours being shown to be similar (small MHD score) if the amplitude of the noise is
small but also showing an increase in the MHD score (i.e. a difference in the contours) as
the amplitude of the noise grows larger. Robustness to noise is a very useful property for
comparing river plumes. If small-scale features (small-amplitude noise) are diffused and
therefore smoothed out of the contours of one model relative to the contours of another
slightly less diffuse model, then ideally a metric will still be able to determine whether
there is a general similarity in shape between the two sets of contours. At the same time,
if one model is notably more diffusive than another such that the plume shape and hence
contours are warped significantly in the diffuse case relative to the less diffusive case (i.e.
large-amplitude noise in the diffuse case), the metric should be able to determine that

there is a lack of similarity between the two and return a larger MHD score.

3.2 Satellite Ocean Color Index

An Ocean Color Index (OCI, Hu et al., 2012) derived from data from the Moderate
Resolution Imaging Spectroradiometer (MODIS) is used as a proxy identifying riverine
influenced water to evaluate the ocean model salinity fields in the vicinity of the
Mississippi River. The algorithm is based on a three-band subtraction for relatively clear
waters (chlorophyll a concentration < 0.25 mg m™), but switches to a blue/green band
ratio algorithm for more productive waters. These MODIS data were obtained from the
NASA Goddard Space Flight Center (GSFC, http://oceancolor.gsfc.nasa.gov) and
processed with the most current algorithms. This OCI product has 4km resolution and is

temporally averaged over eight days.

12
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In addition to fresh water, rivers discharge suspended sediment, Colored Dissolved
Organic Matter (CDOM), and nutrients that facilitate primary productivity (chlorophyll-
rich phytoplankton growth). Relationships between CDOM and SSS have been
previously shown using in situ data and used to harness satellite data to investigate
oceanographic and esturaine waters (e.g. Hu et al., 2003; Green & Sosik, 2004;
Chaichitehrani et al., 2014; Chonga et al., 2014). However, from the perspective of
algorithms, it is difficult to derive an accurate CDOM product in riverine waters due to a
number of reasons (e.g., uncertainties in atmospheric correction in the blue bands). As an
alternative to a satellite CDOM product, the OCI is derived from an empirical algorithm
that accounts for both phytoplankton and CDOM thus making it a good proxy for
representation of the riverine water in the domain (Hu et al., 2004). As a river plume
spreads and mixes with ambient seawater, concentrations of suspended sediment, CDOM
and often phytoplankton decrease resulting in a decrease in OCI. Hence, a higher OCI
tends to correspond to fresher water near the river mouth (i.e. a lower SSS value) and
vice versa. Because OCI contains information about both CDOM and phytoplankton in
offshore waters where suspended sediments are low, it is therefore reasonable to assume
that there is a correspondence between OCI and SSS, particularly in the CDOM rich

riverine waters.

3.3 Numerical Models

Three ocean model simulations are evaluated, two of which use the Hybrid Coordinate
Ocean Model (HYCOM) and one of which uses the Regional Ocean Modeling System
(ROMS). They differ in numerical methods and configuration. Of particular relevance are

differences in data assimilation (assimilative or not), as this impacts representation

13
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particularly of the mesoscale features in the domain that have been shown to impact

riverine water spreading in the NEGoM (e.g. Morey et al, 2003b; Schiller et al., 2011);

horizontal spatial resolution, which can impact both representation of fields and

horizontal mixing; surface forcing, particularly as the wind patterns have been shown to

impact riverine water distribution in the NEGoM (e.g. Morey et al., 2003a; 2003b); and

parameterization of river inflow. This information is summarized in Table 1. For further

information, the reader is directed to the cited references and references therein.

Table 1. Summary of the three model simulations.

Simulation

GoM-HYCOM

NGoM-HYCOM

DSC-ROMS

Data-assimilation

Data-assimilative

Free-running

Free-running

Horizontal
1/25° 1/50° lkm

resolution

Surface freshwater ~ Surface freshwater ~ Temperature,

flux with enhanced  flux with enhanced  salinity and

River
vertical diffusivity ~ vertical diffusivity momentum point
parameterization

and barotropic

adjustment

source (or series of

point sources).

Surface forcing

NOGAPS

COAMPS

3.3.1 The Gulf of Mexico Hybrid Coordinate Ocean Model

CFSR

The Hybrid Coordinate Ocean Model (HYCOM) is a finite-difference primitive equation

hydrostatic ocean circulation model (Bleck, 2002; Chassignet et al., 2003; Chassignet, et

al., 2006). It incorporates a flexible vertical coordinate system allowing smooth transition

14
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between isopycnal, terrain-following (sigma) and pressure coordinates to meet the
demands of different ocean modeling challenges, for example complex bathymetry or
changing stratification. HY COM is used operationally by the US Navy and National
Ocean Atmospheric and Administration (NOAA) in the global ocean forecasting systems
(Chassignet et al., 2009; Metzger et al., 2014). In this paper, a data-assimilative HY COM
Gulf of Mexico hindcast product is evaluated and will be referred to as GoM-HY COM.
The archived data were obtained from the HY COM server (HYCOM-31.0,
http://hycom.org/data/gomlOpt04/expt-31pt0). The domain encompasses the full Gulf of
Mexico, [-98°W, -76.4°W] and [18.9°N, 31.96°N] in longitude and latitude respectively
(Figure 1). The horizontal resolution is (1/25)° of longitude by (cos(latitude)/25)° in
latitude resulting in grid spacing of approximately 3.8-4.2 km. 20 vertical layers are used
transitioning in the open ocean from pressure levels in the mixed layer to isopycnals
below and with sigma coordinates used in shallow water. The model is forced at the
lateral open boundaries with climatology fields derived from a 1/12° HY COM model
simulation of the Atlantic Ocean (Kourafalou et al., 2009). The surface forcing is
provided by the Navy Operational Global Atmospheric Prediction System (NOGAPS,
Rosmond et al., 2002). Data-assimilation is incorporated using the Navy Coupled Ocean
Data Assimilation (Cummings, 2005). River runoff is specified at 40 locations along the
coast using a monthly climatology. The river input is implemented as a virtual salt flux at

the surface (Huang, 1993; Schiller & Kourafalou, 2010). The virtual salt flux, S, is

calculated from precipitation (P), evaporation (£) and river input (R), with
S=[—(P—E)—R]S/ao where S is the salinity in the top layer of the model and oy is a

reference specific volume. Sy is then used to calculate the salinity increment in the top
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layer of the model, dS = Sydt piin g /dp where dtpein is the baroclinic time step, g is
gravity and dp is the layer thickness in pressure units. At each baroclinic time step, the
salinity in the top layer of the model, S, is updated to account for changes due to
freshening via the virtual salt flux as S(t+dty.iin) = S(t) + dS where ¢ is time. For each
river, the freshwater flux is distributed over several ocean grid points adjacent to the river
source and an enhanced diffusivity is employed over a depth of 6m to mix the source

water through the water column. The surface salinity is relaxed to climatology.

3.3.2 The Northern Gulf of Mexico Hybrid Coordinate Ocean Model

A northern Gulf of Mexico free-running (non-assimilative) configuration of HY COM
(NGoM-HYCOM) has been developed (Schiller et al., 2011; Androulidakis &
Kourafalou, 2013; Kourafalou and Androulidakis, 2013) with an advanced river input
representation that extends the standard HY COM code (section 3.3.1) to include
momentum fluxes (in addition to salt fluxes) at the river mouth and the ability to
distribute the river input both vertically at the river mouth and across estuarine cells
(Schiller & Kourafalou, 2010). The domain extends across the Louisiana-Texas shelf and
the Mississippi-Alabama-Florida shelf [-95.52 °W, -82.52°W] and [27.98°N, 30.70°N] in
longitude and latitude respectively (Figure 1) and has 1/50° horizontal resolution. 30
vertical layers are used, 15 of which are fixed in the upper 40m of the water column. The
model is nested in the 1/25° data-assimilative Gulf of Mexico HY COM model (section
3.3.1) and atmospheric forcing is derived from the Coupled Ocean/Atmospheric
Mesoscale Prediction System (COAMPS, Hodur et al. 2002). Daily average freshwater
discharges derived from United Stated Geological Survey data are prescribed for 16

rivers, with monthly climatologies imposed for the Pearl River and Mobile Bay. These
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rivers are specified as point sources (or multiple point sources for the Mississippi River)
and there is no relaxation to climatology. In addition, the barotropic pressure change of
the water column is adjusted to take into consideration the additional pressure exerted by

the additional mass, and hence volume, of the river inflow.

3.3.2 The Regional Ocean Modeling System northeast Gulf of Mexico
configuration

The Regional Ocean Modeling System (ROMS) is a finite-difference primitive equation

ocean circulation model that employs the hydrostatic and Boussinesq approximations

(Shchepetkin & McWilliams, 2003; Shchepetkin & McWilliams, 2005). ROMS uses

sigma coordinates in the vertical that can be stretched to allow increased resolution in

areas of interest (Song & Haidvogel, 1994).

The ROMS configuration’s domain encompasses the De Soto Canyon region in the
northeast Gulf of Mexico (Figure 1) and will be referred to as DSC-ROMS
(https://data.gulfresearchinitiative.org/data/R1.x138.080:0022/). The domain extends
from the Mississippi Delta to Apalachicola Bay [-90.5°W to -84.5°W] and [27.1°N to
30.7°N] in longitude and latitude respectively. 1 km resolution is used in the horizontal
and 40 layers are used in the vertical with stretching designed to increase resolution near
the surface and the upper part of the water column. The model is nested in the 1/12°
data-assimilative global HY COM model and atmospheric forcing is derived from the
Climate Forecast Reanalysis System (CFSR, Saha et al. 2010). The river input is treated
as source terms for temperature, salinity, and momentum distributed vertically. Daily
average discharges are calculated from US Geological Survey data while temperature

climatology is calculated from NOAA tides and currents buoy data (Figure 2).
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3.4 Diagnostics

3.4.1 Procedure overview

Two-dimensional contours (isolines) of select values are computed from the satellite OCI
fields and SSS for each of the ocean models. The OCI generally decreases from the river
sources as the riverine waters spread and mix with seawater. Conversely, the SSS values
generally increase with distance from the river sources as the fresh river water mixes with
the saline ambient water. These fields are thus indicators of the region influenced by
riverine water, and the similarity of their spatial patterns is quantified using the MHD
metric. Conducting this analysis on multiple pairings of values of SSS and OCI contours
identifies the SSS-OCI relationships for each model and the differences in these pairings

are utilized to compare the river plume representations between models.

3.4.2 Preprocessing

The satellite product and model data have differing time resolution, spatial resolution,
and spatial domain bounds. To compare these data sets, the coarsest common temporal
and spatial resolutions are adopted and the smallest common spatial domain is used
(Figure 1). (When determining common spatial domains, regions of the nested NGoM-
HYCOM and DSC-ROMS in which relaxation to the parent model fields takes place are
not considered as part of the model domains for analysis purposes.) The satellite OCI
dataset used in this study has the coarsest temporal resolution of the datasets with an
eight-day average, as well as the coarsest spatial resolution with 4 km grid spacing.
Therefore, the model data are temporally averaged over eight days and regridded to the
satellite product’s 4km grid using a nearest neighbor average. The land and cloud masks

from the satellite data are then applied such that only areas with data present in all
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products are compared at each time. The smallest common spatial domain is determined
by the DSC-ROMS model for the eastern and western boundaries and the NGoM-
HYCOM for the southern boundary. The northern boundary is bounded by the
Mississippi-Alabama-Florida coastline. The resultant domain bounds used are therefore [-
89.5°W,-84.5°W] and [28°N, 30.7°N] in longitude and latitude respectively, and only

contours within this region are compared.

3.4.3 Application of the Modified Hausdorff Distance

To compare the models with the satellite data, the similarity between contours of
OCI from the satellite data and contours of SSS from each of the models is quantified by
calculating the MHD. An example of a satellite OCI field and a model SSS field and
corresponding MHD values for pairs of SSS-OCI contours at a particular time are shown
in Figure 5. As the SSS increases, the value of the OCI with the smallest MHD increases
reflecting the inverse relationship between SSS and OCI (Figure 5c). In this example,
fresher (higher OCI) contours are found closer to the coastline where they are similar in
shape leading to smaller MHD values. Further from the shore, the higher salinity (lower
OCI) contours have more complex shapes that are less similar and the MHD values for
OCI-SSS pairings that most closely match reflect this lack of similarity by increasing

correspondingly.

While both are good indicators of riverine-influenced water, the functional
relationship between SSS and OCI values is not known. To determine this relationship
empirically for each models’ SSS field, the MHD is calculated for all pairs of OCI-SSS

contour values, as shown by the example in Figure 5. The MHD values are then averaged
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358 Figure 5. Contours of satellite OCI (a) and SSS from the DSC-ROMS (b) for a particular 8-
359 day average (1-8 June 2012). (c¢) The corresponding MHD values for each SSS-OCI pair,
360 with SSS on the horizontal axis and OCI value indicated by marker color. A smaller MHD
361 indicates a better correspondence between the SSS and OCI contours. There is a decrease in
362 OCI values associated with lowest MHD for each SSS value with increasing salinity,
363 suggestive of an OCI-SSS functional relationship. Smaller values of MHD scores for the best
364 pairings are found for lower SSS and higher OCI values, as these values are indicative of
365 waters closer to the shore and river source where there is less spatial variation in the contours.
366 Higher SSS and lower OCI values are generally found further from the coast where the
367 contours are less similar in shape and location as demonstrated by higher MHD scores.
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368  over time for each OCI-SSS pairing. The best pairings (lowest MHD) over all times are
369  then identified and a polynomial is fit to these data. This yields an empirical functional
370  relationship between SSS and OCI for each model. Inspection of the MHD for these

371  optimum OCI-SSS pairings also provides information about the model agreement with

372  the satellite data.

373 3.4.4 Areal Coverage

374 To compare with the MHD analysis, the sizes of the areas enclosed by various

375  surface salinity contours around the river source are calculated. Inspection of synoptic
376  fields of the SSS in the region suggests that the area contained within select contours of
377  SSS may be a good indication of the area influenced by the riverine waters at a given
378  time (Figure 4). Dukhovskoy et al. (2015) show that this metric performs poorly when
379  trying to rank models by shape because very different shapes may have the same area.
380  While it may not be suitable for distinguishing shape, the area metric can still be applied
381  to ascertain differences among model simulations of fresh riverine water near the surface.
382  For each model the area of water in the domain with SSS less than 30.0 and 34.5 (the
383  lowest and highest SSS values considered in the MHD analysis) are calculated. These
384  areas are then compared, both between models and to the analysis of the best OCI-SSS

385  pairings as determined by the MHD analysis.

386 4 Results

387 4.1 Qualitative representation of the plume
388 The seasonality of surface salinity in the region, characterized by summer

389  spreading and winter retraction (Walker et al., 1996; Morey et al., 2003a; Androulidakis
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& Kourafalou, 2013) is evident in the satellite OCI and model SSS contours (Figures 3
and 4). During the fall and winter OCI and SSS contours are often compacted near the
coast as northwestward prevailing winds drive a coastally trapped current. During the
spring and summer, generally northward winds allow spreading to the east consistent
with Ekman drift, where mesoscale circulation features over this deeper region can
transport the low salinity water further south (Morey et al., 2003b). Features such as
filaments and smaller scale structures and undulations in the contours can be seen in the
model SSS and OCI contours at the 4 km resolution, although model fields have

increased complexity at their higher native resolutions.

In general, the near shore riverine waters correspond to values of OCI of 5 and
above. Further from the Mississippi Delta (the far field), values of OCI less than 0.35
approach the values of the ambient Gulf of Mexico waters making the full extent of the
river plume difficult to distinguish. The optical properties of the offshore waters of the
Gulf of Mexico have a distinct seasonal cycle largely due to changes in the mixed layer
(e.g. Muller-Karger, et al., 2015). OCI values between 0.37 and 12.19 are taken to be
representative of riverine water in the region and 15 values in this range, selected

incrementally on a logarithmic scale, are compared to model SSS contours.

Contours of SSS values from 30-34.5 with increments of 0.25 are computed from
the re-gridded model data. This range spans waters from the edges of the near field plume
to the outer far field where riverine waters have largely mixed with the open ocean waters
and approach the ambient salinity of the offshore Gulf of Mexico. The structure of the
plume varies between the models (Figures 3 and 4): GoM-HYCOM, the coarsest native

resolution model with climatological river forcing, generally has a broad spread of
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smoother contours, with little clustering and few small scale variations. NGoM-HY COM
and DSC-ROMS, with increased native resolution and high frequency river forcing, show
some additional detail in the contours and smaller scale features such as filaments. DSC-
ROMS tends to have more of the lower salinity riverine water pushed further offshore
compared to the GoM-HYCOM and NGoM-HYCOM in which the lower salinity riverine

water does not generally extend as far offshore.

4.2 Comparison of MHD scores between models

The MHD scores for all OCI-SSS contour pairings are calculated for each model
and each eight-day segment for the time period February 2010-February 2013, the
longest time common to all data sets. For each of the 285 OCI-SSS pairings per model,
the MHD scores are averaged over time resulting in one MHD score per pair per model
(Figure 6 a-c). For a given SSS, the OCI value that yields the minimum MHD score (i.e.
best match) can be identified (and vice versa). This provides a set of best pairings that
can be compared between models. It should be noted that there is not an exact one-to-
one correspondence between the pairings based on minimum MHD distances computed
for each SSS contour and for each OCI contour. This is due to the spacing between
values of the SSS and OCI contours chosen for this analysis. For example, in one region,
several SSS contours may cluster in between more widely spaced OCI contours. The OCI
contours will only be closest in shape to one SSS contour but two SSS contours may have
the same OCI contour that is closest in shape. As the resolution of the SSS and OCI space
increases, this discrepancy in the correspondence will likely decrease. However, using a

substantially finer resolution of the SSS and OCI values will increase the computational
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cost of the analysis given the already large number of combinations tested for each of the

three models over the three year period.

For the best pairings, the minimum MHD scores range from 20-40 km (Figure 6d)
with smaller values for the GoM-HYCOM and NGoM-HYCOM than DSC-ROMS by
approximately 5-15 km. This indicates a better correspondence of GoM-HYCOM and
NGoM-HYCOM simulated SSS spatial patterns with the satellite OCI data across a broad
range of OCI values. The exception is for very low salinity and high OCI values, where

DSC-ROMS has lower MHD scores.

The OCI-SSS value pairs that give the best MHD scores are not the same for each
model. Variations among the best OCI- SSS pairings can be used to analyze the

differences between riverine water distributions and salinity biases between models.

4.3 SSS and OCI relationships

The optimal pairings, identified by the minimum MHD scores, are compared
between models (Figure 6). For a specified SSS value, a lower OCI value for the model
in the best pairings indicates that the SSS contours are generally further offshore when
compared to the other models and vice versa. Alternatively, for a specified OCI value, a
lower SSS value in the best pair for a model indicates that model has a low SSS bias

relative to the other models.
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Figure 6: (a)-(c): Time averaged MHD values (indicated by the color of each dot) for each
SSS-OCI pairing for each model. Black circles represent the OCI value at which the MHD is
minimum for a given SSS and the black crosses represent the SSS value at which the MHD is
minimum for a given OCI. These symbols, therefore, represent the best pairings, as
determined by the MHD, and can be interpreted for each model as OCI as a function of SSS
(black circles), or SSS as a function of OCI (black crosses). The back lines show the
monotonic quadratic fit (Appendix A) to the best pairings for each model (excluding values at
the limits of the ranges of OCI and SSS contours tested). (d): The MHD for each SSS and
corresponding best match OCI value. These MHD values are generally smaller for GoM-
HYCOM and NGoM-HYCOM than DSC-ROMS indicating a better correspondence with the
OCI data, except for very low salinities where the DSC-ROMS SSS contours more closely

match the OCI data.
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DSC-ROMS has a lower OCI for a given SSS (and lower SSS for a given OCI)
when compared to GoM-HYCOM and NGoM-HYCOM. Therefore, DSC-ROMS tends
to simulate fresher water further offshore and tends toward a low SSS bias in this region
compared to the other models. At the other end of the spectrum, analysis of the NGoM-
HYCOM yields the highest OCI for a given SSS, and higher SSS for a given OCI.
Therefore, the model tends to have a high SSS bias relative to the other models over this
region of freshwater influence. Thus, overall, from DSC-ROMS to GoM-HYCOM to

NGoM-HYCOM the salinity bias moves from fresher to more saline.

All model river representations show a transition from high to low SSS as OCI
increases. Considering SSS as a function of OCI defined by the best pairings (Figure 6),
the SSS values change very abruptly over OCI values from 1 to 2 for DSC-ROMS
indicating a more rapid variation in SSS, or a more compact salinity front, compared to
the other two models. Furthermore, the transition from low to high salinity water begins
at a lower OCI (further from the river source) for DSC-ROMS than for GoM-HY COM
and NGoM-HYCOM. GoM-HYCOM displays a broader transition over a wider range of
OCI values than NGoM-HYCOM indicating less defined fronts. This is expected given
the lower resolution of GoM-HYCOM, its specification of river input from climatology
as opposed to daily measured discharge rates and parameterization of rivers using surface

salinity relaxation.

Empirical functions describing the relationship between SSS to OCI were derived
from the best pairings for each model (Appendix A). For each model, a quadratic
function is fit to all of the best pairings including both those derived from the OCI that

yields the minimum MHD for a given SSS and those derived from the SSS that yields the
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minimum MHD for a given OCI (more detail may be found in Appendix A). The
functions generally indicate a faster rate of change of OCI with SSS at higher SSS values
for NGoM-HYCOM and GoM-HYCOM than for the DSC-ROMS simulation (Figure 6).
This may be an indication of generally enhanced lateral mixing in the HY COM

simulations compared to the ROMS simulation.

A picture of the differences in the plumes can be built from the MHD analysis, with
DSC-ROMS simulating a large area of low salinity water with a sharp transition to high
salinity water and GoM-HY COM displaying a broader transition from low to high
salinity water. NGoM-HYCOM tends towards lower SSS values than GoM-HYCOM,
and the riverine water does not spread as far across the domain in NGoM-HYCOM
compared to GoM-HYCOM. These characteristics are further corroborated by analysis of

the areal extent of low salinity waters that follows.

4.4 Areal extent of low salinity water

Visual inspection of model SSS contours (Figure 4) suggests that there are
systematic differences between models in the area of very low salinity water (SSS<30)
and overall amount of riverine-influenced water (SSS<34.5). This is confirmed
quantitatively in the analysis of the SSS-OCI pairings (Figure 6) discussed in Section 4.3.
To further characterize this aspect of the model salinity fields, the area of the ocean
model surface with salinities less than prescribed thresholds are computed for each 8-day
time-averaged field (Figure 7). DSC-ROMS has the largest area of very low salinity
water (SSS<30.0) at all times. This is consistent with the greater spreading of the riverine
water offshore diagnosed from the SSS-OCI pairing analysis. The total area of riverine-

influenced water (as defined by SSS<34.5) is greatest for GoOM-HYCOM, followed by
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Figure 7: Area of the domain at the surface where SSS less than the values given in the
legend, scaled by the total domain area (a/A), where a is area with SSS less than the values
given in the legend and A is the total area of the ocean within the domain). DSC-ROMS has
the greatest area of fresher riverine water (SSS<30.0) and GoM-HYCOM the greatest total

area of riverine influenced water (SSS<34.5).

DSC-ROMS and then NGoM-HYCOM. The largest area of riverine water (SSS<34.5)
for GoM-HY COM may suggest that horizontal spreading and/or mixing processes are
stronger in this model. In addition, the relaxation of surface salinity to climatology
present in GoM-HYCOM enhances the presence of a low salinity pool along the northern

Gulf. Note that in all models there is more fresh water in summer than in winter (Figures
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3, 4 and 7), which is consistent with reported seasonal variability (Walker et al., 1996;
Morey et al., 2003; Androulidakis & Kourafalou, 2013). It should be noted, however, that
while the areal extent measured quantifies the area of low salinity and riverine-influenced
water in the region, it cannot be used independently to determine similarity in shape of
the riverine water. Instead it must be coupled with a visual inspection and/or an MHD
analysis to determine the shape and location of the contours. This highlights the
advantage of the MHD for automation of the quantification of the similarity in shape

between the contours without the need for visual inspection.

S Discussion and Summary

Borrowing from the field of topology, the MHD has been introduced and
demonstrated as a tool for quantitative comparison of ocean model fields to satellite
remotely sensed data. This approach provides a method to quantify the agreement in
shape and spatial structure between fields of either similar or different but related
variables as well as producing an empirical relationship between the variables. Typically
in ocean modeling, satellite optical data have been used to qualitatively compare features
in geophysical fields that are known to manifest changes in the ocean color. By focusing
on shape characteristics, the MHD showcased here provides a numerical metric to

complement this qualitative comparison.

The applicability of the MHD has been demonstrated in this work through an
analysis of the agreement of the temporal and spatial variability of modeled SSS contours
with satellite OCI contours in the vicinity of a large river. A large number of MHD

values have been calculated for pairings of multiple SSS and OCI levels at eight-day
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intervals over a three-year time span, and this information has been condensed into a set
of best OCI-SSS pairings for each model. These provide a means to evaluate how well
different models simulate the spatial structure and temporal evolution of the salinity field,

and to better understand systematic differences (biases) between the models.

Specific differences among the tested models revealed by the MHD analysis
include: 1) Lower salinity water is found further offshore in the DSC-ROMS model than
in either of the HY COM models as revealed by the closer matches between lower SSS
contour values and the higher OCI contour values that are typically further from the river
source. 2) SSS contours for GoM-HYCOM are more broadly spaced than in DSC-ROMS
and NGoM-HYCOM as shown by the slower variation of SSS with OCI for the
relationship inferred by the set of best pairings. 3) NGoM-HYCOM has the best overall
match between the shapes of contours of surface salinity and OCI, followed closely by
the GoM-HYCOM and then the DSC-ROMS as shown by the lowest MHD values in the
optimum SSS-OCI relationships calculated for each model. These results agree with the
visual analysis of the SSS fields and provide a quantitative assessment of the comparison
between the models and observations. Furthermore, these findings are in agreement with
the ability of NGoM-HYCOM to represent details in the development and evolution of
the Mississippi River plume (Androulidakis et al., 2015), as evidenced from comparisons
with various other data sources (e.g. Kourafalou and Androulidakis, 2013; Smith et al.,

2016).

There are many factors that can affect the simulation of a river plume in models with
different numerics and configurations. Important differences between models that impact

the dynamics and horizontal spreading of a river plume include among other factors
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surface forcing (data sources and flux calculations), river parameterization, horizontal
and vertical mixing parameterizations, and spatial resolution. For example, the river
parameterization in DSC-ROMS prescribes a lateral flux of volume and momentum of
fresh water, whereas GoM-HYCOM relaxes the surface salinity in a region surrounding
the river source, which is distributed with depth, and NGoM-HYCOM further corrects
the pressure to account for the mass influx. The momentum and volume fluxes at the
river source may be responsible for the greater offshore penetration of the very low
salinity water in DSC-ROMS compared to the two HYCOM simulations. Alternatively,
river discharge rates are prescribed differently among the models, which may also
account for these differences. The coarser spatial resolution for GoM-HYCOM may lead
to more horizontal diffusion and hence weaker salinity gradients inferred from the MHD
analysis. A sound investigation of these influences is beyond the scope of this study.
However, the MHD offers a diagnostic that would be highly advantageous for such an
analysis as it permits objective quantitative skill assessment across models with different

river parameterizations and/or within one model for sensitivity testing.

The MHD values for the best contour pairings indicate that GoM-HYCOM and
NGoM-HYCOM have a closer match overall in shape of SSS contours with the satellite
OCI contours in comparison to the DSC-ROMS model. As GOM-HYCOM is data
assimilative, it most likely better represents the mesoscale features that transport low
salinity water. NGoM-HYCOM also benefits from the good representation of these
features, as it is nested within GoM-HY COM. Both NGoM-HYCOM and DSC-ROMS
are free-running models nested in data-assimilative ocean models. Differences in the

nesting procedures, the location of the nesting boundaries and the product the model is
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nested in may impact how the outer model constrains the mesoscale eddy influences.
Significant effort has been placed on parameterization of river inflow in the NGoM-
HYCOM, which has been previously assessed with in situ SSS measurements (e.g.
Kourafalou and Androulidakis, 2013; Androulidakis and Kourafalou, 2013; Ghani et al.,
2014). These are important factors for achieving a better match in shape to the satellite

optical observations.

Though the surface salinity in the vicinity of large rivers is linked to structures
evident in satellite ocean color imagery, it is important to note that without robust
analysis of in situ measurements within the specific region of study one cannot determine
which model’s agreement to the satellite data is truly “best”. In an example of such an
exercise, Chaichitehrani et al. (2014) derived CDOM and SSS relationships from in situ
observations which were used to calculate CDOM from a numerical model SSS output.
The model-derived CDOM was compared to satellite-derived CDOM qualitatively and
the model-derived values used to study the factors that affect CDOM distribution. With
the MHD, an additional step could be included which would allow quantitative
comparison of the satellite-derived CDOM with the model-derived CDOM and

determination of an empirical relationship.

Application of the MHD analysis technique to synoptic maps of salinity produced
from in situ surveys could yield functional relationships between OCI and SSS that could
enhance the utility of this procedure to evaluate models. Another benefit of the MHD
metric is that it can also be readily used to evaluate model fields with satellite
observations of the same variable providing valuable information on the simulated spatio-

temporal evolution of the surface fields, even when significant biases exist between the
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model and satellite observations, as is now commonly the case with simulated
biogeochemical fields as well as satellite salinity observations. Furthermore, the MHD
provides the comparison between the datasets without the need for visual inspection,
allowing automation, as well as quantification. Finally, since the MHD provides a robust
metric indicating the agreement between simulated variables and observations, it may be
possible to utilize this metric to construct a cost function to be used in an adjoint data
assimilation method, allowing assimilation of a wealth of satellite data that are presently

underutilized in ocean modeling.
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Appendix A. Fitted OCI-SSS Functional Relationships

For each model, a quadratic function is fit to all of the best pairings including both
those derived from the OCI that yields the minimum MHD for a given SSS and those
derived from the SSS that yields the minimum MHD for a given OCI (both plus and
circle symbols in Figure 6). Pairings corresponding the minimum and maximum SSS and
OCI values considered in the analysis (boundary rows and columns in Figure 6a-d) are
excluded to avoid limiting cases impacting the fit. The quadratic functions are
constrained to be monotonic over the range of SSS and OCI values tested. The resulting

quadratic functions fit to the optimum pairings are:

GoM-HYCOM: OCI = -0.11 (SSS)* + 5.42 (SSS) — 53.63 (A1)
NGoM-HYCOM: OCT = -0.38 (SSS)* + 23.01 (SSS) - 337.02 (A.2)
DSC-ROMS: OCI = -0.04 (SSS)* +1.30 (SSS) — 1.26 (A.3)
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