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ABSTRACT

A stochastic parameter perturbation (SPP) scheme consisting of spatially and temporally varying pertur-

bations of uncertain parameters in the Grell–Freitas convective scheme and theMellor–Yamada–Nakanishi–

Niino planetary boundary scheme was developed within the Rapid Refresh ensemble system based on the

Weather Research and Forecasting Model. Alone the stochastic parameter perturbations generate in-

sufficient spread to be an alternative to the operational configuration that utilizes combinations of multiple

parameterization schemes. However, when combined with other stochastic parameterization schemes, such

as the stochastic kinetic energy backscatter (SKEB) scheme or the stochastic perturbation of physics ten-

dencies (SPPT) scheme, the stochastic ensemble system has comparable forecast performance. An additional

analysis quantifies the added value of combining SPP and SPPT over an ensemble that uses SPPT only, which

is generally beneficial, especially for surface variables. The ensemble combining all three stochastic methods

consistently produces the best spread–skill ratio and generally outperforms the multiphysics ensemble. The

results of this study indicate that using a single-physics suite ensemble together with stochastic methods is an

attractive alternative to multiphysics ensembles and should be considered in the design of future high-

resolution regional and global ensembles.

1. Introduction

Most global and regional numerical weather prediction

(NWP) ensemble systems are underdispersive, producing

unreliable and overconfident ensemble forecasts (e.g.,

Buizza et al. 2005; Charles and Colle 2009; Stensrud et al.

1999; Romine et al. 2014). With growing evidence that

initial-condition uncertainties are not sufficient to entirely

explain forecast uncertainty, the role ofmodel uncertainty

is receiving increasing attention. In the last decade, a

number of different strategies have been proposed to

represent uncertainty arising from model formulation. In

the multiphysics approach, each ensemblemember uses a

different set of physics parameterizations to represent

parameterized processes like convection, boundary layer,

and land surface effects. While it can be challenging to

find different sets of physics parameterizations that are

physically consistent with each other (e.g., a land surface

model that is consistent with the planetary boundary layer

parameterization), multiple physics schemes introduce

large diversity among the ensemble members, leading to

improved forecast skill (e.g., Hacker et al. 2011b; Berner

et al. 2011, 2015). While characterized by good perfor-

mance, multiphysics schemes have several theoretical and

practical disadvantages. For each physical process, several

different parameterizations need to be developed and

maintained, which is resource intensive. More impor-

tantly, and from a statistical perspective, multiphysics

ensembles do not form consistent distributions, since

some parameterization schemes are more closely related

than others (e.g., Knutti et al. 2013). Statistical post-

processing generally assumes independent and identically

distributed random variables, a requirement that is not
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met by multiphysics ensembles. Finally, each ensemble

member has a different climatology and mean error. The

fact that different members have different biases is one of

the reasons why the multiphysics approach improves

spread (Berner et al. 2015; Eckel andMass 2005), but this

result conflicts with the fundamental purpose of forecast

uncertainty, which aims at representing the random—and

not the systematic—component of forecast error.

A second avenue is to introduce ensemble spread by

perturbing ensemble simulations stochastically (Palmer

2001). This method leads to statistically consistent en-

semble distributions and has been successfully im-

plemented in a number of operational weather models

(e.g., Berner et al. 2009; Bowler et al. 2009; Sanchez et al.

2015). The two most popular stochastic parameterization

schemes—the stochastic kinetic energy backscatter

(SKEB) scheme and the stochastic perturbation of

physics tendencies (SPPT) scheme—are formulated to

represent unresolved subgrid-scale processes and to

sample the distribution of the subgrid physics tendencies.

The SKEB scheme aims to represent model un-

certainty arising from unresolved subgrid-scale processes

by introducing random perturbations to streamfunction

and potential temperature tendencies. SKEB is based on

the rationale that a small fraction of the model dissipated

energy interacts with the resolved-scale flow and acts as

systematic forcing. Originally developed for large-eddy

simulations (Mason and Thomson 1992), it was adapted

to numerical weather prediction by Shutts (2005).

The SPPT scheme (Palmer et al. 2009) is a revision of

the original stochastic diabatic tendency scheme of

Buizza et al. (1999) and perturbs the parameterized

tendency of physical processes with multiplicative noise.

It is based on the notion that with decreasing horizontal

grid spacing, the equilibrium assumption no longer holds

and that the subgrid-scale state should be sampled

rather than represented by the equilibrium mean. Con-

sequently, SPPT multiplies the accumulated physical

tendencies of temperature, zonal and meridional winds,

and humidity at each grid point and time step with a

random number. By design, the perturbations are large

where the physical tendencies—and presumably their

uncertainty—are large, and they have very little effect

where and when the tendencies are small.

While the performance of stochastic parameterization

schemes is very good (e.g., Berner et al. 2009, 2011), they

have been criticized because they are added a posteriori

to NWPmodels that have been independently developed

and tuned. Ideally, stochastic perturbations should rep-

resent model uncertainty where it occurs and should be

developed alongside physical parameterizations.

Therefore, the multiparameter approach addresses

parameterization uncertainty at its source by perturbing

the parameters in the physics parameterizations. There

are two variants: the parameter can be fixed throughout

the integration (e.g., Murphy et al. 2004; Hacker et al.

2011a) or the parameter can vary randomly in time and

space (e.g., Bowler et al. 2009). The latter has the ad-

vantage that for sufficiently fast variations and/or suffi-

ciently long integration, all ensemble members have the

same climatology, although it is unclear whether typical

NWP lead times fulfill this criterion (e.g., Berner et al.

2012). While multiparameter ensembles typically out-

perform unperturbed ensemble systems, they usually

cannot account for all deficiencies in spread (Hacker

et al. 2011b; Reynolds et al. 2011; Berner et al. 2015;

Christensen et al. 2015), implying that parameter un-

certainty is not the only source of model uncertainty.

Multiparameter ensembles also do not perform with the

same reliability as multiphysics or stochastically per-

turbed ensembles.

With the aim of representing uncertainty at its source,

this study employs the stochastically varying parameter

perturbation approach alone, and in combination with

SKEB and SPPT. Parameters do not vary independently

from grid point to grid point, but exhibit spatial and

temporal correlations as described in detail in section 2.

One motivation for this work is to consider the effec-

tiveness of a simplified ensemble system without multiple

physics parameterizations. For this purpose, a single-

physics suite with stochastic perturbations is very ap-

pealing as an alternative to a multiphysics ensemble. This

study addresses the question of whether an ensemble

created by stochastic parameter perturbation (SPP),

alone and/or in combination with SKEB and SPPT, can

perform as well as—or better than—an ensemble de-

signed with a multiphysics approach.

2. Experiment design and the stochastic
perturbations scheme

The operational RapidRefresh (RAP; Benjamin et al.

2016) configuration was used as a basis for all experi-

ments. Simulations were performed over the opera-

tional RAP North American domain (see Fig. 2) with

13-km grid spacing and eight ensemble members. The

experimental dataset consisted of 21 warm season days

in 2013, including approximately every third day of

the period starting with 23 May and ending on 23 July.

The simulations were initialized at both 0000 and

1200 UTC with a simulation length of 24h. In this study

we used a ‘‘cold start’’ approach tomodel initialization—

that is, there was no cycling or a rapid refresh compo-

nent included. The first eight out of 20 perturbed

members of the National Centers for Environmental

Prediction (NCEP) Global Ensemble Forecast System
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(GEFS; Toth and Kalnay 1993; Guan et al. 2015) pro-

vided initialization and lateral boundary conditions. The

perturbed GEFS members use initial conditions ob-

tained through an ensemble transform bred vector

method that is designed to pick out the fastest-growing

sources of uncertainty in the atmosphere. These per-

turbations also include stochastic total tendency

perturbations.

The RAP system uses the Advanced Research version

of Weather Research and Forecasting (WRF-ARW) dy-

namic core (Skamarock et al. 2008). Its physics suite in-

cludes the Grell–Freitas (GF; Grell and Freitas 2014)

convective scheme, theMellor–Yamada–Nakanishi–Niino

(MYNN; Nakanishi and Niino 2004; Nakanishi and Niino

2006) planetary boundary layer (PBL) parameterization,

and the Rapid Update Cycle (RUC; Smirnova et al. 2016)

land surface model (LSM) parameterization. Several ex-

periments were conducted to compare the performance

between the multiphysics ensemble and the ensembles

created by employing stochastic approaches.

The multiphysics ensemble, which represents the con-

trol experiment, uses different physics parameterizations

for convection and the planetary boundary layer. The

convective parameterizations used areBetts–Miller–Janjić

(BMJ; Betts 1986; Janjć 1994), Grell–Freitas (Grell and

Freitas 2014), and two versions (Han and Pan 2011) of the

simplified Arakawa–Schubert (SAS) convective scheme.

The different PBL schemes are the Mellor–Yamada–

Janjić, Mellor–Yamada–Nakanishi–Niino (Nakanishi and

Niino 2004; Nakanishi and Niino 2006), Bougeault–

Lacarrère (BOULAC; Bougeault and Lacarrère 1989),

and Yonsei University (YSU; Hong et al. 2006) parame-

terizations. The parameterizations for each ensemble

member are summarized in Table 1. Member seven of the

control ensemble uses the physics parameterizations in

the operational RAP configuration, namely, GF and

MYNN PBL.

All members of the stochastic ensembles use the same

physics parameterizations as the operational RAP. The

first four members (spp0–spp3) include perturbations to

the GF parameterization, and the last four members

(spp4–spp7) contain perturbations to the MYNN PBL

parameterization (see Table 1). The spp experiment

employs only the stochastic parameter perturbations.

Experiment spp_skeb combines the SPP approach with

SKEB (Shutts 2005; Berner et al. 2009, 2012, 2015).

Similarly, experiment spp_sppt combines SPP with

SPPT (Buizza et al. 1999; Bouttier et al. 2012; Berner

et al. 2015). Finally, experiment spp_skeb_sppt includes

all three stochastic approaches. The authors acknowledge

that the two sets of spp members, with GF and MYNN

perturbations, could result in different climatologies.

However, after reviewing the bias characteristics for the

two sets of four members and a variety of variables, no

apparent difference was found.

The perturbations used in SPP are introduced as

X+ 5 [11 r(f, l, t)]X , (1)

where X+ is the perturbed and X is the unperturbed

quantity.Here,X can be a parameter, such as the turbulent

mixing length or a prognostic quantity, such as the closures

in the GF scheme. If X is a static parameter, then the

perturbations will reflect the uncertainty in this parameter.

The stochastic pattern generator generates a 2D per-

turbation field r(f, l, t) with spatial and temporal cor-

relations analogous to that used at the European Centre

for Medium-Range Weather Forecasts (ECMWF) to

perturb physics tendencies (Palmer et al. 2009). The

perturbation field in spectral space is expressed as

r(x, y, t)5 �
K/2

k52K/2
�
L/2

l52L/2

r
k,l
(t)e2pi(kx/X1ly/Y), (2)

where k and l denote the (K1 1)(L1 1) wavenumber

components, respectively, in the zonal x and meridional y

directions, in physical space; and tdenotes time.TheFourier

modes e2pi(kx/X1ly/Y) form an orthogonal set of basis func-

tions on the rectangular domain 0, x,X and 0, y,Y.

Each spectral coefficient rk,l evolves as a first-order

autoregressive (AR1) process,

r
k,l
(t1Dt)5ar

k,l
(t)1 g

k,l
«
k,l
(t) . (3)

Here, a is the linear autoregressive parameter, gk,l is the

wavenumber-dependent noise amplitude, and «k,l a

TABLE 1. List ofmembers formultiphysics and stochastic ensembles.

OSAS 5 old SAS. NSAS 5 new SAS.

Convective PBL

Multiphysics members

control0 OSAS MYNN

control1 BMJ MYNN

control2 GF MYNN

control3 NSAS MYNN

control4 GF MYJ

control5 GF YSU

control6 GF BOULAC

control7 GF MYNN

Stochastic members

spp0 GF perturbed MYNN

spp1 GF perturbed MYNN

spp2 GF perturbed MYNN

spp3 GF perturbed MYNN

spp4 GF MYNN perturbed

spp5 GF MYNN perturbed

spp6 GF MYNN perturbed

spp7 GF MYNN perturbed
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Gaussian white-noise process with a mean of zero and a

standard deviation of one. The prescribed temporal

decorrelation time t and the model time step Dt de-
termine the autoregressive coefficient as a5 exp(2Dt/t).
For noise amplitudes,

g
k,l
5F

0
e24pLr2

k,l withF
0
5

8><
>:
h2
k,l[12 (12a)2]

2�
k
�
l

e
28pkr2

k,l

9>=
>;

1/2

. (4)

The resulting perturbation pattern will be spatially

homogeneous with a horizontal length scale L and

a gridpoint perturbation variance of s2. Here

rk,l 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2/X2 1 l2/Y2

p
is the effective radial wavenumber

and h2
k,l is the spectral variances. The normalization

constant F0 is chosen so that the variance at any grid

point, s2, is given by the total variance in spectral space

(Weaver and Courtier 2001). At each grid point, the

pattern will create perturbations drawn from a Gaussian

distribution with a mean of zero and a variance of s2.

Examples of the stochastic perturbation pattern are given

in Fig. 1. For t5 0 and k5 0, the scheme introduces noise

that is white in time and space, with variance s2.

The pattern is fully determined by three parameters:

gridpoint standard deviation (gridpt_stddev_rand_

pert), length scale (length scale_rand_pert), and decor-

relation time (time scale_rand_pert). Since drawing

from a Gaussian distribution can result in very large

values, the random numbers are capped. This capping

threshold is expressed in terms of standard deviation

(stddev_cutoff_rand_pert).

The perturbed parameters were chosen based on

suggestions by the RAP parameterization experts and

developers. Table 2 gives a summary of the targeted

parameters and their perturbation amplitudes, length,

and time scales.

The GF convection scheme is an ensemble scheme

that offers several choices to implement stochastic per-

turbation methods. The ensembles are derived from the

Grell–Dévényi approach, described in Grell and

Dévényi (2002). One ensemble option that is used in

operational applications is the dependence on the clo-

sure. The closure will determine the cloud-base mass

flux, and therefore the strength and location of the

convection. GF offers four choices to derive the cloud-

base mass flux. While in the commonly used GF ap-

proach these are simply averaged to determine a final

cloud-base mass flux, for our application we perturb

each closure separately with a decorrelation time of 6h

and a spatial length scale of 150km, before averaging to

get the final cloud-base mass flux.

For the PBL scheme, three parameters were per-

turbed with a length scale of 700 km and a decorrelation

time of 6 h. The turbulent mixing length and subgrid

cloud fraction were directly perturbed, while thermal

and moisture roughness lengths were perturbed in-

directly through perturbations of the Zilintikevich con-

stant Czil. The perturbations for the thermal and

moisture roughness were anticorrelated with those of

the mixing length and subgrid cloud fraction.

Subgrid-scale clouds (shallow cumulus clouds) are

weakly positively correlated with turbulent mixing

FIG. 1. The stochastic horizontal spatial stochastic perturbation pattern for the (a) GF convective parameterization

and the (b) MYNN PBL parameterization. Parameters are given in Table 1.
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(mixing lengths) during the growth of the PBL; that is, as a

PBLdevelops, the smaller shallow cumulus become larger

and deeper, but the total cloud fraction is not necessarily

changed. However, when the mixing lengths are largest in

the deep dry boundary layers, the cloud cover is small. So,

there is a negative correlation between subgrid clouds and

mixing length in fully developed PBLs. Therefore, we

implemented a negative correlation, to reduce subgrid

clouds when turbulent mixing (mixing lengths) become

larger. Thus, more solar radiation reaches the surface,

driving higher surface temperatures and higher surface

heat fluxes, which then further drive the boundary layer

turbulence (larger mixing lengths). The stronger tur-

bulent mixing can result in increased entrainment at

the top of the PBL, resulting in a drier PBL, which can

further reduce the subgrid clouds. Tapping into this

feedback is important to increasing the spread within

the ensemble.

Czil was perturbed to be half/twice its original value.

Since Czil is in the exponent, a halving/doubling of Czil

results in a perturbation of zt on the order of 5%–10%.

The thermal roughness length zt is defined as

z
t
5 z

0
e(2kCzil

ffiffiffiffiffi
Re

p
) , (5)

where z0 is the aerodynamic roughness length, k is the von

Kármán constant, and Re is the Reynolds number. Per-

turbations of Czil are anticorrelated with mixing lengths

because a reduction of Czil results in an increase in surface

heat fluxes, which will drive stronger turbulent mixing

(larger mixing lengths).

These choices result in perturbation patterns that are

displayed for a single instance in Fig. 1 for the GF con-

vection scheme (Fig. 1a) and the PBL scheme (Fig. 1b).

3. Results

a. Precipitation verification

All simulations were performed over the RAP North

American domain (Fig. 2). Verification was performed

using Model Evaluation Tools (MET; http://www.

dtcenter.org/met/users/docs) software and was limited

to the CONUS verification polyline applied to NCEP

grid 130 (Fig. 3).

First, before performing statistical analysis, probabil-

ities of precipitation exceeding the 50.8-mm threshold for

each ensemble, for 9-h forecast and for the 1 June 2016 case,

initialized at 0000UTC (Fig. 4) were evaluated. The period

was characterized with intense precipitation associated

with a squall line extending from Michigan to Oklahoma.

A comparison of probabilities between the control

(ctl; Fig. 4a) and spp (Fig. 4b) experiments indicated

higher probabilities for spp experiments for themajority

of the region characterized by precipitation exceeding

the specified threshold. Higher confidence in the case of

spp was associated with lower spread. This aspect was

further evaluated as a part of the statistical analysis.

Probabilities for the spp_skeb (Fig. 4c) experiment look

very similar to the spp (Fig. 4b) experiment, implying a

limited impact of SKEB on simulated precipitation. In

the case of the spp_sppt experiment (Fig. 4d), the

probability field was characterized with much more

structure having the area of maximal probabilities along

the leading edge of the system extending from north-

eastern corner of Oklahoma to southwestern portion of

Missouri. Lower probabilities were observed for the rest

TABLE 2. Summary of namelist parameter settings for stochastic

perturbation patterns.

Perturbed parameter in GF scheme Name

Closure xf_ens

Namelist parameter Value

spp_cu 1

gridpt_stddev_spp_cu 0.3

stddev_cutoff_spp_cu 3.0

length scale_spp_cu 150 000m

time scale_spp_cu 21 600 s

Perturbed parameter in MYNN PBL scheme Name

Turbulent mixing length el

Subgrid cloud fraction (correlated with el) cldfra_bl

Thermal and moisture roughness length

(anticorrelated and twice the amplitude)

CZIL

Namelist parameter Value

spp_pbl 1

gridpt_stddev_spp_pbl 0.15

stddev_cutoff_spp_pbl 2.0

length scale_spp_pbl 700 000m

time scale_spp_pbl 21 600 s

FIG. 2. Integration domain with land mask presented in red.
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of the region in Missouri. Lower confidence in the case

of spp_sppt may be associated with higher spread when

compared to the ctl experiment. Finally, Fig. 4e shows

probabilities for the spp_skeb_sppt experiment that are

very similar to the spp_sppt (Fig. 4d) probabilities, im-

plying once again the limited impact of SKEB on sim-

ulated precipitation. Figure 4f shows observed radar

reflectivity valid at the same time.

Next, we focus on the verification of precipitation

forecasts by comparing the ensemble output over the

CONUS domain to NCEP national stage IV analyses

(Lin and Mitchell 2005). Both ensemble output and

stage IV data were regridded to a common 13-kmNCEP

grid (130). Verification was performed only over land

and areas where stage IV data were available.

The performance of the five ensemble systems is

assessed by examining rank histograms (Hamill 2001),

ensemble mean frequency biases, and corresponding

Gilbert skill scores (Schaefer 1990) and Brier scores

(Brier 1950; Wilks 2011).

The rank histogram is a diagnostic tool that facilitates

assessing the spread of ensemble forecasts, based on the

assumption that the probability of occurrence of an

observation in each of a set of forecast bins should be

equally likely (Hamill 2001). These bins are determined

by ranking member forecasts from the lowest to

the highest value. For an ensemble with nmembers, the

corresponding rank histogram will have n 1 1 bins. The

rank histogram is produced by plotting the frequency of

occurrence of observations in each bin. Flat rank histo-

grams indicate an ensemble with sufficient spread.

Figure 5 is a rank histogram for 6-hourly precipitation

accumulation periods for 6-, 12-, 18-, and 24-h lead times

for the five experiments and for the 0000UTC initialization.

The rank histograms for the 1200 UTC initialization in-

dicated very similar performance (not shown). All ensem-

bles and all aggregation times were characterized with a

precipitation bias that increased with lead time. Also, the

U-shape histograms, especially for the first two 6-hourly

accumulations, suggest underdispersion in all evaluated

ensembles.

To evaluate precipitation frequency bias and its di-

urnal change, the frequency bias was calculated for both

initialization times, for three precipitation thresholds

(0.254, 6.35, 12.7mm), and for all members of the five

experiments. The frequency bias is calculated as a ratio

between forecast and observed precipitation coverage

greater than the specified threshold. It can vary from

zero to infinity. Values of the frequency bias significantly

higher (lower) than one indicate that the model notably

overpredicted (underpredicted) the exceedance of a

given threshold.

Calculation of the frequency bias showed similar be-

havior between members of the four stochastic experi-

ments (spp, spp_skeb, spp_sppt, and spp_skeb_sppt).

All stochastic experiments were characterized by smaller

spread when compared to the control experiment.

Figure 6 illustrates the frequency bias as a function of lead

time for the 0000 UTC initialization, for all eight mem-

bers of the ctl and spp experiments only. For the lowest

precipitation threshold of 0.254mm, a positive frequency

bias was found that increased with lead time for all

members and for both experiments (Fig. 6a). In contrast,

for higher precipitation thresholds (6.35 and 12.7mm

shown in Figs. 6b and 6c, respectively), frequency bias

values were approximately constant with lead time and

generally low (less than one) for the two ensembles.

The statistical significance of these results was assessed

by employing a bootstrapping method with 1000 repli-

cations and a 95% confidence interval. Differences in the

performance of two selected experiments and their

members were found to be statistically significant for

thresholds and lead times when pairwise differences were

nonzero.

Differences in frequency bias values between the

corresponding ctl and spp members (e.g., member 1 of

one ensemble was compared to member 1 of the other

ensemble)were statistically significant for all lead times and

for the 0.254- and 6.35-mmprecipitation thresholds.Results

from the 1200 UTC initialization were similar (not shown).

In addition, we examined values of the Gilbert skill

score (GSS) for all ensemble members. The Gilbert skill

score was calculated following the equation

GSS5
CFA2CHA

(F1O1CFA2CHA)
, CHA5O

F

V
, (6)

where CFA, F, andO indicate the number of grid points

at which a variable was correctly forecasted to exceed

the specified threshold (CFA), a variable was forecasted

to exceed the threshold (F), and a variable was observed

to exceed the threshold (O); CHA is the probability

FIG. 3. Verification domain with land mask presented in red.
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that a correct forecast would occur by chance, and V is

the total number of evaluated grid points. A GSS of one

would occur with a perfect forecast. Basically, the GSS

measures how well events were predicted, taking hits

associated with random chance into account.

The GSSs were computed by utilizing aggregated con-

tingency table elements. Similarly as for frequency bias,

Fig. 7 shows GSS for three different precipitation thresh-

olds and for each member of the ctl and spp experiments

only. Statistical significance testing was performed by

employing a resampling technique (Hamill 1999) with

1000 replications and a significance level of 0.05.

It can be seen that the largest difference in perfor-

mance between ctl and spp members was detected for

the lowest precipitation threshold evaluated. For this

precipitation threshold and for shorter lead times, the

two experiments performed similarly. For lead times

longer than 18 h, the spp ensemble was characterized

with a larger number of members with higher GSS

values. GSS values for the precipitation threshold larger

than 6.35mm were very similar between the experi-

ments. None of the differences for all three precipitation

thresholds were found to be statistically significant.

In addition to evaluating the ensemble mean fre-

quency bias and GSS as measures of deterministic per-

formance, the Brier score (BS) was used as a measure of

probabilistic performance. The Brier score (Brier 1950)

is a commonly used verification measure of the skill of

FIG. 4. (a) Probability of precipitation exceeding 50.8mm in 3 h for the (a) ctl, (b) spp, (c) spp_skeb, (d) spp_sppt,

and (e) spp_skeb_sppt experiments for the 9-h forecast, initialized at 0000 UTC valid at 0900 UTC 1 Jun 2013.

(f) Radar reflectivity valid at the same time.
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probabilistic forecasts. For an event of interest,

Xe( j, k)5 [X1( j, k), . . . , Xn( j, k)] is an n-member en-

semble forecast for the jth of m locations and the kth of

r case days, arranged from lowest to highest forecast value.

This ranked ensemble is then converted into an n-member

binary forecast Ie( j, k)5 [I1( j, k), . . . , In( j, k)] in-

dicating whether the event was forecast (51) or not

forecast (50) for each ensemble member. Similarly, the

observed weather, Io( j, k), is converted to a binary out-

come. Assuming that each member forecast is equally

likely, a forecast probability pf ( j, k) is calculated as

p
f
( j, k)5

�
n

i51

I
i
( j, k)

n
. (7)

Then the BS of the forecast is calculated as

BS5 �
r

k51
�
m

j51

p
f
( j, k)2I

o
( j, k)2. (8)

In this study, the BS is examined for all experiments

as a function of lead time for both 0000 (Fig. 8) and

1200 UTC (Fig. 9) initializations and three precipitation

thresholds (Figs. 8a–c and 9a–c). This score is negatively

oriented, so that lower values denote better forecast

skill. Figures 8 and 9 show a clear indication of the Brier

score change associated with the diurnal cycle. There is

evidence that BS values increased during the day and

then decreased later in the afternoon through nighttime.

Overall, BS values decreased with increasing pre-

cipitation threshold. This is most likely due to large re-

gions without intense rainfall in forecasts, rather than

due to increased skill for higher precipitation thresholds.

For 0000 UTC initializations and the lowest pre-

cipitation threshold (Fig. 8a), the spp ensemble per-

formed better than the rest of stochastic ensembles and

the control during the night and early morning hours

(3–15-h lead times). The opposite was true for lead

times beyond 15 h. During this period, ensembles that

combined stochastic approaches (spp_skeb, spp_sppt

and spp_skeb_sptt) performed notably better when

compared to the control and the spp ensembles. For the

2.54-mm threshold (Fig. 8b), the control ensemble

outperformed all other experiments, but the differ-

ences in BS were not statistically significant.

For the 1200 UTC initialization and the 0.254-mm

threshold (Fig. 9a), ensembles spp_sppt and spp_skeb_

sppt were characterized by significantly lower BS when

compared to the control ensemble for lead times be-

tween 6 and 12h. For lead times beyond 12h, the control

FIG. 5. Rank histogram for 0000 UTC initialization and 6-hourly accumulation periods valid at forecast hours

(a) 6, (b) 12, (c) 18, and (d) 24.
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ensemble was characterized by significantly lower BS

when compared to all other experiments. Similarly to the

0000 UTC initialization, for a slightly higher threshold

(Fig. 9b), the control ensemble had the lowest BS when

compared to all other experiments, but the differences

were not statistically significant.

The Brier skill score (BSS) measures the difference in

skill of a forecast and a skill of climatology normalized

by the improvement that can be achieved. Negative

values of BSS indicate that the forecast is less skilled

when compared to climatology. In this study the sample

climatology was utilized. For all ensembles and for all

evaluated precipitation thresholds, the BSS was slightly

negative (not shown). This behavior was most likely a

product of small ensemble size (Müller et al. 2005) and
overall low reliability for all evaluated precipitation

thresholds (Fig. 10). The reliability diagrams were cre-

ated for all lead times (every 3 h) aggregated together.

For construction of reliability diagrams, four forecast

probability bins were used: 0.25, 0.5, 0.75, and 1.

FIG. 6. Frequency bias for 0000 UTC initialization and for three

precipitation thresholds: (a) 0.254, (b) 6.35, and (c) 12.7mm for the

ctl and spp experiments.

FIG. 7. GSS for 0000 UTC initialization and for three pre-

cipitation thresholds: (a) 0.254, (b) 6.35, and (c) 12.7mm for the ctl

and spp experiments.
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Figure 10 show overconfidence for all experiments and

for all evaluated precipitation thresholds. For heavier

thresholds the control ensemble was characterized with

somewhat higher reliability compared to other ensem-

bles (Figs. 10b and 10c).

In summary, the rank histograms indicate that all

ensembles, in particular spp, are underdispersive. Yet

when combining SPP with other stochastic methods, the

resulting rank histograms are comparable to those of the

control (multiphysics ensemble). All ensembles were

characterized by a high-frequency bias for low thresholds

and a low-frequency bias for higher thresholds. The spp

ensemble had a frequency bias closest to one.

In terms of BS and for lighter precipitation thresholds,

there is a tendency for the control ensemble to out-

perform stochastic ensembles, but in most cases, the

differences in performance were not statistically signif-

icant. For higher precipitation thresholds, BS values

were smaller for all ensembles,mainly due to limited areas

with heavy rainfall. All experiments were characterized

FIG. 8. BS for 0000 UTC initialization and for three pre-

cipitation thresholds: (a) 0.254, (b) 2.54, and (c) 12.7 mm for all

experiments.

FIG. 9. Brier score for 1200 UTC initialization and for three

precipitation thresholds: (a) 0.254, (b) 2.54, and (c) 12.7mm for all

experiments.
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with generally low reliability. For heavier thresholds, the

ctl experiment was characterized with slightly higher re-

liability compared to the other experiments.

b. Surface and upper-air verification

In addition to precipitation, forecasts of variables such

as 2-m temperature, 10-m wind, 850-hPa temperature,

250-hPa wind, and 500-hPa geopotential height were also

assessed. Forecasts were compared to theNorthAmerican

Mesoscale Forecast System (NAM) Data Assimilation

(NDAS) analysis. For this purpose, both forecasts and the

analysis were interpolated to the 13-km NCEP grid (130),

covering the CONUS domain (Fig. 3). First, root-mean-

square error (RMSE) values of the ensemble mean and

corresponding spread values were computed for all five

ensembles. The spread was computed as the average

ensemble standard deviation over the CONUS domain.

Figure 11 illustrates RMSE and spread values for runs

initialized at 0000 UTC. Overall, the control ensemble

has slightly lower RMSE values compared to the sto-

chastic ensembles. For 2-m temperature, the control

ensemble is characterized by slightly lower values of

RMSE for all lead times (Fig. 11a). The same is true for

850-hPa temperature (Fig. 11c) and for the 10-m zonal

component of the wind (Fig. 11e). The difference be-

tween ensembles is minimal in the case of the 250-hPa

zonal wind component (Fig. 11g). For 500-hPa geo-

potential height, the spp_skeb ensemble, the combina-

tion of all three stochastic approaches (spp_skeb_sppt),

and the control ensemble result in higher RMSE values

compared to the other stochastic ensembles for longer

lead times (Fig. 11i). None of the differences in RMSE

between the experiments and control, for any of the

variables, are statistically significant (Fig. 11).

Next, we focus on the corresponding spread values,

which vary widely across the five ensembles. For all var-

iables and all lead times, the spp ensemble is characterized

by spread values well below their corresponding RMSE

values. This type of behavior, insufficient spread in spp,

has been documented by Hacker et al. (2011a). Combin-

ing the SPP approach with SKEB and SPPT substantially

increases the spread. Interestingly, the different combi-

nations of stochastic approaches have distinct signa-

tures. For example, the combination of SPP with SPPT

(spp_sppt) results in a notable increase in spread for the

zonal component of the 10-m wind (Fig. 11f), while the

combination with SKEB (spp_skeb) predominantly in-

creased spread for 500-hPa height (Fig. 11j).

The perturbations of SPPT are proportional to the

magnitude of the physical tendencies, which tend to be

largest near the surface, whereas the dynamic perturba-

tions introduced by SKEB grow fastest on the synoptic

scale and in the free atmosphere, consistent with the

findings of Berner et al. (2011, 2015). Importantly, the

combination of all three stochastic approaches resulted in

the largest spread, except in the case of 10-m zonal wind

(Fig. 11f) for which spp_skeb_sppt had the same amount

of spread as the spp_sppt ensemble for 12- and 18-h lead

times and slightly lower spread for a 24-h lead time.

For all other variables and for most lead times (espe-

cially longer than 6h), spp_skeb_sppt was characterized

by a significantly larger spread when compared to the

control ensemble.Very similar behavior was observed for

FIG. 10. Reliability diagrams for 0000 UTC initialization

and for three precipitation thresholds: (a) 0.254, (b) 2.54, and

(c) 12.7 mm.
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FIG. 11. (left) RMSE and (right) corresponding spread for (a),(b) 2-m temperature;

(c),(d) 850-hPa temperature; (e),(f) 10-m zonal wind; (g),(h) 250-hPa wind; and (i),(j) 500-hPa

geopotential height for simulations initialized at 0000 UTC.
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runs initialized at 1200 UTC (Fig. 12) in terms of both

RMSE and spread.

The ratio between spread and error for the experi-

mental ensembles is presented in Fig. 13. The ideal value

for this ratio is one. For both initialization times, a smaller

spread in the SPP ensemble leads to lower spread–error

ratios when compared to other experiments. For lead

times longer than 6h, the ensemble that combined the

FIG. 12. As in Fig. 11, but for 1200 UTC initializations.
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FIG. 13. Spread–error ratio for (a),(b) 2-m temperature; (c),(d) 850-hPa temperature;

(e),(f) 10-m zonal wind component; (g),(h) 250-hPa zonal wind component; and (i),(j) 500-hPa

geopotential height for (left) 0000 and (right) 1200 UTC initializations.
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three stochastic approaches (spp_skeb_sppt) had the

highest spread–error ratio (closest to one) for all vari-

ables and both initialization times.

As an additional measure of ensemble performance,

the continuous ranked probability score (CRPS;

Hersbach 2000; Candille and Talagrand 2005) was also

computed (Fig. 14). This score is oriented such that a

lower value denotes better forecast skill. If F is the

cumulative distribution function of the forecast distri-

bution and x verifies, then the CRPS is defined as

CRPS(F, x)5

ð1‘

2‘

[F(y)21fy$ xg]2 dy , (9)

where 1fy$ xg denotes a step function along the line

that attains the value 1 if y$ x and the value 0 otherwise.

For most of the variables, with the exception of

500-hPa geopotential height, spp has the highest CRPS

(lowest skill) compared to the other ensembles (Fig. 14).

For most of the variables and most lead times beyond

6h, spp_skeb_sppt has the best forecast skill, even

though differences in CRPS between spp_skeb_sppt and

the control ensembles were not statistically significant.

Exceptions are 2-m temperature for the 1200 UTC ini-

tialization at most lead times and 850-hPa tempera-

ture at 12- and 18-h lead times, for which the control

ensemble had an advantage compared to the spp_skeb_

sppt ensemble. For the 10-m zonal wind component,

there are instances when the two ensembles have iden-

tical CRPS values [e.g., 0000 UTC initializations at

12- and 18-h lead times (Fig. 14e), and 6-, 12-, and 18-h

lead times for the 1200 UTC initialization (Fig. 14f)]. For

500-hPa geopotential height, spp_skeb_sppt outperformed

the control ensemble for most of the lead times and both

initialization times (Figs. 14i and 14j).

In summary, for surface and upper-air variables, the

RMSE is overall similar for all ensembles. The spread

however varies widely among the experiments, with spp

generally containing the least spread. When SPP is

combined with other stochastic methods (SKEB and

SPPT), the spread is increased with statistical signifi-

cance. Therefore, the spread–error ratios are consistently

larger for ensembles that combined multiple stochastic

approaches (spp_skeb, spp_sppt, and spp_skeb_sppt).

For most lead times and all variables, spread–error ratios

closest to one were produced by the ensemble that

combined all stochastic approaches (spp_skeb_sppt).

Inclusion of observational error into ensemble eval-

uation has been shown to affect the verification of short-

term simulations (Bouttier et al. (2012)). Unfortunately,

the MET software and the Environmental Modeling

Center (EMC) verification system employed in this

study do not have an option to take observational error

into account. For a limited number of variables (not

shown), we employed an additional verification method

that takes observational error into account and the re-

sults showed a positive impact on spread. This result is

consistent with Candille and Talagrand (2008).

c. Added value of the stochastic parameter
perturbation approach

While the SPP approach showed some promise, es-

pecially for precipitation simulations, its general per-

formance is hampered by limited spread. To determine

whether this scheme adds value in combination with other

spread-generating approaches, we assessed the perfor-

manceof the spp_sppt experiment against that of using only

SPPT (sppt). Figure 15 shows the percentage difference of

spp over spp_sppt for a number of verificationmetrics. The

bars in Fig. 15 are plotted only for variables, lead times, and

statistics for which the difference was nonzero.

For the 0000 UTC initialization, the use of SPP results

in a reduction of RMSE for most of the variables and all

lead times except 18 h (Fig. 15a). The impact of SPP on

RMSE for the 1200 UTC initialization is mixed

(Fig. 15e). It tends to be beneficial for near-surface

variable but detrimental for 250-hPa zonal wind. A

general positive impact of SPP is shown in spread values

(Figs. 15b and 15f). Consequently, the spread–error ra-

tio increased and is closer to one (Figs. 15c and 15g). For

the 0000 and 1200 UTC initializations, the CRPS de-

creased for almost all variables and lead times (Fig. 15d)

and for near-surface variables (Fig. 15f), signifying

added benefit from using SPP in addition to SPPT. In

summary, the analysis shows that the use of SPP gen-

erally has a positive impact. This benefit is most evident

in increased spread, which consequently improves the

spread–error ratio. The impact on CRPS was overall

beneficial (decreased values), with the exception of

upper-air variables in the 1200 UTC model runs.

4. Summary and conclusions

There is strong evidence that multiphysics approaches

to ensemble forecasting increase spread and improve

ensemble scores relative to typically underdispersive

single-physics ensembles. However, there are a number

of concerns and disadvantages with the multiphysics

approach related to code maintenance, consistency

across parameterizations, and systematic error. This

study explores whether a single-physics ensemble,

employing a suite of stochastic methods, can be a viable

alternative to the multiphysics approach.

To this end, a new stochastic parameter perturbation

(SPP) scheme was developed and compared alone and

in combination with other stochastic methods (SKEB
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FIG. 14. CRPS for (a),(b) 2-m temperature; (c),(d) 850-hPa temperature; (e),(f)10-m zonal

wind component; (g),(h) 250-hPa zonal wind component; and (i),( j) 500-hPa geopotential

height for (left) 0000 and (right) 1200 UTC initializations.
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and SPPT) against a multiphysics, baseline configura-

tion. The SPP scheme introduces temporally and spa-

tially varying perturbations to key parameters in the GF

convection and MYNN PBL parameterizations. The

detailed characteristics of these perturbations were

determined through collaboration with physics pa-

rameterization experts. While we expect nonstatic

parameter perturbations to have a smaller impact than

keeping the parameter constant for each ensemble

member, this method has the advantage that ensemble

members have the same climatology and variance,

leading to a more consistent ensemble without mem-

bers that have different systematic biases. Twenty-

four-hour RAP ensemble simulations were verified

FIG. 15. Percentage change of the SPP over the spp_sppt ensemble in (a) RMSE, (b) spread, (c) spread–error

ratio, and (d) CRPS for 0000 UTC initialization. Similarly, percentage change of the SPP over the spp_sppt en-

semble in (e) RMSE, (f) spread, (g) spread–error ratio, and (h) CRPS for runs initialized at 1200 UTC.
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over 21 days during the summer of 2013, using GEFS

data for initial and lateral boundary conditions. We

stress that SKEB and SPPT were used in their WRF

release configuration, suggested for the horizontal grid

spacing used in this study.

The most important findings are summarized below:

d Alone, the parameter perturbations of SPP introduce

insufficient spread. However, when combined with

SKEB and/or SPPT the spread is as large and for some

instances even larger than for a multiphysics ensem-

ble. Overall, the ensemble mean error is changed only

slightly.
d An ensemble created by combining three stochastic

approaches (spp_skeb_sppt) performed comparably

to the multiphysics control ensemble for most of the

examined variables, most of the evaluated lead times,

and most of the employed statistics.
d SKEB made a larger impact on spread for upper-level

wind and 500-hPa geopotential height, while SPPThad a

larger impact on spread for near-surface temperature.
d Combining SPP with SPPT generally yields a 2%–6%

improvement in the ensemble RMSE, spread, spread–

error ratio, and CRPS over an ensemble using SPPT

alone. This is an important finding, since SPP repre-

sents uncertainty at its source, in a physically consistent

way, without introducing systematic member biases.

Our results confirm the findings of previous studies (in

particular, Berner et al. 2011, 2015; Hacker et al. 2011a,b)

in that 1) parameter perturbations alone do not generate

sufficient spread to remedy the underdispersion in short-

term ensemble forecasts and 2) a combination of several

stochastic schemes outperforms any single scheme. This

result implies that a synthesis of different approaches is

best suited to capture model error in its full complexity.

This finding may have a large impact on the design of

next-generation high-resolution regional, as well as

global operational ensembles. The single-physics sto-

chastic approach clearly provides a viable alternative to

reduce code complexity and improve spread over the

multiphysics approach used in some operational ensem-

bles. The plan is to continue this work using the 3-km

High-Resolution Rapid Refresh (HRRR) ensemble

(Alexander et al. 2016), focusing primarily on the LSM

and PBL parameterizations.
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