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ABSTRACT

A set of observation system experiments (OSEs) over three seasons using the hourly updated Rapid Re-

fresh (RAP) numerical weather prediction (NWP) assimilation–forecast system identifies the importance

of the various components of the North American observing system for 3–12-h RAP forecasts. Aircraft

observations emerge as the strongest-impact observation type for wind, relative humidity (RH), and tem-

perature forecasts, permitting a 15%–30% reduction in 6-h forecast error in the troposphere and lower

stratosphere. Major positive impacts are also seen from rawinsondes, GOES satellite cloud observations, and

surface observations, with lesser but still significant impacts from GPS precipitable water (PW) observations,

satellite atmospheric motion vectors (AMVs), and radar reflectivity observations. A separate experiment

revealed that the aircraft-related RH forecast improvement was augmented by 50% due specifically to the

addition of aircraft moisture observations. Additionally, observations from en route aircraft and those from

ascending or descending aircraft contribute approximately equally to the overall forecast skill, with the

strongest impacts in the respective layers of the observations. Initial results from these OSEs supported

implementation of an improved assimilation configuration of boundary layer pseudoinnovations from surface

observations, as well as allowing the assimilation of satellite AMVs over land. The breadth of these experi-

ments over the three seasons suggests that observation impact results are applicable to general forecasting

skill, not just classes of phenomena during limited time periods.

1. Introduction

Estimates of current atmospheric conditions are based

on observations, in situ and remotely sensed, from an al-

ways evolving range of platforms. Consistency with

physical relationships for these estimates is added through

a time-evolving model assimilation cycle in a numerical

weather prediction (NWP) system. The volume of mete-

orological observations is constantly increasing both from

remote sensing platforms [satellites (Le Marshall et al.

2007) and radar] and also from some in situ platforms such

as commercial aircraft. The geographical and temporal

distribution of observations has a major impact on the

initialization of NWP systems. In regions with large data

voids, such as the Southern Hemisphere and the global

oceans, model forecast skill is significantly degraded

(Shapiro and Thorpe 2004; McMurdie and Mass 2004)

although decreasingly as data assimilation techniques

improve (e.g., Cardinali 2009).

NWP models, both in the United States and interna-

tionally, are constantly improving in a variety of ways,

including the recent ubiquitous increases in spatial reso-

lution, the incorporation of more advanced data assimila-

tion techniques, and improved physical parameterizations

for subgrid-scale processes (Kalnay et al. 1998; Benjamin

et al. 2016). However, all NWP systems remain funda-

mentally tied to the number and quality of the observa-

tions being assimilated (Hollingsworth et al. 1986). In the

United States, 2012’s Hurricane Sandy disaster prompted

a large investment in research and development related toCorresponding author: Eric James, eric.james@noaa.gov
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improving forecasts; the largest fraction of this ‘‘Sandy

Supplemental’’ funding is directed toward improving ob-

serving systems (NOAA 2013). Questions remain re-

garding the most cost-effective path toward improved

forecasts: What balance of investment is needed between

more observational coverage versus an investment in high-

performance computing infrastructure for NWP versus

improved data assimilation and model technique devel-

opment? Which observing systems will best add fore-

cast accuracy? Observation system experiments (OSEs)

provide ameans of gauging the relative impact of different

existing observation types on NWP forecast skill (Arnold

and Dey 1986). Although the recently developed forecast

sensitivity approach to observation impact (FSOI) can also

assess observation impacts (Langland and Baker 2004;

Zhu and Gelaro 2008; Lupu et al. 2015), this technique

requires the development of an adjoint model for the data

assimilation (Langland et al. 2016), which does not yet

exist for the Gridpoint Statistical Interpolation (GSI)

analysis system used for RAP. The FSOI method is a

promising avenue for assessing short-range observation

impact, but was not used here.

In the modern heterogeneous observing system, most

observation types are frequently updated (i.e., new ob-

servational data become available every ;1 h or less).

Therefore, in order to make the best use of recent ob-

servations, there is a corresponding need to frequently

update the analysis and forecast from an NWP system.

In the United States, the operational rapidly updating

NWP model was upgraded from the Rapid Update

Cycle (RUC; Benjamin et al. 2004a) to the Rapid Re-

fresh (RAP; Benjamin et al. 2016, hereafter B16) model

in May 2012. Subsequent versions of the RAP were

implemented in February 2014 and August 2016. This

most recent version of the model [RAP version 3

(RAPv3)], including hybrid ensemble–variational as-

similation (e.g., Wang et al. 2013), was tested in this

study. OSEs were conducted for the previous RUC

model (e.g., Benjamin et al. 2010, hereafter B10), but as

yet no published studies have investigated the observa-

tion impacts within the RAP system. NWP data assim-

ilation and model upgrades (such as the 2012, 2014, and

2016 upgrades to the RAP) necessitate new OSEs in

order to determine the impact of observation types

within amodifiedNWP system. The observationmix has

also changed over time, including a significant increase

in aircraft data over the United States in recent years

(WMO 2016). In this study, we aim to determine the

relative impact of many of the observation types as-

similated within the RAP modeling system partly to

guide possible decision-making regarding the expansion

of networks. We want to know whether the relative

importance of observation types has changed compared

to earlier OSE studies related to rapidly updating NWP

systems.

The next section details the RAPmodel configuration

used for the multiseason OSEs, followed by a section

describing the experimental design for the OSEs. We

then present our results and end the paper with our key

conclusions.

2. Rapid Refresh model configuration

This section provides an overview of the RAP NWP

system (B16), including its data assimilation component,

its model component, and details related to its real-time

application within NOAA. The volume of observations

being ingested with each hourly cycle is then briefly

summarized, highlighting some of the more important

observation types, and followed by a summary of the

most important differences from the RUC system used

for the B10 OSE study.

a. NWP system overview

The version of the RAP used in these experiments is

RAPv3, run operationally at the National Centers for

Environmental Prediction (NCEP) starting in August

2016 and as described in B16. This version uses version

3.6.1 of the community-supported Advanced Research

version of theWeatherResearch and ForecastingModel

(WRF-ARW; Skamarock et al. 2008). The RAPv3

uses a 954 3 835 model domain covering all of North

America with a horizontal grid spacing of 13 km near the

center of the domain (Fig. 1). The model computational

grid is a rotated latitude–longitude grid, which reduces

the stretching of the horizontal grid near the edges of the

domain (Côté et al. 1993). The RAP has 50 hybrid ver-

tical levels, with a model top at 10 hPa.

The data assimilation system used in the RAP is GSI, a

community-supported data assimilation system (Kleist

et al. 2009; Shao et al. 2016). The data assimilation is

carried out in a hybrid three-dimensional ensemble–

variational configuration (Wang et al. 2013), wherein the

data assimilation background forecast covariances are a

weighted average of the traditional 3DVAR covariances

(Wu et al. 2002; Whitaker and Hamill 2002; Whitaker

et al. 2008) and flow-dependent covariances derived from

the 80-member Global Forecast System (GFS) data as-

similation ensemble (25% variational and 75% ensemble

in this version of RAP;more details are provided inTable

2 of B16). This hybrid ensemble–variational GSI-based

approach for RAP (Hu et al. 2017, manuscript submitted

to Mon. Wea. Rev.) results in improved forecasts

(particularly for upper-level winds; B16) compared to

the 3DVAR data assimilation carried out in the RUC

model. After the application of the primary hybrid data
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assimilation, a nonvariational cloud and hydrometeor

analysis is carried out based primarily upon satellite and

surface-based ceilometer data (also described by B16).

After the data assimilation process, and before the

WRF free-forecast integration, a diabatic digital filter

initialization procedure (DFI; Peckham et al. 2016,Huang

and Lynch 1993) is applied withinWRF. This process acts

to damp out the noise effects of spurious gravity waves

during the first hour of the forecast. The diabatic portion

of the filter introduces specified latent heating where

available during the DFI period; this specified latent

heating is derived from three-dimensional radar re-

flectivity observations and, to a much smaller extent, is

augmented by lightning observations (B16). This pro-

cedure is a low-cost way of producing an initial field

with existing mesoscale circulations related to pre-

cipitation processes. The RAP system uses a variety of

physical parameterizations within the WRF frame-

work, also described in detail in B16. To keep regional

forecasts from drifting away from the truth, the RAP

employs partial cycling (Rogers et al. 2009) to re-

introduce the GFS atmospheric state twice a day, at

0900 and 2100 UTC. Figure 2 shows a schematic of the

RAP partial cycling configuration; the GFS atmo-

spheric state is ‘‘partially cycled’’ for 6 h before being

injected into the RAP full cycle. Within the context of

FIG. 1. Map of North America showing the computational domains of RAP (white boundary)

and HRRR (green boundary).

FIG. 2. Configuration of the RAP partial cycling. Black circles represent the RAP data assim-

ilation cycle with a background supplied by a prior forecast (represented by the gray arrows). At

0300 UTC, a parallel ‘‘partial’’ cycle is initialized fromGFS atmospheric fields but using the RUC

LSM state. A background from this partial cycle is used for the data assimilation in the primary

‘‘full cycle’’ 6 h later, at 0900 UTC. The procedure is repeated during 1200–2300 UTC.
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this paper, this cycling exerts a slight damping on obser-

vation impact by reintroducing large-scale fields from the

global model and its own global data assimilation.

b. Hourly and subhourly observations

The RAP model assimilates a variable number of

observations within each hourly cycle. Table 1 provides

an approximate number of observations of various dif-

ferent types that are assimilated during each cycle; this

table (taken from Table 4 in B16) may be directly

compared with Table 1 in B10. It is apparent from Table

1 that RAP-assimilated observations come from rawin-

sonde, commercial aircraft, surface, satellite-related,

and radar-related groupings. All of these observation

types have unique limitations in their sampling. For in-

stance, observations from commercial aircraft provide

vertical structure data but with an irregular distribution

with atmospheric profiles only near major airports, and

upper-tropospheric coverage along commonflight routes,

at certain times of day. About 1/8 of aircraft reports over

the RAP domain include moisture observations. More

specific information on observation types available from

aircraft is provided by Moninger et al. (2003), Petersen

(2016), and Petersen et al. (2016). Twice-a-day rawin-

sondes provide additional important vertical structure

information but only over land. Surface observations are

2D and subject to local variations and even terrain ele-

vation mismatches between observations and back-

ground; this is addressed with adjustment as described

by B16 (local variable lapse rate) and Ingleby (2015)

(fixed lapse rate).

Observations from geostationary satellites represent

an important source of both cloud and wind information

for NWP data assimilation. Near-real-time cloud prop-

erties suitable for data assimilation are derived hourly

from Geostationary Operational Environmental Satel-

lites (GOES; Minnis et al. 2008) using the methods of

Minnis et al. (2011). In addition, atmospheric motion

vectors (AMVs) are derived from GOES and other

satellite observations (Velden et al. 2005; Bresky et al.

2012); these observations provide important tropo-

spheric wind information in otherwise data-sparse re-

gions. Vertically integrated water vapor observations

can be derived from global positioning system (GPS)

receivers; an extensive network ofGPS receivers around

the world provides precipitable water (PW) observations

for NWP data assimilation (Wolfe and Gutman 2000).

These observations, referred to as GPS-met PW observa-

tions, have been shown to play an important role in NWP

forecast skill through their ability to depict the distribution

of tropospheric water vapor (Gutman and Benjamin 2001;

Smith et al. 2007). Integrated PW is dominated by changes

in low-level water vapor, which is critical for convective

weather forecasting (e.g., Weckwerth 2000; Weckwerth

et al. 2004). The impact of satellite radiances, also assimi-

lated in the RAP, is relatively small but significant and is

described in separate articles by Lin et al. (2017) and Lin

et al. (2017, manuscript submitted to Wea. Forecasting).

Radar observations from the Weather Surveillance

Radar-1988 Doppler (WSR-88D) Next Generation

Weather Radar (NEXRAD) network provide critical

information about the distribution of hydrometeors in

the atmosphere. Development of a real-time distribu-

tion system for these large datasets (e.g., Kelleher et al.

2007) has permitted their use in NWP initialization. In

addition to the radar reflectivity and radial velocity

TABLE 1. Observational data used in RAPv3 as of Sep 2015: p is air pressure, qy is water vapor mixing ratio, Ty is virtual temperature,

RH is relative humidity with respect to water, V refers to horizontal wind components, T is temperature, ps is surface pressure, Td is

dewpoint, and PW is precipitable water. Table is from B16.

Data type Variables No. Frequency (h)

Rawinsonde (including special observations) T, RH, V, z 125 12

NOAA 405-MHz wind profiler V ;21 (2013) 1

Boundary layer (915MHz) profiler V, Ty ;30 1

Radar-VAD winds (WSR-88D) V 125 1

Radar Reflectivity, radial wind 1

Lightning Flash rate converted to reflectivity 1

Aircraft V, T 3000–25 000 1

Aircraft qy 0–1000 1

Surface: METAR, land V, ps, T, Td 2200–2500 1

Surface: METAR, land Ceiling/visibility 2200–2500 1

Surface: mesonet, land V, ps, T, Td 10000–16 000 1

Buoy/ship V, ps 200–400 1

GOES AMVs V, p 2000–4000 1

GOES cloud top p, T ;10-km resolution 1

AMSU-A/HIRS-4/Microwave Humidity

Sounder (MHS)/GOES

Radiances

GPS precipitable water PW 300 1
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observations available from the WSR-88Ds, profiles of

wind speed and direction can be derived using the ve-

locity azimuth display (VAD; Lhermitte andAtlas 1960)

technique. These wind profiles provide another dataset

available for assimilation within NWP systems.

To analyze upcoming observation impact experiment

results, it is important to identify the actual measure-

ments made by different platforms as shown in Table 2.

Aircraft, rawinsonde, and surface measurement plat-

forms include separate instruments to determine wind,

temperature, and relative humidity (RH) observations.

Observation impact is across variables, not univariate;

observations of a single variable can impact other vari-

ables through multivariate correlations in the data

assimilation system.

c. Major changes from the RUC system in 2007 to the
RAP system in 2016

The version of the RAP NWP system used in this

study (RAPv3; B16) is a substantially more advanced

modeling system than the 2007 RUC system used for the

OSEs presented by B10. In this section, we summarize

some of the key observation, data assimilation, and

model improvements (from the perspective of reducing

forecast error) from the March 2007 RUC system to the

2016 RAPv3 system.

Regarding observations, in this study, radar reflectivity

observations are now assimilated using latent heating

specification during a preforecast application of forward–

backward digital filter initialization (B16, section 2d).

Satellite radiance observations are assimilated in RAP

but were not in RUC (B16), and the volume of aircraft

data has increased globally by a factor of 4–5 (dominated

by a U.S. increase) since 2007 (WMO 2016). The NOAA

Profiler Network (Benjamin et al. 2004b) with about

30 wind profilers was shut down in 2013; however, other

multiagency profilers continue to operate in 2016. Thedata

assimilation for hourly updated models has been signifi-

cantly improved since 2007 (RUC 3DVAR then), now

using hybrid ensemble–variational assimilation with GSI

and improved assimilation of cloud, surface, and radar

observations in RAPv3. Observation errors (OEs) remain

essentially unchanged, with both the RUC and the RAP

using an OE specification from the North American

Mesoscale Forecast System (NAM) that is appropriate

for a regional NWP system. The dynamical core for the

RAP is WRF-ARW, while the physics parameterizations

used in RAP are improved versions of those used in RUC

and developed for short-range effectiveness.

The RAPv3 has a greatly expanded domain from the

previous RUC domain, comprising approximately 4

times the RUC horizontal area (Fig. 1). Most of the

domain expansion was toward the north and west, such

that the 2016 RAP domain covers all of the Canadian

Arctic region, as well as the entire Aleutian Islands

chain. This domain expansion reduces the influence of

theGFS boundary conditions and farther removesmuch

of the CONUS from domain boundary influences.

3. Observation impact experimental design

For this study, observation impact experiments were

configured similarly to B10. All of the assessments were

conducted for three 10-day periods over three seasons

(Table 3). The spring period (15–25 May 2013) fea-

tured several major severe weather outbreaks in the

TABLE 2. Atmospheric observations measured by instrument platforms. Pressure and height pair indicates that the platform provides

sufficient information to determine the mass field.

Obs measured by platform Temp

Pressure and

height pair Wind RH Cloud/saturation/hydrometeor

Surface Y Y Y Y Y

Aircraft Y N Y Y N [icing pilot reports (PIREPs) not used]

GOES (cloud, AMV) N N Y N Y

GPS-met N N N Y–column N

VAD, from radar N N Y N N

Radar reflectivity N N N N Y

Raob Y Y Y Y N

TABLE 3. Experimental periods for the RAP observation system experiments.

Season Period Characterization

Spring 15–25 May 2013 Frequent convective activity, dominated by large-scale forcing

Summer 15–25 Jul 2014 Frequent convective activity with less large-scale forcing and more frequent local-scale forcing

Winter 1–11 Jan 2015 Winter storms and severe cold in eastern North America
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south-central United States, including significant torna-

does inOklahoma on 19 and 20May, and a high coverage

of severe wind reports scattered throughout the southern

and eastern CONUS during 21–22 May. Experiments

were also carried out for summer and winter season pe-

riods (Table 3) to better assess the seasonal dependence

of the observation impact and to obtain overall year-

round estimates of impact.

a. Control and data-denial experiments

To configure each of the multiseason OSEs (Table 3),

a control RAP cycle with all available observations was

first conducted. After the completion of this control ex-

periment, we conducted up to 14 separate data-denial

experiments (9 for spring and 13 for winter), excluding

various observation types from the data assimilation

process. Table 4 presents the names and descriptions of

the experiments. All of the 10-day experiments are begun

in the same way, using surface fields from the 1-h forecast

from the 0200 UTC real-time RAP cycle, and atmo-

spheric fields from theGFS, to initialize a 6-h partial cycle

(see Fig. 2). From 0300 UTC on the first day through

2300UTCon thefinal day, the data-denial experiments are

configured identically to the control experiment except for

the exclusion of certain observation types, with 12-h fore-

casts initialized every hour. Boundary conditions (from

the GFS) are the same for all of the experiments. Note

that our experiments did not include anyOSEs on satellite

radiance assimilation; the impact of these observations is

discussed by Lin et al. (2017) and Lin et al. (2017, manu-

script submitted to Wea. Forecasting).

During the course of executing the OSEs summarized

in Table 4, several additional experiments were carried

out in order to investigate in more detail the impact of

assimilating surface observations and satellite AMVs

(Table 4). These experiments, discussed in sections 6

and 7, led to the development of revised RAP configu-

rations, which then were used as control experiments for

examining the ‘‘no surface’’ and ‘‘no AMV’’ OSEs.

Each of the experimental pair error differences shown

herein is thus a controlled experiment, but modified

control runs are used for calculating forecast degrada-

tion for the no-surface and no-AMV OSEs; for more

details, the reader is referred to sections 6 and 7.

b. Verification

For all of the retrospective experiments, model fore-

casts were verified against conventional, twice-daily ra-

winsonde observations over the lower 48 United States

(or CONUS) as well as over the entire RAP domain

(Fig. 1). For each experiment, residuals (forecasts minus

observations) were calculated for 3-, 6-, 9-, and 12-h

forecasts at each rawinsonde location. The root-mean-

square difference (RMSE; magnitude of the root-mean-

square vector difference in the case of wind) between the

forecasts and observations was then calculated for each

12-h rawinsonde verification time (0000 and 1200 UTC).

All of the verification presented here uses observations

TABLE 4. RAP observation system experiments: A2J denial experiments for each observation type, K2N denial experiments for subsets

of aircraft observations, and O2S additional sensitivity experiments on surface observation and satellite AMV assimilation.

OSE OSE name May 2013 Jul 2014 Jan 2015

A No raob Y Y Y

B No aircraft Y Y Y

C No profiler Y Y Y

D No radar reflectivity Y Y Y

E No VAD Y Y Y

F No GPS-met PW Y Y Y

G No GOES (GOES AMVs, GOES cloud top) Y Y Y

H No surface (METAR, mesonet, buoy/ship) Y Y Y

I No mesonet Y

J No AMVs (all satellites) Y Y Y

— CONTROL Y Y Y

K No aircraft above 350 hPa Y Y

L No aircraft below 350 hPa Y Y

M No aircraft T, q Y Y

N No aircraft q Y Y

Expt Expt name

O No surface pseudo-observations Y

P With reduced pseudo-observation density Y

Q Application of 1200-m limit to METAR cloud building Y

R Combination of tests P and Q Y Y Y

S Assimilation of AMVs over land as well as over water Y Y Y
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and model forecasts interpolated to vertical resolution

every 10hPa from significant-level rawinsonde observa-

tions and native model data. For more detail on the

verification procedure used here, the reader is referred to

Moninger et al. (2010).

We estimated the forecast error reduction percentage

for interpreting subsequent results in this study. Examining

longer-term error statistics from the RAP (approximated

as the difference in fit to rawinsonde observations between

6-h RAP forecasts and 0-h RAP analyses during 2015;

Fig. 3) provides context for the forecast improvements

described. This difference is used to estimate an approxi-

mate 25% reduction in forecast error for wind, tempera-

ture, and RH (Table 5). The analysis fit to rawinsonde

observations is used as a proxy for truth, since that analysis

(see B16) includes information on expected observation

errors for rawinsondes and the other observation types also

assimilated. From this 2015 result, we estimate 25% of the

maximum possible improvement in 6-h forecast skill as

0.3ms21 for wind, 0.1K for temperature, and 1% (on the

0–100 scale) for RH (included later in Fig. 7).

As mentioned in section 2c, the RAP system uses

partial cycling whereas the previous RUC (used for the

OSEs of B10) did not. Since the verified forecasts are

valid only at 0000 and 1200 UTC, the timing of the

partial cycle introduction into the full cycle affects the

influence of certain observation types. For example, for

3-h forecasts valid at 1200UTC (initialized at 0900UTC),

only 7 h of RAP data assimilation have occurred (six

during the partial cycle from 0300 to 0800 UTC, and

once for the full cycle at 0900 UTC; cf. Fig. 2). Older

observations have an influence only through the GFS

initial conditions introduced at 0300UTC; thus, wewould

not expect to see any impact of denying (within the

RAP) the assimilation of observations before 0300 UTC.

Since rawinsondes are primarily available only at 0000

and 1200 UTC, we would not expect to see any impact of

rawinsondes in 3-h forecasts in our experiments. In gen-

eral, 6-h forecasts are expected to show the strongest

impact of observations since they reflect the longest pe-

riod of RAP data assimilation, and impacts should also

generally decrease with increasing forecast lead time as

the model initial conditions become less important. All

experiments carried the same specified set of observa-

tions (or denial) through the partial cycling and the pri-

mary cycle with the RAP forecasts.

FIG. 3. Vertical profile of RAPv3 fit to rawinsonde observations during January–December 2015 for 6-h forecasts (blue), 0-h analyses

(red), and the difference (6 h minus 0 h, black) for (a) wind, (b) temperature, and (c) RH. Rectangular boxes every 50 hPa contain values

significant at the 95% level.

TABLE 5. Normalizing percentage difference for 6-h forecast minus 0-h analysis for wind, temperature, and RH. Based on Benjamin

et al. [(2004a), their Figs. 9 and 10 and Eq. (11)]. A simple level-independent approximation is made for all levels, and values are averaged

over all levels to determine an approximation for a 25% error reduction level.

Approx mean fit to rawinsonde

observations Wind (1000–100 hPa, m s21) Temp (1000–100 hPa, K) RH (1000–400 hPa, %)

6-h forecast ;4.2 ;1.4 ;16

0-h analysis (best fit to obs) ;3.0 ;1.0 ;12

6-h forecast minus 0-h analysis

(max possible improvement)

;1.2 ;0.4 ;4

25% of max possible improvement ;0.3 ;0.1 ;1
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4. Experiment results

In this section, we present our verification results for the

OSEs in a similar format as B10, verifying upper-air RAP

forecasts against 12-h rawinsonde observations. Results are

presented in the form of ‘‘candlestick plots,’’ wherein each

data-denial experiment is assigned a bar height associated

with the degradation in RMSE (averaged against all ob-

servations within the region, vertical layer, and time of in-

terest) as compared with the control run. Within this

framework, the data-denial experiments are anticipated to

generally have positive bars, indicating an increase in

RMSE (or a degradation in forecast skill) as compared to

the control run. Negative bars indicate that denying that

particular dataset actually results in a reduction in RMSE

(or a forecast improvement). Error bars are added to fig-

ures in this study to show the range of one standard error

(i.e., the 67% confidence interval) calculated using the

method of Weatherhead et al. (1998), as applied and de-

scribed by B10. The standard error is calculated from the

sample standard deviation and the lag-1 autocorrelation for

the time series of RMSE differences as verified against

rawinsonde observations (following the method of B10).

a. Overview results for the full depth (1000–100hPa)
over North America

As in B10, we begin with a broad view of the results,

considering first the impact of the different observation

types for each of the three experiment seasons within a

vertically integrated column: 1000–100 hPa for wind

(Fig. 4) and temperature (Fig. 5), and 1000–400 hPa

for RH (Fig. 6), through the entire RAP domain (see

Fig. 1).

For wind forecasts in this full tropospheric (and lower

stratospheric) 1000–100-hPa layer, out of the 10 observa-

tion types, aircraft clearly have the largest impact and

similarly over all three seasons: 0.3ms21 for 6-h forecasts

(Fig. 4). Aircraft data reduce tropospheric wind error at

6h by;25% over the RAP domain (per Table 5). GOES

and raobs gave a positive but far smaller impact of 0.05–

0.10ms21 during each of the three seasons. Surface ob-

servations gave similar impacts for wind forecasts over this

full 1000–100-hPa layer in the spring and summer seasons,

with less impact in winter. All of the cited observation

types (except for mesonet and wind profiler observations)

showed significant impact at the 67% level during the

spring and summer seasons; winter observation impacts

are much less for most observation types.

For temperatures through the deep 1000–100-hPa

layer (Fig. 5), aircraft observations had the largest im-

pact: 0.10–0.14K at 6h for all seasons. (A value of 0.1K

corresponds to a ;25% error reduction.) Rawinsonde

and surface observations had a somewhat reduced im-

pact: 0.02–0.06K, which is about a 5%–12% error re-

duction. The impact of many of the other observation

types is quite muted in all seasons.

For RH through the 1000–400-hPa layer, a broader

combination of observation types contributes to improved

FIG. 4. Differences in wind RMS vector error (vs rawinsonde) between observation denial experiments listed in Table 4 and the control

run for the 1000–100-hPa vector wind (m s21) for the RAP (North America) domain (see Fig. 1). Results for each of the 10 observational

denial experiments are coded with a different color [raob, navy blue; aircraft, pink; profiler, steel blue; radar reflectivity, purple; VAD,

light blue; GPS PW, forest green; GOES satellite observations, light green; surface, red; mesonet, yellow (shown only for summer);

satellite cloud-drift winds, sky blue]. Four adjacent bars are shown for each OSE for 3-, 6-, 9-, and 12-h forecasts. Results are shown for

three seasons (Table 3): (a) summer, (b) spring transition, and (c) winter. Statistical uncertainties are indicated for each OSE by the

narrow black vertical lines showing 61 standard error from the mean impact.
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forecast skill, led by aircraft observations at 0.5%–0.7%

RH for 6-h forecasts, but joined by GOES (with both

cloud–clear data and AMVs; Table 2). Rawinsonde and

surface observations both contribute by 0.2%–0.5% RH

for 6-h forecasts, and even GPS PW and radar reflectivity

results show a positive impact toRH forecast skill through

this relatively deep (1000–400hPa) layer (Fig. 6).

Results from the multiseason periods were combined

to produce the summary statistics given in Fig. 7. For all

variables, aircraft observations gave the largest impact

at most forecast hours, contributing to a 25% reduction

(calibrated from Table 5) in wind and temperature

forecast error at 3 and 6h, and about a 10%–15% error

reduction for RH forecasts. Surface observations

emerge as a leading contributor to forecast skill for all

three variables, with an impact comparable to that of

rawinsondes. An additional experiment (not shown)

denying the assimilation of only surface pressure ob-

servations revealed that nearly all of the positive im-

pacts of surface observations come from temperature,

moisture, and wind observations (with the exception of

1000–800-hPa wind at night). GOES satellite observa-

tions have an RH impact similar to that from aircraft,

with a reduced impact on winds (relative to aircraft) and

negligible change for temperature. Minor but significant

positive wind and RH impacts are evident for all other

observation types, with the possible exception of wind

profiler observations and VAD winds (see below).

These integrated statistics on forecast impact were also

examined for temporal and vertical consistency, as shown

in Fig. 8. The impact of denying aircraft data was approx-

imately similar for each 12-h rawinsonde observation time

FIG. 5. As in Fig. 4, but for temperature RMS error (K).

FIG. 6. As in Fig. 4, but for 1000–400-hPa RH RMS error (% from 0 to 100).

AUGUST 2017 J AMES AND BEN JAM IN 2905



through the summer July 2014 period, and the vertical

profile for the overall RMS vector error and aircraft impact

is similar to that shown in B10. All of the results shown in

this study have been examined similarly (not shown), and

the temporal consistency over each seasonal test period as

in Fig. 8 demonstrates that the 10-day test periods are

representative for each of the seasonal evaluations.

b. Vertical variation of observation forecast impact

This section examines the vertical variation of the fore-

cast impacts described in section 4a. The vertical variation

of the wind forecast impact is shown in Fig. 9. For the

summer period (Fig. 9c), aircraft observations once again

dominate for mid- and upper-level wind forecasts, with an

impact exceeding 0.4ms21 at 6h in the 400–100-hPa layer.

This represents a reduction in forecast error of approxi-

mately 1/3. Surface observations contribute the most

strongly for near-surface wind forecasts (with aircraft ob-

servations taking over above 900hPa; not shown); how-

ever, the impact of surface observations extends into the

800–400-hPa layer and, surprisingly, even above 400hPa

(Figs. 9b,c; see section 6). Above 800hPa, surface obser-

vations exhibit their peak impact at somewhat longer lead

times (6–9-h forecasts). Mesonet observations produce a

minor positive impact below 400hPa. GOES satellite ob-

servations represent the second-most important observa-

tion type for winds in the 400–100-hPa layer, with an

impact of 0.18ms21 (or about 15%) at 6h (Fig. 9c). AMVs

contribute a 0.05ms21 impact, statistically significant but

relatively small compared to the overall GOES impact

FIG. 7. Observation impact results integrated over all three seasons, similar to Figs. 4–6, showing (a) wind, (b) temperature, and (c) RH.

The horizontal black dashed lines indicate the level of 25% forecast error reduction, as shown in Table 5.

FIG. 8. (a) Temporal and (b) vertical consistency for 6-h wind forecast error (vs raobs) for control (red) and no-

aircraft (blue) experiments and the difference (black) for the July 2014 summer period verified over the entire

RAP domain.
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(combined AMV and cloud). Note that the small impacts

seen for some other observation types are also never-

theless often statistically significant, as a result of the

large sample size. These small but significant impacts

for summer upper-level winds from surface, GPS PW,

and radar reflectivity data are attributed to their con-

tributions toward improved convection forecasts.

The majority of the GOES satellite observation impact

on upper-level wind apparently comes from non-AMV

observations (i.e., GOES cloud observations; see Table 2).

One possibility is that this effect on wind is coming from

GOES cloud (and indirectly RH) influences on the con-

vective environment, since this is a summertime period.

However, Figs. 9f,i reveal that non-AMV GOES obser-

vations continue to have a strong impact on upper-level

winds in the spring and even winter seasons. The vertical

profile of GOES observation (cloud and AMV) impacts

(Fig. 10) shows the difference in the RH bias profile from

the control experiment versus the no-GOES experiment

for both summer andwinter. It is apparent that theGOES

cloud observations are acting to dry the column, particu-

larly in the 600–100-hPa layer (through cloud analysis

‘‘clearing’’ where GOES observations indicate no cloud

cover). Evaluation of precipitation forecast bias verified

against Stage IV precipitation estimates (not shown)

shows that for both summer and winter seasons, GOES

satellite observations act to reduce the high precipitation

bias in the RAP forecasts. Such changes to precipitation

systems within the model atmosphere also affect the wind

forecast skill in all seasons (e.g., Fig. 9).

FIG. 9. As in Fig. 4, but for (a)–(c) summer, (d)–(f) spring, and (g)–(i) winter, and stratified by layer: (a),(d),(g) 1000–800, (b),(e),(h) 800–400,

and (c),(f),(i) 400–100 hPa.
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Figure 11 shows a vertical layer-by-layer breakdown

for temperature forecasts. The observation impact

distribution for temperature forecasts is relatively

simple, with only three major observational contribu-

tors (all in situ) to forecast skill. Aircraft observations

again provide the strongest impact overall and are

second only to surface observations in the 1000–800-hPa

layer (Fig. 11a). Surface observations contribute to

about a 0.1-K reduction of forecast RMSE at 3 h. Air-

craft observations reach this level of impact above

800 hPa (Fig. 11b), with rawinsondes contributing to

about a 0.05-K (relatively strong) reduction in forecast

RMSEs for 6-, 9-, and 12-h forecasts above 400 hPa in

the RAP domain (Fig. 11c).

Figure 12 shows additional layer-by-layer results,

now for RH RMSE. In the near-surface 1000–800-hPa

layer (Fig. 12a), surface and aircraft observations

have an approximately equal impact, contributing to

about a 0.3% RH RMSE reduction. Rawinsondes

and GPS-met PW observations represent a secondary,

but still significant, importance for the 1000–800-hPa

layer. Within the 800–400-hPa layer, aircraft and

GOES satellite (cloud) observations are the strongest

contributors to RH forecast skill (Fig. 12b), each

standing at 0.75% for 6-h forecasts (about a 15%–20%

reduction in RMSE). VAD wind observations have a

negative impact on RH forecast skill, particularly in

the low to midlevels; we hypothesize that this is due to

FIG. 10. Profile of 6-h forecast RH bias (%, 0–100) for control run (red) and no-GOES experiment (blue) for

(a) summer and (b) winter, verified over the entire RAP domain. Differences are shown in black. Rectangular

boxes containing values significant at the 95% level are also shown at each level.

FIG. 11. As in Fig. 9, but for temperature RMS error (K) and for summer only.
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contamination of horizontal wind observations by bird

migration (mainly at night; see Fig. 13), which then

has a subsequent effect on RH forecasts through in-

creased error in the vertical motion. RH forecast er-

rors could also result from horizontal wind errors

leading to errors in the transport of features, partic-

ularly in regions of strong horizontal RH gradients. In

the 400–100-hPa (essentially cirrus clouds, largely

nonprecipitating) layer, GOES satellite observations

overtake aircraft observations as the most important

observation type (Fig. 12c), contributing to a 25% re-

duction in RMSE for RH, attributable to cloud (and re-

lated water vapor) data assimilation in theRAP (seeB16,

section 2e).

FIG. 12. As in Fig. 9, but for RH RMS error (% from 0 to 100) and for summer only.

FIG. 13. As in Fig. 7, but for summer only, and for the 1000–600-hPa layer (lower troposphere) results only, and for verification times

(a)–(c) daytime (0000 UTC) and (d)–(f) nighttime (1200 UTC) for (a),(d) wind, (b),(e) temperature, and (c),(f) RH.
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c. Diurnal variation of observation forecast impact

Observation impacts also exhibit diurnal variability

(with the 0000 UTC raob verification time roughly

representing afternoon/daytime atmospheric evolution

across North America, and the 1200 UTC raob time

representing largely nighttime evolution). To highlight

diurnal variation occurring near the surface, we focus

on the 1000–600-hPa layer for the summer test period

(Fig. 13). During the daytime, there is a stronger impact

for 3-h forecasts (2100 UTC initialization time) from

surface observations, with a lower impact for 9–12 h

(Figs. 13a–c). This is attributable to the planetary

boundary layer (PBL) extension of surface observation

assimilation in GSI enabled for RAP (B16, section 2f),

with the deepest PBL typically occurring near 2100 UTC

on average over the CONUS. Errors in forecast cloudi-

ness could also contribute to obscuring the impact of

the initial conditions on longer-lead-time low-level

temperature forecasts. Neither of these factors apply at

night, when stronger surface effects are seen from the

0000 UTC (12-h forecast) and 0300 UTC (9-h forecast)

initializations (Figs. 13d–f). Most notable in the diurnal

breakdown is the negative impact from VAD wind

observations. The strong negative impact overnight on

lower-tropospheric wind forecasts from VAD is likely

attributable to bird and other biological activity (e.g.,

Lakshmanan et al. 2010; Wilczak et al. 1995), which

may also be affecting overnight lower-tropospheric RH

forecasts especially at 3 h, presumably through con-

tamination of the vertical motion fields.

5. Aircraft observation impact breakdown for
wind, temperature, and moisture

With the dominant impact from commercial aircraft

observations shown in previous sections, a series of

additional experiments were carried out to examine

the contributions from different components of air-

craft observations as shown in Table 4: (i) en route

(defined here as pressure less than 350 hPa) versus

ascent–descent (pressure greater than 350 hPa) and

(ii) the specific contribution from aircraft moisture and

temperature observations. We examine results for the

full RAP domain. Given that the overall 1000–100-hPa

aircraft impact was similar during the summer, spring,

and winter seasons (Figs. 4–6), we focus here solely on

the summer season.

Considering the tropospheric profile as a whole

(Fig. 14), observations from en route aircraft and

those from ascending–descending aircraft represent

approximately equal contributors to the overall 1000–

100-hPa wind and temperature forecast skill. Aircraft

temperature observations evidently contribute in-

directly to wind forecast skill (through multivariate

background error covariances in GSI; Fig. 14a). Air-

craft temperature observations also do not represent

the only aircraft contribution to temperature forecast

skill; around 0.3K of the total 1.1-K positive impact

for 6-h forecasts comes indirectly through aircraft

wind observations, again through mass–wind back-

ground error covariances (Fig. 14b). The total aircraft

observation impact for 1000–400-hPa RH is about

0.5% (a major contributor to overall observation im-

pact; cf. Fig. 7). This entire impact comes from

ascending–descending aircraft, and is apparently not

caused in these experiments by the presence of

abundant aircraft jet-level (,350 hPa) wind observa-

tions. Direct RH aircraft observations represent only

about 1/3 of the total aircraft observation impact on

RH forecasts. A vertical profile of RH forecast impact

from aircraft observations overall versus aircraft

RH observations only (Fig. 15) also confirms this

FIG. 14. As in Fig. 7, but for summer only and showing aircraft-specific experiment results (all aircraft, pink; cruising aircraft (above

350 hPa), orange; ascent–descent aircraft (below 350 hPa), burgundy; aircraft RH, aquamarine; aircraft temperature/RH, yellow). Results

are for RMSEs of (a) 1000–100-hPa vector wind, (b) 1000–100-hPa temperature, and (c) 1000–400-hPa RH.
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1/3 fraction overall and up to 50%–60% in the 600–

500-hPa layer. It is important to note that direct air-

craft moisture observations reach this level of impact

despite being available in only about 1/8 of the total

number of aircraft observations assimilated within the

RAP system. [These results included the Water Vapor

Sensing System (WVSS; Petersen et al. 2016) aircraft

water vapor observations, but not Tropospheric Air-

borne Meteorological Data Reporting (TAMDAR;

Daniels et al. 2006) aircraft water-vapor observations;

TAMDAR data (Moninger et al. 2010) were not

available to NOAA in real time during these test

periods.]

Looking specifically atwind forecasts in the 400–100-hPa

layer (where wind forecasts are particularly important

for flight planning; Fig. 16), it is seen that approxi-

mately 2/3 of the total aircraft observation impact comes

from aircraft above 350 hPa, with the remaining 1/3 from

ascending–descending aircraft. A significant positive

impact on upper-level wind accuracy (about 25% of the

overall aircraft impact) also comes from aircraft tem-

perature observations partially through the multivariate

background error covariances mentioned above but also

possibly from improved convection and general pre-

cipitation forecasts as surmised for moisture-related ob-

servations and discussed concerning Fig. 9c.

6. Surface observation impact and related
sensitivity tests

The assimilation of surface observations is an impor-

tant component of theRAP system. Results shown above

in this study use an improved treatment of surface-based

observations with assimilation refinements determined

through earlier experiments performed for this study.

These refinements and related sensitivity tests are now

described in this section.

Surface observations influence the RAP analysis pri-

marily through their use within the GSI data assimila-

tion framework (for pressure, temperature, water vapor,

and wind observations), but surface ceilometer obser-

vations are one of two cloud observation sources (along

with GOES) for the nonvariational 3D cloud analysis

(B16; section 2e). Unexpected results from preliminary

FIG. 15. Vertical forecast impact (similar to Fig. 8b) for 6-h RH

forecasts valid at 0000 UTC over the CONUS from denial of air-

craft observations overall (red) and denial of aircraft moisture

observations only (blue). Results are from the July 2014 test period.

Rectangular boxes containing values significant at the 95% level

are also shown at each level.

FIG. 16. As in Fig. 14, but for 400–100-hPa (top level) vector wind RMSE.
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OSEs conducted within this study led to refinements to

the treatment of surface observations for improving

forecast skill impacts. These new experiments (Table 4)

are not data-denial experiments, as shown previously in

this study, but are data assimilation sensitivity tests for

refinements designed to improve the impact of surface

observations. Differences in these pairs of experiments are

shown with candlestick plots as previously. However, for

tests of these potential data assimilation improvements,

a negative impact bar indicates better forecast skill for that

test relative to the control experiment. Figure 17 shows

forecast skill differences in the 1000–600-hPa layer for

these tests. Experiment H (in red) represents the im-

pact from the denial of surface observations using the

original configuration of surface assimilation. For wind

forecasts, surface observations originally had a near-

neutral effect (depending on the forecast length con-

sidered). A positive impact (25% of total error for 3 h)

occurred for daytime 1000–600-hPa temperature fore-

casts valid at 0000 UTC, but RH forecasts gave a con-

sistent negative impact of surface observations using

that original design (experiment H).

Hypothesizing that the negative or small/neutral im-

pacts of surface observations were due to the configura-

tion of pseudoinnovations (a method of extending the

influence of surface observations into the PBL in well-

mixed environments; see section 2f in B16), an additional

experimentwas conducted inwhich all pseudoinnovations

were withheld. Results from this experiment can be in-

terpreted in the same way as a traditional OSE, with

negative bars indicating forecast skill degradation coming

from the pseudoinnovations. Figure 17 (experiment O,

orange bar) confirmed that with the original configu-

ration, the pseudoinnovations were having a negative

forecast impact for all variables, particularly at shorter

forecast lead times. This indicated that the earlier

configuration applying pseudoinnovations was either

wrong or incorrectly applied. Through a subsequent set

of experiments, we determined that surface-based

pseudoinnovations were applied too strongly and too

high up into the PBL. An additional experiment with

reduced pseudo-observation density within the PBL

(from a spacing of 20–40 hPa) and a reduced maximum

pseudoinnovation height [40% of the PBL height instead

of 75%; PBL height calculated using virtual potential

temperature as described by Benjamin et al. (2004c)] was

conducted. Verification of this experiment (experiment P;

Fig. 17) indicates that this configuration performs very

similarly to experiment O (no pseudoinnovations), indi-

cating that using a reduced pseudoinnovation density re-

sults in a superior forecast during the control experiment.

We also hypothesized that some of the originally

neutral-to-negative surface observation impacts could

be due to the use of its ceiling (ceilometer) data. Prior

experiments not shown here had shown negative im-

pacts from middle- to upper-atmosphere cloud building

(but not clearing). In the configuration used in the

control experiments, cloud building from GOES satel-

lite observations was allowed only up to 1200m above

ground level (AGL), but cloud building from METARs

was allowed at any level where METAR ceilometers

report cloud cover [up to 12 000 ft (3657.6 m) AGL]. An

additional experiment was carried out, now applying the

same 1200mAGL cloud-building height limit toMETAR

FIG. 17. Differences in RMS error (vs rawinsondes) between surface observation assimilation experiments and control run for the

(a) 1000–600-hPa vector wind (m s21), (b) temperature (K), and (c) RH (%, 0–100) for the RAP (North America) domain (see Fig. 1)

during the summer period, at 0000UTC.Results for each of five surface assimilation experiments are codedwith a different color (original

surface OSE, red; deny all pseudo-observations, orange; use reduced pseudo-observation density, burgundy; apply 1200-m cloud-building

height limit for METARs, yellow; combined reduced pseudo-observation density and 1200-m cloud-building height limit for METARs,

purple). Four adjacent bars are shown for each experiment for 3-, 6-, 9-, and 12-h forecasts. Statistical uncertainties are indicated for each

experiment by narrow black vertical lines showing 61 standard error from the mean impact.
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observations as well as to satellite observations. Figure 17

shows that, indeed, RH forecast RMSEs and wind RMS

vector errors are significantly reducedwith this experiment

(experiment Q, yellow). A slight degradation of tempera-

ture forecasts is seen at longer forecast lengths; this is likely

related to the reduction of cloud cover during the daytime

and the associated increase in solar irradiance reaching

the ground.

To test these modified surface assimilation design

features, one final experiment was conducted with both

the reduced pseudo-observation density configuration

and the cloud-building height limit for METARs. This

experiment is shown in Fig. 17 (experiment R; purple); it

is seen that this configuration results in significantly im-

proved wind andRH forecasts in the 1000–600-hPa layer,

with a near-neutral effect on temperature forecasts. This

new configuration, with modified treatment of surface

observations, is the control run used for reference for the

‘‘no surface’’ OSEs elsewhere in this paper (experiment

H in Figs. 4–7, 9, and 11–13). Vertical profiles of surface

the observation impact before and after these two as-

similation changes (Fig. 18) show the change in 6-h RAP

forecast impacts from negative to generally positive from

these two assimilation changes. These changes described

in this section both reduced the vertical extension of these

surface-based observations. This improved configuration

was a beneficial consequence of theseRAPOSEs and the

investigation of initially counterintuitive results.

7. Satellite cloud-drift wind impact

The results from our initial OSE tests indicate only a

very small impact coming from satellite cloud-drift winds

(e.g., Fig. 7). This impact was considerably smaller than

expected, motivating a more detailed examination of the

use of cloud-drift winds in the RAP. Because of the dense

observing network over the CONUS, and concerns re-

garding the quality control of satellite AMV observations

over land, these data have historically been assimilated

only over oceanic regions within the RUC and RAP sys-

tems. One additional experiment, allowing the assimila-

tion of satellite AMV observations at least 100hPa above

the land surface (and requiring innovations for u- and

y-wind components to be less than 8ms21 at all levels) was

conducted to determinewhether additional AMV impacts

could be achieved by assimilating these observations over

land within the RAP system (e.g., Table 4).

Figure 19 shows vertical profiles of the multivariable

impact on 6-h RMS error from these experiments. The

original AMV OSE indicated a positive impact of ap-

proximately 0.04m s21 in the 400–100-hPa layer; we see

that assimilating AMVs over land leads to an additional

impact of approximately 0.01–0.02m s21, resulting in a

net effect of about 0.05m s21 in the 400–100-hPa layer

(Fig. 19a). Additional small increases in observation

impact on wind RMSE are seen down to approximately

750 hPa. The impacts on temperature and RH forecasts

are very small (Fig. 19). The experiment assimilating

AMVs over land is used as the control experiment for

the calculation of AMV impacts elsewhere in this study

(experiment J in Figs. 4–7, 9, and 11–13), with a maxi-

mum AMV impact for 400–100-hPa wind in summer

(Fig. 9c) of 0.05m s21 at 6-h duration, smaller than for

some other observation types but statistically significant

(per candlestick ‘‘wick’’).

8. Verification of surface forecasts

While upper-level forecasts are important for aviation

and other applications, surface weather forecasts are

FIG. 18. As in Fig. 15, but showing the vertical forecast impact for 6-h forecasts of (a) vector wind (m s21), (b) temperature (K), and

(c) RH (%; 0–100) for the original no-surface experiment (blue) and the revised pseudo-observation (red) density configuration with

a 1200-m height limit forMETAR cloud building. Results are over the entire RAP domain for the summer test period. Rectangular boxes

containing values significant at the 95% level are also shown at each level.
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needed by other user communities. Figure 20 shows

several of the summer and winter experiments veri-

fied against METAR observations over the High-

Resolution Rapid Refresh (HRRR) domain (see Fig. 1).

Only the larger-impact experiments are shown in these

plots. It is apparent that surface observations have a very

strong impact on surface forecast skill, particularly for

temperature and moisture forecasts. Surface observa-

tions have the strongest impact for forecasts initialized

during the late afternoon and early evening during the

summer. Aircraft observations have the second-largest

impact, with the differences peaking for forecasts ini-

tialized during the daytime and exceeding those of sur-

face observations during summer for 2-m temperature

and 10-m winds from 1600 to 2000 UTC (daytime). GPS-

met PW observations contribute modestly to dewpoint

forecasts during the summer period, while rawinsondes

contribute also only modestly to forecast skill with their

FIG. 19. As in Fig. 18, but showing the vertical forecast impact for the original no-AMVexperiment (blue) and the experiment assimilating

AMVs over land as well as over water (red).

FIG. 20. Average diurnal cycle of RAP 6-h forecast RMSEs vs METAR observations for (a),(d) temperature (K), (b),(e) dewpoint

temperature (K), and (c),(f) vector wind (m s21) for the (a)–(c) summer and (d)–(f) winter periods, verified over the HRRR domain (see

Fig. 1). Shown are the no-surface experiment (green), the no-raobs experiment (black), the no GPS-PW experiment (blue), and the no-

aircraft experiment (red).
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twice-daily launches. Other experiments not shown here

generally exhibit smaller impacts.

9. Conclusions from new RAP OSEs in this study

An extensive set of observation system experiments

for three seasons was conducted with the hourly

updated Rapid Refresh model using hybrid ensemble–

variational data assimilation. Experiments were con-

ducted in each season for nine different observation

types. It was found that the heterogeneous observation

system over North America is effective for reducing

3–12-h tropospheric forecast errors, with contributions

from all observing systems. Aircraft data were the most

important observation type overall for short-range

forecasts of wind, RH, and temperature with error re-

ductions of 15%–30% for 6-h forecasts on average in

the troposphere and lower stratosphere. Aircraft ob-

servations are followed by satellite (GOES) and surface

observations. Also evident are strong cross-variable

impacts between mass, wind, and moisture variables

due, in part, to the GSI hybrid ensemble–variational

data assimilation.

The greatest impact on wind forecasts comes from

aircraft observations, followed by rawinsonde observa-

tions; this result over a North American domain is

consistent with that found by B10 over a domain cov-

ering the lower 48 United States, except that rawin-

sondes have relatively less impact here. In addition,

GOES satellite observations and surface observations

contribute at a similar level as rawinsondes. The con-

siderably lower relative impact of rawinsondes in this

study is possibly due to the relatively steady volume of

rawinsonde observations over the years, while other

observation types have increased in coverage, quality,

and inclusion via improved data assimilation.

For temperature forecasts, B10 had found that the

impact of aircraft observations was approximately

equal to that of rawinsondes, and that surface obser-

vations contributed at a comparable level during the

summer. In this new study, while surface observations

remain equally important to rawinsondes on overall

temperature forecasts, aircraft observations now far

outweigh either in importance.

For RH forecasts, B10 found that rawinsondes were

the most important observation type, with aircraft,

GPS PW, and surface observations playing a second-

ary role. In these new RAP OSEs, it is seen that air-

craft, rawinsonde, and surface observations contribute

nearly equally for 1000–400-hPa RH forecasts. GOES

satellite observations also emerge as a major player for

RH forecast skill, with lesser (but still significant) im-

pacts coming from radar reflectivity and GPS PW

observations. Radar reflectivity observations remain

critical for the initialization of higher-resolution rap-

idly updated NWP systems but, evidently, also con-

tribute to forecast skill at 13-km grid spacing.

A more detailed investigation of aircraft observation

impact was made through additional experiments with

subsets of aircraft data. For upper-level (400–100 hPa)

wind forecast accuracy (important for aviation opera-

tions, for instance), about 1/4 of this impact was from

ascent–descent aircraft reports below 350hPa (with this

fraction increasing with forecast lead time). Without

temperature and RH aircraft observations, the upper-

level short-range wind forecast skill impact overall from

aircraft was decreased by about 1/3. Additional, more

detailed, aircraft-data experiments revealed that about
2/3 of the significant aircraft impact on RH forecasts

was from wind and temperature observations, but that

this impact was increased by about another 50% with

the inclusion of aircraft water vapor observations

[Water Vapor Sensing System version two (WVSS-II);

Petersen et al. (2016)] contained within approximately
1/8 of aircraft reports.

Significant cross-variable impacts from GOES satel-

lite observations (atmospheric motion vectors and

cloud-top retrievals) are evident within our experi-

ments. This set of observations was not tested by B10;

however, the results presented here suggest that GOES

observations play an important role within the obser-

vation suite. GOES satellite observations influence the

RAPNWP system through two avenues: AMVs derived

from feature tracking of satellite imagery, and cloud

information: the presence or absence and their height

when present. It is evident from the results presented

here that the greater influence by far comes from the

GOES cloud information. Cloud building and clearing

has a direct influence on RH forecasts through the cloud

analysis (described in B16), but also apparently a fairly

strong cross-variable influence on temperature and wind

forecasts; we hypothesize that this is related to the im-

proved evolution of precipitation systems in all seasons

(see section 4b).

Initial results from the OSEs conducted in this study

led directly to several improvements in the configuration

of the surface observation assimilation within the RAP/

GSI system. First, it was determined that the prior

configuration of applying ‘‘pseudo-observations’’ within

the model PBL was too heavy handed, exerting too

strong an influence on the model initial conditions.

A revised configuration was tested, in which pseudo-

observations were inserted only every 40hPa instead of

every 20 hPa, and the pseudo-observations were only

inserted up to 40% of the PBL height instead of 75%.

In addition, we examined the impact of limiting the
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METAR cloud building to 1200m above ground level

(the same limitation applied to cloud building based

upon satellite observations). Both of these tests yielded

favorable results, and future operational versions of

the RAP and HRRR will take advantage of these

developments.

Additional tests on AMV assimilation, motivated by

the initially limited impact of these observations, revealed

that only minimal additional impact is achieved by as-

similating these observations over land. Themagnitude

of the additional impact appears to be unrelated to the

paucity of observations in the region considered, with

similar results over Alaska. Impact in this study was

measured only over land (against rawinsondes) and the

AMV impact is likely stronger over oceanic regions.

Further work investigating the use of these observa-

tions, particularly height assignment in the tracking of

optically thin features, would help to optimize their

impact within rapidly updating NWP systems.

The only negative observation impact seen within this

study was for radar-derived VAD wind observations

during the nighttime in the warm season. The negative

impact was seen chiefly for forecasts initialized during

the night (i.e., valid at 1200 UTC), which is commonly

recognized as the main time of ‘‘biological echoes’’ be-

ing observed by radar (i.e., Wilczak et al. 1995). This

highlights the need for improved quality control (QC) of

these observations [as expected with dual-polarization

radar, e.g., Ryzhkov et al. (2005); Tang et al. (2014)].

VAD wind observations with an additional level of QC

are now available operationally; future work will ex-

amine the impact of this additional QC step.

In summary, the current observation suite provides an

invaluable heterogeneous dataset for the initialization

of rapidly updating NWP systems across North Amer-

ica. The dominance of commercial aircraft data, whose

availability provided the initial motivation for de-

veloping hourly cycling models, persists in present-day

systems, and will likely continue for future versions of

the RAP and other rapidly updated models including

the 3-km HRRR. As regional NWP systems continue to

shift toward an ensemble data assimilation and ensem-

ble forecast framework over the next several years (e.g.,

Whitaker et al. 2008; Tollerud et al. 2013), rapidly up-

dating models are poised to continue to excel by taking

advantage of these asynoptic observations.
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