Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Global characteristics of coherent vortices from surface drifter trajectories

  • 2016

  • Source: Journal of Geophysical Research-Oceans, 121(2), 1306-1321.
Filetype[PDF-6.39 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • Description:
    An algorithm is developed that can automatically identify loopers in Lagrangian trajectory data, i. e., looping trajectories that complete at least two orbits, in a significant update to Griffa et al. (2008). This algorithm is applied to the Global Drifter Program data set, and over 15,000 looping trajectory segments are identified worldwide. While two third of these segments are 14-39 days long, some persist for hundreds of days; the longest looper in the record persisted for 287 days. The paths taken by the vortices at the center of these looper trajectory segments can be calculated from these data. The Lagrangian integral time scale can also be estimated for the looper segments, and is generally very close to the orbital perioda value several times larger than the integral time scales characterizing nonloopers. Fundamental timemean quantities such as total kinetic energy and velocity are shown to be significantly different between loopers and nonloopers. These results suggest that a careful approach to the data might require separately calculating means of the nonloopers and loopers, and only afterward combining the weighted results for an overall time-mean picture. While many of the loopers with large radii orbit vortices identified in altimeterderived eddy census data, many with smaller radii do not match vortices resolved in altimetry. The data from this study are available at http://www.aoml.noaa.gov/phod/loopers/.
  • Source:
    Journal of Geophysical Research-Oceans, 121(2), 1306-1321.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26