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T	he lack of high-quality measurements above  
	Earth’s surface through the lower troposphere  
	has been a serious impediment to progress in un-

derstanding, predicting, and modeling atmospheric 
processes and weather. Over coastal and oceanic envi-
rons, the situation is especially dire. This is because of 
the great difficulty and expense of deploying profile 
measurement systems of sufficient vertical resolution 
and accuracy over a water surface. The dearth of such 
profile measurements in the offshore environment 
has meant that offshore wind and weather systems 

are not well characterized and the skill of numerical 
weather prediction (NWP) models is poorly known 
at heights above the ocean surface.

The present study takes advantage of a dataset that 
exists from a monthlong summertime research cruise 
in the Gulf of Maine, as part of the 2004 New England 
Air Quality Study (NEAQS-04; Fehsenfeld et al. 2006; 
Pichugina et al. 2012). The Earth System Research 
Laboratory (ESRL)’s high-resolution Doppler lidar 
(HRDL) made high-quality wind profile measure-
ments, in the form of 15-min-averaged wind profiles 
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Future needs of both the offshore wind energy industry and the NWP modeling community 

can be met with high-quality profile measurement arrays from new-generation remote sensors.
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at 10-m vertical resolution, with precisions better 
than 0.1 m s−1. HRDL is a scanning, pulsed Doppler 
lidar (Grund et al. 2001) equipped for ship-motion 
compensation, which operated from the deck of the 
National Oceanic and Atmospheric Administration 
(NOAA) Research Vessel Ronald H. Brown (RHB) 
during NEAQS-04. The HRDL profiles provide the 
quality of measurements required to advance under-
standing and modeling of offshore weather systems 
and winds (Banta et al. 2013).

Concentrated populations and resulting human 
activities along the coastal areas of the world demand 
access to the most accurate environmental informa-
tion and predictions (National Research Council 
1992). Such activities include the recent development 
of offshore wind energy (WE; Musial and Ram 2010; 
Archer et al. 2014). Measurements and model valida-
tion, relative to offshore wind energy, is a focus of this 
paper. Obtaining accurate environmental information 
often involves forecasting and modeling weather and 
atmospheric properties (winds, clouds, tempera-
ture, pollutants, moisture, and precipitation) in the 
offshore marine atmospheric boundary layer (MABL; 
e.g., Kraus and Businger 1994). Frequent and strong 
horizontal cross-shore gradients spawn many differ-
ent types of hard-to-forecast weather systems, which 
constitute the meteorological challenges of the offshore 
coastal zone (National Research Council 1992). Coastal 
weather and wind systems occur on multiple time and 
space scales. Local atmospheric processes form small-
scale nearshore weather phenomena that interact with 
synoptic-scale and larger-mesoscale weather systems, 
with the diurnal cycle of surface heating and cooling, 
with shoreline topography, and with the land–water 
and air–sea interfaces to produce complex flows at the 
coast. These influences may extend several hundred 
kilometers offshore. Characterizing, modeling, and 
predicting these interactions are key to more accurate 
atmospheric information and forecast products.

In this ever-changing meteorological environment, 
the emerging U.S. offshore wind energy industry re-
quires many forms of information on winds aloft. For 
WE applications, highly accurate wind information is 
needed above the surface at the level of wind turbine 
rotor blades, generally 50–200 m above mean sea level 
(MSL), where the behavior of wind is often different 
from that within 10 m of the surface (Banta et al. 2013; 
Pichugina et al. 2017b), with desired uncertainties of 
0.1 m s−1. As is the case for land-based WE, operations 
and maintenance scheduling need accurate wind fore-
casts (Ahlstrom et al. 2013; Marquis et al. 2011; Wilczak 
et al. 2015; Shaw et al. 2009). Resource assessment—
that is, determining where to site an offshore wind 

plant—requires accurate maps of the horizontal 
distribution of the rotor-layer wind, and turbine and 
wind-farm design demands accurate assessments of 
directional and speed wind shear across the rotor layer.

NWP models could provide this information—
avoiding the need for expensive overwater field 
measurement campaigns—if the models could 
prove sufficiently accurate and reliable. Thus, model 
accuracy at levels above the surface needs to be evalu-
ated. If models prove not to be accurate enough, then 
rotor-level wind properties will have to be obtained 
by extended measurement projects, and simultane-
ously, work must proceed to improve the models. We 
argue that these two endeavors overlap significantly: 
the kind of field measurement campaign datasets re-
quired by WE are the same kinds of datasets needed 
to improve the state of the art in NWP modeling, 
namely, horizontal arrays of high-quality profiling 
instrumentation (Banta et al. 2013).

To facilitate the planning and development of 
offshore WE and to address the scarcity of wind 
information aloft, the Energy Efficiency and Renew-
able Energy (EERE) Office of the U.S. Department of 
Energy (DOE) asked NOAA to make use of the exist-
ing NEAQS-04 dataset along with NOAA’s modeling 
resources to address these issues. This project, re-
ferred to as the Positioning of Offshore Wind Energy 
Resources (POWER) project, was designed to address 
three goals: to analyze the measured vertical and hori-
zontal properties of the offshore wind field over the 
Gulf of Maine; to perform retrospective model runs of 
two selected weeklong periods during this campaign 
using two model versions, each hourly updated trial 
versions of NOAA NWP modeling systems; and to 
use the reference profile measurements on board 
the RHB to quantitatively evaluate the skill of these 
models at heights above the surface, including at the 
turbine rotor level. The trial models employed were 
versions of the North American Mesoscale Forecast 
System (NAM) and the Rapid Refresh (RAP) models 
plus embedded or nested configurations of each (see 
“The RAP–HRRR and NAM models” sidebar). They 
are described by James et al. (2018), Djalalova et al. 
(2016), and Pichugina et al. (2017b). For this study, 
these models performed special retrospective runs 
that assimilated available routine measurements, such 
as conventional surface observations [aviation rou-
tine weather reports (METARs)], rawinsondes, and 
onboard commercial aircraft observations. Model 
versus lidar-measured wind error statistics were cal-
culated, which can serve as benchmarks for the skill 
of the 2012 versions of the models assimilating the 
routine measurements available in 2004.
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Previous studies have used models to estimate the 
offshore wind resource, generally using surface wind 
data from buoys, shoreline sites, or other sources (e.g., 
ships, satellites) as validation for the model-derived 
wind speed maps (e.g., Schwartz et al. 2010; Musial 
and Ram 2010; Jimenez et al. 2007; Jiang et al. 2008; 
Dvorak et al. 2010, 2012; Giannakopoulou and Nhili 
2014). A few studies have used offshore-tower datasets 
to calculate model error statistics from measure-
ments aloft. Drechsel et al. (2012), for example, used 
instrumented-tower data (up to 70 and 100 m MSL) 
on two platforms in the North Sea off the coasts of 

Denmark and Germany [the Forschungsplattformen 
in Nord- und Ostsee 1 (FINO-1) tower) to evaluate 
model errors over a period of 1 year (results of which 
will be presented later). Krogsæter and Reuder (2015) 
also used profile data from the FINO-1 tower to 
validate model wind values, and Draxl et al. (2014) 
used data from a coastal tower in western Denmark, 
1.7 km inland, for model validation. Although this 
site was near but not over the ocean, the error values 
were similar to those we present later.

A few overwater research datasets have been used 
to evaluate NWP models in different ways. Colle et al. 

THE RAP–HRRR AND NAM MODELS

The RAP–HRRR and NAM are NWP 
models that run operationally (24 

hours per day, 7 days per week) at 
NCEP. The NAM provides four fore-
casts per day over an 84-h forecast 
period. It is currently NCEP’s regional, 
multiday continental forecast system. 
The operational NAM also features 
five additional, comparatively higher-
resolution nest domains. Most notable 
for POWER is the 4-km nest domain 
that covers the CONUS, having a 
forecast period of 60 h. The trial NAM 
system was the hourly updated, 12-km 
NAMRR over North America with its 
fine-mesh (4 km) NAMRR-CONUS-
nest concentrated over the contiguous 
United States (Fig. 3a). This NAMRR-
CONUS-nest domain was one-way 
nested into the 12-km NAMRR, also 
referred to as the NAMRR-parent. 
Both assimilate available measurements 
hourly (similar to the RAP and HRRR), 
with a procedure described in Banta 
et al. (2014) and Djalalova et al. (2016). 
To perform the model validation, 
model profile values for the “nearest 
neighbor” model grid point to the 
ship position were used to compare 
with the HRDL-measured profile data. 
For the ocean surface relevant to this 
study, sea surface temperatures (SSTs) 
were updated once daily at 1800 UTC 
based upon the most recent real-time 
global 0.5° SST analysis created by the 
NCEP/Environmental Modeling Center 
Marine Modeling and Analysis Branch 
(Thiébaux et al. 2003). At the same 
time, snow cover and sea ice were 
updated from the most recent data 
available from the National Ice Center’s 

Interactive Multisensor Snow and Ice 
Mapping System. For completeness, 
the Northern Hemisphere snow depth 
was also updated based upon analyses 
provided by Air Force Weather Agency 
(now U.S. Air Force 557th Weather 
Wing). Other relevant features of the 
NAM models are given in Table 2.

The RAP (Benjamin et al. 2016) 
was developed to provide short-range 
hourly updated forecasts out to 18 h 
for applications such as aviation that 
need frequently updated information. 
Model skill at these short lead times 
depends highly on initial conditions 
with focus on effective assimilation of 
real-time, frequent datasets such as 
onboard aircraft, satellite, and weather 
radar. A particular concern for the 
RAP was predicting warm-season deep, 
moist convection. Therefore, the RAP 
system includes a smaller-domain, 
finer-resolution nested model—the 
HRRR—run on a 3-km mesh where 
this convection is explicitly simu-
lated rather than parameterized. The 
features, rationale, and history of 
RAP and HRRR development have 
recently been detailed by Benjamin 
et al. (2016). The 2004 retrospective 
study described here used the earliest 
version (version 1) of RAP–HRRR 
(see Table 2 in Benjamin et al. 2016) 
without ensemble data assimilation and 
for which no radar data were available. 
This RAP version used for the POWER 
simulations, the RAP–HRRR-2012P, 
was performed over a much-reduced 
domain (Fig. 3b) because of computer 
time and data storage restrictions. 
For model validation, RAP–HRRR-

simulated profile values were interpo-
lated horizontally to the position of 
the ship using a parabolic interpola-
tion scheme. Over the ocean surface, 
the RAP and HRRR systems (both 
real-time and retrospective POWER 
versions) do not have a coupled ocean 
model. Sea ice coverage and SSTs are 
specified from daily updated analyses, 
as described by Benjamin et al. (2016, 
their section 4). Sea ice is based on a 
satellite-based National Environmental 
Satellite, Data, and Information Service 
(NESDIS) dataset, and SST is based 
upon the NCEP global high-resolution 
SST analysis.

Increasingly upgraded versions 
of the RAP and HRRR models were 
run experimentally in near–real time 
starting in 2010, and archived HRRR 
model output fields were used for 
subsequent wind and solar climatology 
studies (James et al. 2017, 2018). This 
archive was used to generate rotor-
layer wind speed composite maps 
covering the U.S. East Coast over a 
3-yr period [2013–15; see Fig. 4 here, 
reproduced from James et al. (2018)]. 
The embedded HRRR was one-way 
nested with lateral boundary condi-
tions and model fields simply interpo-
lated to the HRRR grid from the parent 
RAP. Compared to the 2012 POWER 
retrospective experiment configura-
tions, the NCEP HRRR (not imple-
mented until 2014) uses a 1-h spinup 
period at 3-km resolution combined 
with ensemble hybrid data assimilation. 
Relevant features of the RAP–HRRR-
2012P models for the POWER experi-
ments are given in Table 2.
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(2016) looked at model output from individual case 
study periods, which they compared with profile or 
aircraft measurement analyses. Darby et al. (2002b) 
used long-range Doppler lidar measurements taken 
from the shore of Monterey Bay, California, to give 
confidence to idealized model findings. In this case, 
they studied the sensitivity of vertical flow structure 
at the shoreline to the presence of the coastal ranges 
and the Sierra Nevada. The NEAQS dataset has been 
used in other POWER studies. Pichugina et al. (2017a) 
studied properties of the offshore low-level jet (LLJ) 
in the Gulf of Maine and also determined power-law 
wind profile exponents α and their horizontal distri-
bution. James et al. (2018) performed High-Resolution 
Rapid Refresh (HRRR) modeling studies to evaluate 
the long-term (3 years) mean distribution of hub-
height winds off the U.S. East Coast.

Also as part of the POWER project, Djalalova 
et al. (2016) and Pichugina et al. (2017b) investigated 
the impacts on 0–12-h forecast skill over the ocean, 
resulting from assimilating 11 land-based, 915-MHz 
wind-profiling radars (profilers), deployed as a part of 
the original campaign. The results, in brief, were that 
assimilating the profiler data produced an improved 
initialization by ~0.2 m s−1 and forecast improve-
ment by as much as 5%–10% early (generally in the 
first 2 h), with positive improvement indicated out to 

3–4 h, when validated against the independent offshore 
profile data (HRDL and a profiler aboard the RHB that 
were not assimilated into the model runs). These stud-
ies also performed model evaluations for a rainy period 
in the middle of one of the weeks chosen for study.

Because the RHB traversed the Gulf of Maine repeat-
edly during NEAQS-04, we were able to document the 
horizontal variability of the winds for the time period 
and locale of the cruise. Based on the observed variabil-
ity, we discuss considerations in deploying a network of 
offshore wind-profiling devices and provide recommen-

dations for possible coastal offshore 
sampling-array layouts. Proposed 
offshore profiling devices could in-
clude f loating-buoy lidar systems 
currently being built and tested. By 
using profiling arrays of this kind, we 
could test the ability of NWP models 
to characterize the vertical structure of 
the flow and its horizontal variability.

BACKGROUND, MEASURE-
MENTS, AND ANALYSIS 
PROCEDURES. The offshore, 
coastal, and inland NEAQS-04 
datasets used in the present study 
were originally obtained to character-
ize local pollution sources in the New 
England region (Fehsenfeld et al. 2006; 
Angevine et al. 2006; Darby et al. 2007; 
White et al. 2007), so they are very 
useful but not optimized for offshore 
WE or NWP improvement studies. 
Land-based, airborne, and shipborne 
instrumentation all contributed to the 
dataset (Fehsenfeld et al. 2006). The 
major offshore measurement platform 

Table 1. Technical characteristics of NOAA/ESRL 
Doppler lidar.

Characteristic HRDL

Wavelength 2.02 µm

Pulse energy 2.0 mJ

Pulse rate <300 Hz

Range resolution 60 m

Velocity resolution ~0.5 cm s−1

Time resolution 0.3 s

Minimum range 90 m

Maximum range 5–12 km

Scanner height 8 m MSL

Fig. 1. Gulf of Maine region (background from Google Earth). Ship 
tracks for entire monthlong campaign are traced by yellow dots, 
which designate the locations of the 15-min wind profiles used in 
this paper. The larger white box outlines the region analyzed in this 
paper, and a 1° latitude–longitude grid is superimposed. Profiler sites 
identified are Appledore Island, Maine (ADI); Bar Harbor, Maine 
(BHB); Chebogue Point, Nova Scotia, Canada (CBE); Concord, New 
Hampshire (CCD); Pease Tradeport, New Hampshire (PSE); and 
Plymouth, Massachusetts (PYM).
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was the RHB, which took meteorological, air chemistry, 
and oceanographic data over the Gulf of Maine from 
9 July to 12 August 2004 (see Fig. 1 for ship tracks). 
Instrumentation on board pertinent to the present 
study included HRDL, a 915-MHz profiler (Wolfe et al. 
2007), and NOAA’s in situ surface-flux measurement 
package, mounted on a boom protruding out from the 
bow (Fairall et al. 2006). The focus of this study is the 
use of HRDL.

The two intensive study and numerical simulation 
periods were chosen based on HRDL data, which are 
available except during rainy 
or foggy conditions. The two 
case study periods were mostly 
during dry conditions, which 
were hard to find because the 
summer of 2004 was abnor-
mally cool, cloudy, and wet for 
the region (White et al. 2007). 
The first study period selected 
was 6–12 August, correspond-
ing to the only 1-week-long 
lull between frontal passages 
(White et al. 2007). For the sec-
ond study period (10–17 July), 
two of the shorter periods sepa-
rated by a day and a half of rain 
(1600 UTC 13 July–1400 UTC 
15 July) were selected so that 
the model runs could be per-
formed through the week 
without having to restart the 
models. All models were run 
for both study periods.

The high-resolution Doppler lidar. 
HRDL is a scanning, coher-
ent, pulsed Doppler lidar de-
signed, built, and operated 
by NOAA/ESRL for atmo-
spheric boundary layer re-
search (Grund et al. 2001; see 
Table 1). Deployed on board the 
RHB, HRDL was operated over 
the Gulf of Maine 24 h day−1 
during the NEAQS-04 field 
campaign, for a total of 28 days 
of data (Pichugina et al. 2012, 
2017a,b). This lidar employs a 
motion-compensation system 
to provide precise wind profile 
measurements at high vertical 
resolution from the deck of the 

RHB (Pichugina et al. 2012). To address the objectives 
of the POWER study, HRDL scan data were analyzed 
to calculate mean profiles of wind speed and direction 
from the deck of the RHB at 15-min intervals, which 
was the repeat time of the scan sequences. Conclusions 
drawn in this paper based on the 15-min averages 
would apply equally to 10-min averaging commonly 
used in WE.

The HRDL scan sequences consisted of azimuth 
(conical) scans at three elevation angles (Fig. 2), 
elevation (vertical slice) scans at two perpendicular 

Fig. 2. Conical scan examples from 11 Aug 2004. (Top) schematic depiction 
of scan pattern during NEAQS: three nested conical (azimuth) scans indi-
cated in blue, two vertical-slice or range–height (elevation) scans in yellow, 
and vertically staring in green. (middle) Geometry as in the top panel, but 
showing actual scan data on a scan image. (Bottom) Two examples of full 
360° azimuth (conical) scans at fixed elevations of (left) 2° and (right) 10°.
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azimuths (oriented to avoid the ship superstructure), 
and vertical staring for vertical velocity measure-
ments. For this study, we used only the three nested 
conical scans, which were taken mostly at 2°, 10°, 
and 30° elevation. The conical scans at the higher 
elevations reach higher into the atmosphere than 
lower-elevation scans but have coarser resolution 
in the vertical, so we form a single wind profile 
from the three conical scans by collecting the veloc-
ity data into vertical bins having vertical intervals 
that increase gradually with height, as described 
by Banta et al. (2015). Typical vertical analysis bin 
intervals are 9 m near the surface, 20 m at 100 m 
MSL, and 45 m at 1,000 m MSL. The calculated 
profiles thus represent a 15-min mean, averaged 
vertically within the bin and horizontally around 
the lidar’s velocity–azimuth display (VAD) sampling 
ring and along the ship’s track, extending from near 
the ocean surface to heights of ~2 km or more. The 
atmosphere over the ocean in general varies slowly 
enough over 15 min and smoothly enough over the 
spatial-averaging dimensions involved to regard 

these as representative mean profiles over these 
temporal and vertical scales.

Many of the NEAQS-04 measurements were 
assimilated into the experimental model runs, but 
the HRDL measurements were withheld, so they con-
stitute an independent verification dataset. For com-
parison with model profiles, which were extracted at 
the top of each hour, HRDL data were averaged for 
1 h centered on the top of the hour.

NWP forecast models used. This study used special 
trial versions of two models that run operation-
ally at NOAA/National Centers for Environmental 
Prediction (NCEP), the NAM and RAP, covering a 
North American domain at horizontal grid spacings 
of 12 and 13 km, respectively. Both models feature 
finer-mesh models embedded or nested within, as 
described in “The RAP–HRRR and NAM Models” 
sidebar.

The trial NAM system (Table 2) consisted of 
an hourly updated, 12-km model, the NAM Rapid 
Refresh (NAMRR), over North America, run on 

Table 2. Domain configurations for NWP forecast models.

Model Configuration

12-km NAMRR-parent

  Points in x, y, and z directions 954, 835, and 60

  Microphysics parameterization Ferrier et al. (2002, 2011)

  Boundary layer parameterization Janjić (2001)

  Convective parameterization Janjić (1994)

  Longwave and shortwave radiation parameterization Iacono et al. (2008) and Mlawer et al. (1997)

  Land surface model Ek et al. (2003)

  Gravity wave drag parameterization Alpert (2004)

4-km CONUS-nest

  Points in x, y, and z directions 1,371, 1,100, and 60

  Convective parameterization
Janjić (1994), modified to be less active for  
higher resolution

  Gravity wave drag parameterization None

13-km RAP-2012P, CONUS domain reduced from whole domain

  Points in x, y, and z directions Reduced to 758, 567, and 51

  Cloud microphysics parameterization Thompson et al. (2008)

  Boundary layer parameterization Janjić (2001)

  Convective parameterization Grell 3D/Grell shallow cumulus

  Longwave and shortwave radiation parameterization Chou and Suarez (1994) and Mlawer et al. (1997)

  Land surface model Smirnova et al. (1997, 2000)

3-km HRRR-2012P, reduced from the whole domain

  Points in x, y, and z directions Reduced to 520, 450, and 51

  Convective parameterization Turned off
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the operational domain (Fig. 3a). Nested within the 
NAMRR is a fine-mesh (4 km) model concentrated 
over the conterminous United States (CONUS), the 
NAMRR-CONUS-nest (blue box in Fig. 3a). The 
trial RAP version, the RAP-2012P (see Table 2), ran 
on the reduced domains shown in Fig. 3b. The fine-
mesh version is the 3-km HRRR, and the domain of 
the POWER version, the HRRR-2012P, is the blue 
box in Fig. 3b.

In the wind resource assessment process, the 
horizontal distribution of turbine-level wind speeds 
is of critical importance for the siting of wind plants 
and wind turbines. NWP models have been used to 
produce maps showing the horizontal variability of 
the offshore wind resource (e.g., Schwartz et al. 2010; 
Musial and Ram 2010; Jimenez et al. 2007; Jiang et al. 
2008; Dvorak et al. 2012). As a part of POWER, a 
multiyear archive of trial HRRR runs made at ESRL 
was used to calculate composite maps of 80-m wind 
speeds averaged over a 2-yr period (Banta et al. 2014) 
and then a 3-yr period (James et al. 2018) over the 
CONUS. The values going into this map were an 
hourly dataset of 1-h lead-time forecast values—close 
to the initial times but after the model initialization 
transients had time to subside, as explained by James 
et al. (2017). The 3-yr composite, 80-m wind speed 
map for the Gulf of Maine (Fig. 4) shows that wind 

speeds increase significantly with distance from 
the coast, a characteristic that makes offshore WE 
attractive.

This project provided an opportunity to evaluate 
the skill of these models in an offshore setting by 
exploiting the rare availability of high-quality wind 
measurements aloft. To accomplish the model–lidar 
comparisons, the gridded model wind profile values 
were determined for the location of the ship as de-
scribed in the “The RAP–HRRR and NAM Models” 
sidebar. These values were then linearly interpolated to 
the heights of the lidar measurements, where the differ-
ences between model and lidar measurements at each 
vertical level were used to calculate model error sta-
tistics, such as root-mean-square (rms) error or mean 
bias. The error values could then be further averaged 
over deeper vertical layers. Pichugina et al. (2017b) have 
shown that the magnitude of this vertically averaged 
error is sensitive to the depth of the averaging layer, 
where averages over deeper layers have larger sample 
sizes and give smaller errors.1 Figure 5, reproduced 
from that paper, quantifies this effect for the August 
study period: for short lead times up to 3–4 h, averaging 

1	It will also be shown later that the error values decreased 
aloft, so the deeper averaging layers also benefited from 
including vertical levels where the model errors were smaller.

Fig. 3. (a) Domains for NAMRR-parent (orange, covering most of image) and NAMRR-CONUS-nest (light 
blue), as used both in POWER and for real-time operational forecast runs, superimposed on a Google Earth 
map image. (b) Reduced-size trial domains for RAP-2012P (orange) and HRRR-2012P (light blue) models for 
POWER retrospective experiments. From Pichugina et al. (2017), copyright American Meteorological Society, 
used with permission.
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over a 500-m-deep layer produces an error of 2.0 m s−1, 
whereas the wind speed error at the 100-m hub-height 
level, representing a ~20-m-deep layer average about 
that height, is 2.5 m s−1, or 25% larger. In calculating 
model errors appropriate for WE applications, it is 
thus important to consider a shallow-enough layer of 
the atmosphere at the right heights for this industry.

RESULTS. HRDL–NWP comparisons. In this section, 
we validate wind forecasts from the models against 
HRDL measurements. For context, we first present 
time–height cross sections of wind speed for a sample 
day, which give an overview of the time dependence of 
the vertical structure of the flow. Figure 6 shows an ex-
ample for 11 August, with hourly HRDL data (Fig. 6a) 
and interpolated model values for the NAMRR-parent 
(Fig. 6c) and NAMRR-CONUS-nest (Fig. 6b). RAP 
and HRRR results (not shown) were similar. LLJ 
structure—higher wind-speed layers having lower 
wind speeds above and below—is seen for many of the 
hours. The overall patterns between measurements 

and models are similar, indicating that the models 
simulated the existence of the LLJ and other structures. 
Quantitative details of the vertical structure at the 
beginning and end of the period, however, as well as 
the penetration of strong winds below 200 m between 
0700 and 0900 UTC, were not well modeled.

On the same day, time series of HRDL-measured 
wind speeds at seven vertical levels from 10 to 500 m 
(Fig. 7), including three levels within the hypothetical 
turbine rotor layer (50, 100, and 150 m), show how the 
flows and their evolution at various vertical levels are 
related—or not. For the first 8 h, the near-surface flow 
at 10 m MSL (dark blue line) lies mostly between 7 and 
11 m s−1, whereas in the rotor layer, the wind speeds 
at 50, 100, and 150 m (red, black, and lilac curves), 
for example, range from 17 m s−1 down to 7 m s−1 
(the 50- and 100-m curves intersecting the 10-m 
wind speed line just before 0500 UTC) then back up 
to nearly 15 m s−1. These increases and decreases in 
wind speed, or ramp events, are of great consequence 
to wind energy and thus are very important to be able 

Fig. 4. Average 80-m wind speed from 1-h HRRR forecasts over the 2013–15 period, showing (left) the north-
eastern coast of the United States and (right) the Gulf of Maine (James et al. 2018). Thick arrow in the upper-
right corner of the right panel indicates a region of slower offshore wind speeds associated with the island of 
Grand Manan, New Brunswick, Canada.
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to predict accurately (Ahlstrom et al. 2013; Marquis et 
al. 2011). The changes in wind speed at 100 m relative 
to those at 10 m illustrate how differently wind speed 
at 10 m can behave in time from the speeds at higher 
levels, even within the rotor layer, consistent with 
other studies over the ocean (Pichugina et al. 2012, 
2017a) and land (Banta et al. 2013).

Individual hourly profile comparisons in Fig. 8 
also from 11 August show HRDL-measured wind data 
during one of the LLJ periods along with NAMRR 
and NAMRR-CONUS-nest values, for the model 
initial conditions (forecast 0; top row), and for the 2-h 
forecast (forecast 2; bottom row) valid at each hour. 
For this example, the finer-mesh model values better 

EFFECTS OF FINER GRID SPACING ON MODEL SKILL

Some previous studies have found 
decreases in NWP model skill 

as model horizontal grid spacing 
decreases below 10 km (e.g., Mass 
et al. 2002; Mittermaier 2014). The 
reasons for this are unknown, but 
speculations can be grouped as 
validation issues, appropriateness of 
subresolution-scale (SRS) parameter-
izations, and numerical. Subresolution 
scale refers to the fact that models 
having a horizontal grid interval of ∆x 
do not properly resolve the behavior 
of atmospheric features smaller than 
4–5∆x, sometimes larger.

An example of validation issues is 
that significant finescale structure may 
exist in the atmosphere at length scales 
corresponding to grid spacings less 
than 10 km. The predicted structure 
may actually be captured reasonably 
well overall by the models, but relative-
ly small horizontal displacements of the 
model fields relative to the atmosphere 
could produce significant calculated 
model versus atmosphere differences, 
which would be interpreted as large 
errors. Errors in timing of otherwise 
well-predicted events could also 
produce a similar inflation of calculated 
errors (Mass et al. 2002).

SRS flux parameterizations, as 
model resolutions decrease from coars-
er to finer, pass from a “mesoscale” 
or larger-scale regime to a small-scale 
regime. In the larger-scale regime, 
model grid spacing is much larger than 
the turbulence length scales (turbu-
lence scale) that contain the turbulence 
kinetic energy. In the smaller-scale 
regime, the grid intervals are much 
smaller than the turbulence scale, such 
that the energy-containing eddies are 
resolved—the large-eddy simulation 
(LES) and direct numerical simulation 
(DNS) approaches. For the mesoscale, 
grid intervals are larger than ~10 km, 

and those for LES are smaller than 
50–100 m. Without going into great 
detail here, Wyngaard (2004) argues 
that the parameterization methodology 
in the mesoscale case can be tuned to 
perform reasonably well for mesoscale 
and larger-scale dynamics and that, in 
the LES case, the role of SRS transport 
processes is small, so they can be 
modeled as diffusive without significant 
error. These parameterizations thus 
each seem to work acceptably at the 
scales for which they were intended. 
However, at intermediate resolutions, 
dubbed “terra incognita” by Wyngaard 
(2004), the energy-containing turbu-
lence scales are partially resolved, and 
in this regime, neither parameterization 
approach may be appropriate. Thus, as 
the grid size decreases into these terra 
incognita scales, the inappropriateness 
of the mesoscale SRS flux parameter-
izations may lead to increased model 
errors versus the atmosphere.

Another possibility is a numerical 
analog to the terra incognita of model 
parameterizations. Successful finite-
difference modeling relies on some key 
assumptions, one of which is that the 
derivatives in the primitive equations 
can be represented by first-order terms 
in their Taylor series expansions (or 
at least low order). This requires that 
the prognostic variables vary smoothly 
in time and space and that gradients, 
curvatures, and higher-order differ-
ences of these variables are not large. 
Numerical and explicitly modeled dif-
fusion ensure that model variable fields 
are smooth enough to prevent numeri-
cal instability. At larger scales (perhaps 
grid intervals >10 km or so), the success 
demonstrated by NWP forecast 
models implies that the smoothed fields 
reasonably well represent the dynamics 
at those scales, seemingly justifying 
the neglect of higher-order terms. At 

LES scales, finescale SRS features exist 
in the atmosphere, but by definition, 
they should have little impact on the 
overall simulation and should not be a 
significant source of model errors (i.e., 
departure in time of modeled fields 
from those in the atmosphere). For 
simulations having intermediate mesh 
sizes, perhaps 0.5–5-km horizontal 
grid spacing, however, the wind fields 
in the atmosphere at equivalently 
resolved scales are often not smooth, 
and large gradients can exist. This is 
known to several authors of this paper 
through decades of experience with 
Doppler lidar datasets and several 
dozen studies of flows having strongly 
varying atmospheric structure on 
scales up to 30 km (e.g., Angevine et 
al. 2003; Banta et al. 1993, 1996, 1997, 
2004, 2005, 2012; Clark et al. 1994; 
Darby et al. 1999, 2002a,b, 2006, 2007; 
Flamant et al. 2002; Gohm et al. 2010; 
Langford et al. 2010; Levinson and Banta 
1995; Rothermel et al. 1998a,b; Rucker 
et al. 2008; Weissmann et al. 2004). 
Atmospheric dynamics at subresolution 
scales may be dominated by these kinds 
of features, which are often not tur-
bulence, often not diffusive, and often 
unrelated to local resolved gradients. 
Furthermore, higher-order terms of 
such fields that would be calculated 
for the real atmosphere are likely to 
be too large to neglect. In this case, 
processes in the atmosphere that would 
be subresolution in a model of this grid 
size may be responsible for SRS transfer 
that is large compared with the other 
terms in the governing equations. In the 
model these processes would at least 
be smoothed and much less effective, 
and the SRS terms could even be of 
the wrong sign. As a result, the model 
solutions would diverge in time from 
the evolution of the true fields in the 
atmosphere.
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approximate the measured data in general, especially 
below 800 m. The model profiles captured the overall 
LLJ occurrence, but some aspects of the vertical struc-
ture and its evolution were not well represented at 
low levels, as, for example, the very shallow jet below 
100 m at 0400–0500 UTC and the acceleration of the 
flow below 400 m at 0600 UTC, an hour after local 
midnight. Both of these discrepancies, often 3 m s−1 
to as much as 6 m s−1 in the rotor layer, are within the 
height and wind speed ranges that would produce 
large errors in wind power calculations.

High-quality wind profile measurements make 
it possible to evaluate statistically the skill of model 
forecasts as a function of height for extended time 
periods. Figures 9a and 9d show profiles of the model 
rms wind speed error calculated for the initial condi-
tions and 2-h forecasts over the August study period 
for each of the four model versions: RAP–HRRR 
(RAP-2012P and HRRR-2012P in this study) in the 
top row, and the two NAM configurations in the 
bottom row. Near 500 m, all models indicate errors of 
2 m s−1. For the RAP models, this decreases downward 
to 1.5 m s−1 in the 100–200-m layer, but in the NAM 
models, the error stays near 2 m s−1. All models show 
a significant degradation in skill below 100 m MSL, 
with the rms error jumping up by nearly 0.5 m s−1, 
which amounts to near-surface increases of 28% in 
the RAP error, 53% in the HRRR, 32% in the NAM, 
and 32% in the NAM-CONUS. For the HRRR-2012P, 
this relatively poor performance of the initial values 
compared to the others can be attributed to the use 
of the simple-interpolation initialization (see “The 
RAP-HRRR and NAM Models” sidebar) rather than 
the full assimilation of available hourly measure-
ments on the fine-mesh HRRR grid, as used in the 
operational RAP–HRRR (Benjamin et al. 2016). Note 
that these large initial HRRR-2012P error values 

have adjusted after 2 h of 
simulated time, decreasing 
to RAP values. Overall, 
the errors in the fine-mesh 
models were the same as or 
less than those of their par-
ent versions except for this 
HRRR-2012P initialization 
imbalance. Errors in the 
2-h forecasts were less than 
those of the initial model 
state, confirming that the 
mutual adjustment of the 
model fields to each other 
alleviated initialization 
errors early in the simula-

tions. Figure 9 also shows the coefficient of deter-
mination R2 (Figs. 9b,e) and bias profiles (Figs. 9c,f). 
As with the rms error, these statistics indicate a 
degradation of skill in the lowest 100 m MSL—
smaller correlations and larger biases. Thus, the 
statistical profiles indicate that the forecast models 

Fig. 5. Model rms error (difference from HRDL-measured values) vs forecast 
lead time for averaging over different vertical layers (dash–dotted: 100-m 
level; dashed: 50–150-m layer; dotted: 0–300-m layer; red solid: 0–500-m 
layer; and black solid: 0–1,000-m layer). (left) NAMRR-parent and (right) 
NAM-CONUS-nest [from Pichugina et al. (2017b), copyright American 
Meteorological Society, used with permission].

Fig. 6. Time–height cross sections of wind speed up 
to 2 km MSL on 11 Aug 2004 for (a) HRDL-measured 
profiles interpolated to form hourly values, (middle) 
NAMRR-CONUS-nest, and (bottom) NAMRR. Model 
values indicated for each hour were extracted from the 
time step at the beginning of each hour. Local standard 
time (LST) is 5 h behind UTC (0000 LST = 0500 UTC 
and 1200 LST = 1700 UTC).
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exhibit poorer forecast skill near the ocean surface 
than above 100 m MSL, which is likely indicative of 
the complexities of atmosphere–surface interactions 
and the difficulties that models have in properly 
representing them.

The growth of model errors at longer lead times is 
illustrated in Fig. 10, again averaged for the August 
study period. HRDL wind data, also averaged verti-
cally over the layer from 20 to 200 m MSL, were used 
to verify model forecasts (averaged over the same layer) 
out to 12-h lead time. Figure 10 shows the rms error 
for the four model configu-
ration runs over the August 
study period. The plot 
shows the scalar-wind (i.e., 
mean wind speed) error and 
the magnitude of the vector-
wind error, which includes 
direct ional deviat ions. 
Except for the initializa-
tion errors for the HRRR-
2012P model described 
previously, the traces for 
the higher-resolution mod-
els in blue (HRRR-2012P 
and NAM-CONUS-nest) 
lie at or below those of the 
lower-resolution “parent” 
models for a short time after 
initialization by as much 
as 0.3 m s−1. After this in-
terval, the finer-resolution 
embedded models exhibit 
worse error statistics for 
this dataset. This kind of 
error behavior has been 
noted before (see “Effects of 
finer grid spacing on model 
skill” sidebar). During the 

“nowcasting” lead times (up to 3 h or so), 
wind speed errors were near 2 m s−1, in-
creasing to >2.5 m s−1 after 8-h lead time. 
The vector-wind errors were larger, start-
ing with initial errors of 2.5 m s−1, growing 
to 4 m s−1 for the 12-h predictions. The 
magnitudes of the vector-wind errors are 
similar to annual RAP model 6-h lead-time 
values found by Benjamin et al. (2016) over 
the United States.

The behavior of the model wind speed 
forecast at ~100 m MSL for each model 
as a function of time of day is shown in 
Fig. 11. The 100-m height is near the 

typical hub heights of contemporary turbines. For 
comparison, the mean HRDL-measured wind at 
100 m MSL is also plotted for each hour of the day 
(black line, which remains the same in all 12 panels). 
In the NAMRR results, the initial wind (forecast 
0) is underestimated by about 2 m s−1 when the 
model is initialized at night, especially after local 
midnight (0500 UTC), but better represented when 
initialized during daytime (1200–2200 UTC), when the 
differences between measurements and model output 
are generally less than 1 m s−1.

Fig. 7. Time series of wind speed from lidar measurements on 
11 Aug 2004 are shown for several heights according to the 
legend.

Fig. 8. Sampling of HRDL vs model profiles for four consecutive hours on 
11 Aug 2004. (top) Initial model conditions (forecast hour 0) and (bottom) 
2-h lead-time forecast valid at the indicated hour. Black lines show HRDL 
indicated-hour profiles. Blue lines are for the NAMRR-parent model, and the 
red lines are for the NAMRR-CONUS-nest. Dotted horizontal lines at 50 and 
150 m delimit hypothetical turbine rotor layer.
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The 1-h forecasts (fore-
cast 1) valid after local mid-
night continue to show low 
biases of 2 m s−1 on average, 
sustaining the underesti-
mates in the initial condi-
tions, as do the 2- and 3-h 
forecasts. During daylight 
hours, on the other hand, the 
1–3-h forecasts are mostly 
within 1 m s−1 of the mea-
sured winds, also in line 
with the error characteristics 
of the daytime initial condi-
tions. Longer term, the 12-h 
forecasts valid in the after-
noon after 1800 UTC over-
predict the measured winds 
by 2–4 m s−1, extending into 
the evening hours through 
0800 UTC. The R AP–
HRRR-2012P results on 
the right are similar. Thus, 
model errors depended on 
hour of the day: the model initial state and short-term 
forecasts, on average, had the largest errors during 
the nighttime hours after local midnight, whereas the 
longer-term predictions (12 h) had the largest errors in 
the late afternoon and early evening hours.

The errors in this section showed that the models 
tended to underpredict (low bias) wind speeds for 

forecasts of less than 3 h and overpredict them at 
12 h; rms wind speed errors were larger in the lowest 
100 m (Fig. 9), grew with forecast lead time (Fig. 10), 
and were largest at night (Fig. 11), especially at short 
lead times. Quantitatively, Table 3 compares results 
for this study with others where offshore winds aloft 
were available for extended time periods, including 

Fig. 9. Vertical profiles of 
(a),(d) rms error (m s–1; 
horizontal axis), (b),(e) 
coeff icients of determi-
nation, and (c),(f ) mean 
bias (m s–1; horizontal axis) 
between HRDL-measured 
and modeled wind speed av-
eraged over the Aug study 
period. Results are shown 
for (a)–(c) the RAP-2012P 
(red lines) and HRRR-2012P 
(blue lines) models and 
(d)–(f) the NAMRR-parent 
(red lines) and NAMRR-
CONUS-nest (blue lines). 
Solid lines are for the initial 
conditions, and dotted lines 
are for the 2-h forecast. 
Dotted horizontal lines 
at 50 and 150 m delimit 
hypothetical turbine rotor 
layer, as in Fig. 8.

Fig. 10. The rms error between observed and modeled wind for 6–12 Aug, 
averaged over the 20–200-m MSL layer. (left) RAP-2012P (red line) and HRRR-
2012P (blue line) models and (right) NAMRR-parent (red line) and NAMRR-
CONUS-nest (blue line) models. (top) The scalar wind, or wind speed, rms 
error and (bottom) the vector-wind rms error, which is σ2

v = (σ2
u + σ2

υ )
1/2, where 

σ2
u and σ2

υ are the rms errors in the two orthogonal wind components and σ2
v is 

the plotted vector-wind error.
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the two other studies using the present NEAQS-04 
dataset, where errors were calculated in different 
ways. Wind speed errors were generally 2–2.5 m s−1 
and vector-wind errors were 4–4.5 m s−1. For refer-
ence, these results are consistent with Benjamin et al. 
(2016), who verified 1 year of RAP output between 
1,000 and 100 hPa against all available routine 

rawinsonde launches over the CONUS and found 
vector-wind errors of ~4 m s−1 for 6-h forecasts over 
50-hPa vertical layers through most of the tropo-
sphere. The statistics for the Gulf of Maine are for 
weeklong samples in summer. Annual error values 
could be expected to be smaller for the larger sample 
size, but even if they were half the weekly value, they 

Fig. 11. Time series of lidar-measured and modeled wind plotted against hour of the day (UTC, which 
leads eastern standard time by 5 h) averaged for the Aug study period. (a) NAMRR and (b) RAP–HRRR-
2012P model results. Black trace is mean HRDL wind speed data at 100 m MSL, averaged for each 
hour. (top) The model initial wind speed (forecast hour 0, or forecast 0) is plotted vs hour of the day; 
the blue lines are for the parent runs (NAMRR and RAP-2012P) and the red lines are for the finer-
mesh, embedded models (NAMRR-CONUS-nest and HRRR-2012P). (second row) The 1-h wind speed 
forecast averaged for each hour and plotted at the valid time of the forecast. (third row)–(sixth row) 
As in the second row, but for forecast hours 2, 3, 6, and 12, respectively.
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would still be large compared to the 0.1 m s−1 desired 
by the industry.

HORIZONTAL DISTRIBUTION OF MEAN 
WIND AT HUB HEIGHT AND SURFACE. 
Characterizing the horizontal variability of atmo-
spheric f lows is important in several ways. Over 
shorter time periods (hours), horizontal variability is 
fundamental to understanding and NWP modeling 
of the atmosphere, whereas variations over longer 
times (mean annual, seasonal, monthly) are impor-
tant for wind plant siting.

On the shorter time scales, horizontal variabil-
ity often implies f low divergence,2 which, in turn, 
implies vertical motion and vertical transport. 
The depth, location, extent, and rate of transfer 
are key attributes of atmospheric f low structures 
that perform vertical exchange and that therefore 

make essential contributions to the budgets of many 
atmospheric quantities, such as heat, momentum, 
and moisture. Future states of the atmosphere are 
determined by these four attributes or properties of 
vertical-exchange mechanisms. To improve forecast 
skill, NWP models must more accurately represent 
these properties of the mechanisms (over the entire 
simulation domain, to be sure). Being able to deter-
mine whether model updates have improved this rep-
resentation will require measurements—multiscale 
measurement arrays that capture these attributes 
(Banta et al. 2013). Characterizing, understanding, 
and accurate modeling of horizontal-flow variability 
(with its associated vertical transports) therefore have 
a fundamental significance.

Over longer time periods, horizontal variability 
of the mean wind distribution may result from per-
sistent or recurrent flows, and in the coastal zone, a 
number of mechanisms generate this kind of horizon-
tal-flow variability. Alongshore variability may result 
from coastline shape, including headlands that locally 
block or accelerate f low parallel to the coastline 

Table 3. Error table. POWER data: 6-h forecasts for Aug study period. Data are from Drechsel et al. (2012, 
their Figs. 6 and 8), Djalalova et al. (2016, their Fig. 16), Pichugina et al. (2017, their Fig. 18), and Benjamin 
et al. (2016, their Fig. 7). An asterisk indicates that the mean bias is removed (unbiased rmse).

Location Data source Model
Averaging 

depth Instrument
Averaging 

period
Lead 

time (h)
Error 
(m s–1)

Relative 
error

Rms error—Wind speed

Gulf of 
Maine

Current paper
RAP 
NAM

20–200 m HRDL 1 week 6–12
2.5 (2.0*) 
2.1 (1.6*)

FINO-1
Drechsel et al. 

(2012)
ECMWF 100 m Tower 1 year 0–9 1.4* 14%

Horns Rev
Drechsel et al. 

(2012)
ECMWF 70 m Tower 1 year 0–9 1.4* 16%

Gulf of 
Maine

Djalalova et al. 
(2016)

RAP 
NAMRR

120–2,000 m 915 profiler 2 weeks 1, 12
2.6, 2.8 
2.4, 2.9

Gulf of 
Maine

Pichugina et al. 
(2017)

RAP 
NAMRR

10–500 m HRDL 1 week 1 and 12
1.7, 2.4 
2.2, 2.4

Rms error—Vector wind

Gulf of 
Maine

Current paper
RAP 

NAMRR
20–200 m HRDL 1 week 6–12

4 
4

Gulf of 
Maine

Djalalova et al. 
(2016)

RAP 
NAMRR

120–2,000 m 915 profiler 2 weeks 1 and 12
3.3, 3.9 
3.2, 3.7

Gulf of 
Maine

Pichugina et al. 
(2017)

RAP 
NAMRR

10–500 m HRDL 1 week 1 and 12
2.4, 4.0 
2.7, 3.8

United 
States

Benjamin et al. 
2016

RAP 975–925 hPa Rawinsonde 1 year 1 and 12 3.4, 4.0

Mean absolute error—Wind speed

Gulf of 
Maine

Djalalova et al. 
(2016)

RAP 
NAMRR

10–2,000 m HRDL 2 weeks 3
1.5 
1.5

2	Horizontal variations in the wind field are a necessary but 
not sufficient condition for f low divergence, since purely 
rotational flow has horizontal variability but is nondivergent.
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(e.g., Rothermel et al. 1998a; Jiang et al. 2008), or 
terrain effects, such as gaps in coastal topography 
that focus wind speed maxima, which can eject out 
over the sea. Diurnal sea-breeze circulations, which 
often form an important contribution to the offshore 
wind resource, are driven by large diurnal changes 
in surface heating inland. Along-coast variation in 
coastal topography, surface roughness (including veg-
etation type), soil moisture, soil type, or land use may 
generate alongshore variability in the wind resource 
through their modification of local surface heat 
fluxes over land, with a resultant change in the local 
intensity of the sea-breeze circulation. Such localized 
phenomena may recur often enough to be part of the 
long-term-average wind resource at offshore locations 
and thus to appear in long-term (seasonal, annual, or 
longer) maps of mean wind speed.

One of the most important decisions in developing 
a wind plant is where to put it. The essential problem 
for siting is to ensure an adequate wind resource at the 
proposed location, enough that the plant will show 
a profit over the lifetime of the installed turbines. 
Differences of 1–2 m s−1 in annual average wind speed 
can translate to tens of millions of dollars (if not hun-
dreds of millions) over several years (Marquis et al. 
2011). Observational studies (e.g., Rothermel et al. 
1998a,b; Jiang et al. 2008; Pichugina et al. 2017a,b; 
Hasager et al. 2015) suggest that horizontal differences 
of this magnitude and greater exist in the offshore 
environment. Even model output, though smoothed, 
can show such alongshore variability, for example, the 
thick arrow in the upper right of Fig. 4.

What can the NEAQS-04 dataset tell us about 
horizontal variability of the wind during the 

July–August 2004 sampling period? Figure 12 shows 
color-coded, HRDL-measured wind speeds near the 
turbine hub height (80 m) and at 10 m MSL plotted 
on the ship tracks for the entire monthlong cruise. 
The data show considerable horizontal and temporal 
variability in the winds along the track due to spatial 
variability of the wind flow in the region (Pichugina 
et al. 2012, 2017a; Banta et al. 2014) but also partly 
due to sampling in different locations and at different 
times. A key question can be addressed by this dataset: 
Can the horizontal distribution of near-surface winds 
be used to infer the horizontal distribution of winds 
at the hub height? Near-surface horizontal wind speed 
distributions are often obtained from buoy, ship, or 
satellite (e.g., synthetic-aperture radar, scatterometer, 
radiometer) data. Careful inspection of the 10 and 80 m 
MSL plots in Fig. 12 shows these distributions to be 
dissimilar. The variations can be highlighted by plot-
ting the wind speed differences between 80 and 10 m 
(right panel). Quantitatively, the right panel shows that 
the differences span a range from near 0 to more than 
5 m s−1 depending on location. A consequence of this 
large differential across the region is that extrapolat-
ing wind speeds upward from near the surface, using 
profile shape parameters optimized for one part of 
the domain, would lead to large errors in other parts 
of the domain: 5 m s−1 is likely a range too large to be 
accommodated by standardized-profile extrapolation 
with any accuracy (Pichugina et al. 2012, 2017a), even 
if adjusted for stability or other predetermined envi-
ronmental factors. Pichugina et al. (2017a) have shown 
with this NEAQS-04 dataset that α, the exponent in the 
power-law wind profile, does in fact vary significantly 
over the NEAQS domain (refer to Fig. 11 of that paper).

Fig. 12. Horizontal distributions of lidar-measured wind speed within the large white box region in Fig. 1 at 
(a) 10 and (b) 80 m MSL along ship tracks from 9 Jul to 12 Aug. (c) Wind speed difference between (b) and (a).
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DISCUSSION AND RECOMMENDATIONS. 
Significant differences appear between the horizontal 
complexities of the measured versus modeled wind 
fields. Figure 12 reflects the strong spatial viability ob-
served in other studies (Pichugina et al. 2012, 2017a,b; 
Djalalova et al. 2016). For models, Fig. 4 shows a much 
smoothed wind speed distribution in the multiyear 
average. Even in weekly averaged model fields for the 
POWER study periods, the modeled wind speed distri-
bution appears smooth (Djalalova et al. 2016; see their 
Fig. 5). A critical question for resource assessment be-
comes will all this observed detail (Fig. 12) be averaged 
out of long-term (annual, multiyear) horizontal wind 
distributions in the atmosphere? Or do the long-term-
mean patterns also show detail to their structure, with 
areas of higher and lower wind speeds? Answering this 
question will again require measurements: an array of 
profiling instruments distributed over the horizontal 
area of interest.

As part of this project, DOE asked NOAA/ESRL 
to use the results of this study to propose designs for 
such a sampling array, assuming the availability of 
offshore profiling technology, such as the buoy-based 
lidar systems mentioned previously. These systems 
so far have not been extensively tested and verified 
on location in the harsh marine environment, but if 
they do prove successful in being robust and able to 
remove sensor motion to accurately measure the wind 
profile, how should they be deployed?

A large-scale, East Coast sampling array to mea-
sure horizontal variability at alongshore distances of 
500 km is shown in Fig. 13 (top left). The distribution 
of wind speeds has some noteworthy characteristics, 
including 1) a strong perpendicular-to-coastline, 
or cross-shore, wind speed gradient in the first 
75–100 km from shore at all locations; 2) the variabil-
ity of this gradient in the cross-shore direction, with 
the strongest gradients closest to the coastline and 
weaker gradients farther from the shore; and 3) the 
variability of the gradient in the alongshore direction 
(e.g., the 9 m s−1 isotach is much closer to shore in 
the Gulf of Maine than off the Maryland–Delaware 
coastline). To investigate these kinds of features, a 
proposed array of wind-profiling sites, most likely 
buoy based, has been added to this wind resource map 
(top panels of Fig. 13). This network consists of four 
cross-shore lines of three to five profiling instruments 
(three shown here). Each line is depicted in a region 
of strong, moderate, or weak cross-shore gradient.

Variability over smaller alongshore distances on 
the order of 100 km or less is probably more critical 
for making offshore WE siting decisions; for example, 
which of two candidate wind plant sites separated by 

100 km (or 50 or 30 km) in the alongshore direction 
should be preferred for development? And, for model 
error diagnosis investigations, what are the important 
distance scales of meteorological variability in the 
alongshore direction, and are they accurately rep-
resented in the models? What are their amplitudes 
and potential impacts on WE or NWP model skill? 
Examples of more localized array designs are shown 
in Fig. 13 in the bottom panels for the Gulf of Maine. 
A variation having one fewer sensor is shown in the 
bottom-right panel. These kinds of arrangements 
better characterize the local alongshore variability 
in wind speed, which could be scaled down to 50- or 
100-km sensor intervals as needed.

The important scales of horizontal variability 
for each location are unknown, and the necessary 
sampling intervals to detect, for example, regions 
of low wind resource, so as to avoid siting a wind 
farm in an unfavorable location, are also unknown. 
Long-term sampling arrays would be deployed based 
on the best-available information for the region and 
on available resources. (How many sensors can the 
project afford?) But if the sampling array is not of 
high-enough density, important phenomena will 
be missed without knowing it. The problem could 
be addressed by monthlong IOPs during different 
seasons, incorporating mobile platforms with pro-
filing capability, such as the RHB in this study, or 
instrumented aircraft [including unmanned aerial 
vehicles (UAVs)]. The tracks of the mobile sensing 
platforms will have to be carefully designed to avoid 
potential nonuniform sampling issues described 
previously and illustrated in Fig. 12. Thus, studies of 
spatial variability will most likely require multiple 
approaches (e.g., a mixture of sensors on fixed plat-
forms and on mobile platforms; Banta et al. 2012). If 
the mobile platform were a ship, sailing past fixed-
location profiling devices is important for sorting 
out the temporal versus spatial ambiguities in the 
variability of the measured flows. Information from 
these monthlong IOPs could then be used to adjust 
or reposition the long-term array instruments for op-
timum sensing of the long-term local flow structure.

CONCLUSIONS. The rotor-layer wind speed 
errors in NWP were larger than required for siting 
decisions for offshore wind farms. Even if measure-
ments were available to adjust for bias, rms errors 
are still large, and furthermore, the horizontal 
complexity of the hub-height winds may not be well 
represented by the models. The approach with the 
highest likelihood of reducing risks of overestimating 
(or underestimating) the wind resource would be 
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Fig. 13. Proposed layouts for profiling sensor arrays superimposed on maps of wind speed from 
Figs. 4a and 4b. (top) Wind profile measurement-array configuration focused on measuring cross-
shore gradients of wind speed: (left) larger-scale view and (right) centered on Gulf of Maine and New 
England. (bottom left) Example of a deployment of offshore wind profiling sites (black dots) having 
both alongshore and cross-shore sampling. (bottom right) As in the bottom-left panel, but cross-shore 
sampling is accomplished in a diamond pattern.
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to deploy offshore arrays of wind-profiling sensors, 
such as lidars, as described in the previous section. 
Such arrays would also provide datasets to improve 
NWP models.

In models as well as in the atmosphere, the lowest 
several hundred meters of the atmosphere is a layer 
where important vertical and horizontal transports 
occur that have a critical role in vertical exchange 
between Earth’s surface and the lower atmosphere. 
These processes have traditionally been poorly char-
acterized because of measurement limitations (Banta 
et al. 2016). As mentioned, model skill in this layer 
is also not well known. For the most part, interest in 
this layer and its dynamics has been largely academic. 
Wind energy has changed that. By virtue of having 
its hardware embedded in that layer, WE has drawn 
attention to the serious gap in our understanding and 
modeling of the layer’s structure, dynamics, and evo-
lution. New instrumentation, such as Doppler lidar, 
gives promise of characterizing flows in this layer at 
much finer resolution, frequency, and precision than 
previously, with a goal of improved understanding 
and modeling of the critical vertical exchange pro-
cesses through this layer.

Conceptually, the pathways for these exchange 
processes are known. The surface is often the most 
important source or sink of dynamic and thermo-
dynamic quantities, as well as other atmospheric 
constituents. Sources and sinks constitute major com-
ponents of budgets. Atmospheric processes distribute 
atmospheric quantities vertically and horizontally, 
and future states of the atmosphere depend on where 
the quantities are transported and how they become 
distributed. Vertical transport occurs throughout 
the atmosphere but tends to be concentrated at lower 
levels over mountainous and coastal regions, as well 
as other zones of strong horizontal gradient. What is 
not well known is how well NWP models handle these 
mechanisms. Accuracy requires that models faithfully 
represent the budgets at each vertical level, especially 
in regions where vertical transfer is strong, such as 
coastal zones. Whether they do so, and how to fix 
them if they do not, can only be determined by profile 
measurement-array deployments as described above.

Reliable information about the lower atmosphere 
thus impacts WE both directly and indirectly. 
Directly, accurately measured data in the turbine 
rotor layer will contribute to more reliable resource 
assessment and nowcasting. Indirectly, better fore-
casts by the “foundational models,” those used by 
the WE industry as a starting point for tailored WE 
forecast products, would save significant money and 
make WE more efficient and effective (Ahlstrom 

et al. 2013). Improved forecasts would also, of course, 
benefit the public at large and all applications that 
use meteorological data and forecasts. Stated more 
succinctly, solving WE’s problems solves the prob-
lems of everyone who needs accurate and reliable 
atmospheric information and forecasts in the coastal 
atmospheric boundary layer.
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