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Abstract: Eutrop ication, or excessive nutrient enric ment, t reatens water resources across t e 

globe. Here we s ow t at climate-c ange-induced precipitation c anges alone will substantially 

increase (19±14%) riverine total nitrogen loading wit in t e continental US by t e end of t e 

century for t e “business-as-usual” scenario. T e impacts will be especially strong for t e 

Nort east and t e corn belt of t e US, and are driven by projected increases in bot  total and 

extreme precipitation. Offsetting t is increase would require a 33±24% reduction in nitrogen 

inputs, presenting a massive management c allenge. Globally, c anges in precipitation are 

especially likely to also exacerbate eutrop ication for India, C ina and Sout east Asia. It is 

t erefore imperative t at water quality management strategies account for t e impact of 

projected future c anges in precipitation on nitrogen loading. 

One sentence summary: Future c anges in total and extreme precipitation will increase riverine 

nitrogen loading for t e continental US and beyond. 
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Main Text: Nutrient enric ment of water bodies, or eutrop ication, is a growing global problem. 

W ile p osp orus is t e leading concern for fres water systems, excessive nitrogen is t e 

primary cause of eutrop ication in estuaries and coastal waters (1). Associated water quality 

impacts, including but not limited to t e occurrence of  armful algal blooms (2, 3) and  ypoxia 

(4, 5)  ave been widely documented and are on t e rise (4, 6). Ecosystem and  uman impacts are 

severe ( , 8). Population growt  and c anges in land management practices are projected to 

furt er increase total nitrogen export globally (9) and for t e continental US (10), as is 

anticipated agricultural adaptation to climate c ange (11). Various publications  ave suggested  

t at t e water quality impacts of nitrogen loading may also increase in frequency and intensity 

due to future c anges in precipitation(5, 12, 13). Clear evidence substantiating t ese concerns is 

lacking,  owever, because very little is known about t e impact of c anges to t e p ysical 

climate itself, and especially precipitation, on nitrogen export and t erefore on eutrop ication. 

T is is despite t e fact t at precipitation amount, frequency, and intensity are major controls on 

riverine nitrogen load (14–1 ). T e impact of c anges in future precipitation patterns on nitrogen 

loading  ave only been examined for individual waters eds, and  ave relied on only one to t ree 

global climate models (14, 18–20), or a single average across an ensemble of climate models 

(21–24). T ese studies t erefore do not provide a basis for understanding impacts at regional to 

continental scales, or for examining t e robustness of conclusions to uncertainty in future 

climate. At t e same time, emerging strategies aimed at managing eutrop ication focus on setting 

nutrient loading targets (25, 26). Because loading is most directly influenced by nitrogen inputs 

and by precipitation patterns, it is imperative to understand  ow c anges in precipitation mig t in 

turn impact loading (2 ), t ereby confounding management efforts. 
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Here, we fill t is knowledge gap by providing spatially extensive and contiguous 

estimates of c anges in riverine total nitrogen loading ( encefort , nitrogen loading) for t e 

continental US resulting from anticipated c anges in precipitation across 21 Climate Model 

Intercomparison Project P ase 5 (CMIP5) models, t ree climate scenarios (RCP2.6 ‘mitigation’ 

scenario, RCP4.5 ‘stabilization’ scenario, RCP8.5 ‘business-as-usual’ scenario), two future time 

periods (‘near future’ 2031-2060 and ‘far future’ 2071-2100), and 2,105 subbasins wit in t e 

continental US. We use bias corrected and spatially downscaled (1/8°) climate model projections 

(28), and report c anges at scales ranging from t e eig t-digit  ydrologic unit (HUC8) ‘subbasin’ 

scale ( encefort , waters ed scale; Fig. S1) to t e continental US. T e analysis is made possible 

by a recently-developed empirical model linking net ant ropogenic nitrogen inputs into a 

waters ed (e.g., fertilizer application), total annual precipitation, extreme springtime 

precipitation, and land use to annual nitrogen flux (1 ) (see supplementary materials). W ile we 

recognize t at a number of factors will impact future riverine nitrogen fluxes, we focus  ere 

specifically on impacts of c anges in precipitation in t e absence of ot er concurrent c anges, 

because t ese impacts cannot be avoided t roug  management wit in t e affected regions. We 

t erefore keep net ant ropogenic nitrogen inputs ( encefort , nitrogen inputs) and land use 

constant at existing levels t roug out t e analysis (2007 and 2006, respectively; see 

supplementary materials). We use t e approac  proposed by Tebaldi et al. (29) to assess t e 

significance of observed c anges and t eir consistency across t e CMIP5 models; we use t e 

term robust to denote results w ere at least 80% of models are consistent on t e direction of 

c ange and w ere t e c ange is statistically significant (p<0.05) for at least 50% of models. 
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We find t at anticipated c anges in future precipitation patterns alone will lead to large 

and robust increases in waters ed-scale nitrogen fluxes by t e end of t e century for t e 

business-as-usual scenario (stippling in Fig. 1C), especially wit in t e Upper Mississippi 

Atc afalaya River Basin, t e Nort east continental US, and t e Great Lakes basin. Waters eds 

across muc  of t e Nort east continental US s ow a robust increase even under t e stabilization 

scenario by t e end of t e century. T ese spatial patterns are especially notewort y because t ese 

regions also  ave  ig   istorical nitrogen fluxes (Fig. 1A) and t ey disc arge to coastal regions 

wit  documented water quality impairments resulting from eutrop ication ( , 30). We furt er 

find t at, at t e waters ed scale, only a small fraction of areas experience a robust increase in 

fluxes in t e near future for any of t e examined scenarios (Fig. 1B, Fig. S2A,C), due to inter-

model differences and internal climate variability (i.e., natural climate fluctuations t at arise even 

in t e absence of c anges in radiative forcing). 
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For large aggregated regions (see supplementary materials) including t e continental US 

as a w ole, models agree wit   ig  consistency (>80%) t at nitrogen loading will increase across 

all t ree examined climate scenarios and for bot  t e near future and far future periods (Fig. 2, 

Table S1), wit  t e only exception being t e lower Mississippi Atc afalaya River Basin. T ese 

c anges are robust for t e far future periods and t e mitigation and business-as-usual scenarios, 

wit  significant c anges observed for t e majority of models and for most regions including t e 

continental US as a w ole (filled boxplots in Fig. 2). Alt oug  t e projected c anges in nitrogen 

flux at waters ed scale for mitigation scenario are wit in t e range of natural variability (colored 

regions wit  no stippling in Fig. S2), aggregation to large regions yields a robust increase. For 

t e stabilization scenario, a smaller projected overall increase in total precipitation relative to t e 

ot er scenarios leads to less robust c anges in nitrogen loading for most regions. In t e near 

future,  ig  interannual variability and t e smaller projected magnitude of c ange lead to t e 

observed consistent but not robust increases across scenarios. 

For t e remainder of t e discussion, we focus primarily on t e far future period under t e 

business-as-usual scenario. 
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T e across-model mean projected increase in nitrogen loading wit in t e continental US 

is 19% (Fig. 2), wit  t e Nort east (28%), t e upper Mississippi Atc afalaya River Basin (24%), 

and t e Great Lakes basin (21%) experiencing t e largest increases (Fig. 2). To put t ese 

numbers in context, t e United States Environmental Protection Agency recently promulgated a 

20% load reduction target relative to 1980-1996 levels for t e Mississippi Atc afalaya River 

Basin as a w ole (26), wit  t e aim of reducing t e size of massive annual  ypoxic zone in t e 

Gulf of Mexico (31). We find  ere t at precipitation c anges alone will instead lead to an 18% 

increase in loading wit in t e Mississippi Atc afalaya River Basin as a w ole. Offsetting t is 

increase in loading would require a 30% reduction in nitrogen inputs for t e region, w ile 

ac ieving a 20% loading reduction in lig t of t e confounding effect of precipitation c anges 

would require a 62% reduction in nitrogen inputs (see supplementary materials). For t e 

continental US, a 33% reduction in nitrogen inputs would be required to offset t e 19% nitrogen 

load increase attributable to c anges in precipitation. 
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T e large spread across models indicates t at t e magnitude of t e c ange in nitrogen 

load is uncertain, presenting an additional risk for management (Fig. 2). Across-model 

differences in precipitation projections translate into large uncertainties in t e magnitude of 

nitrogen load c ange. In addition, we find t at a large fraction of t is uncertainty is due to 

internal climate variability (see supplementary materials, Fig. S3), and t erefore represents 

irreducible uncertainty. For large portions of t e continental US, internal climate variability 

explains more t an  alf of t e total inter-model spread for bot  time periods and for all emission 

scenarios (results for business-as-usual s own in Fig. S3C & D). Because current global climate 

models  ave been s own to underestimate internal climate variability (32), t e actual 

contribution may be even greater. Furt ermore, precipitation downscaling of projected future 

climate is based on an assumption of climate stationarity (see supplementary materials), t e 

limitations of w ic  represent an additional uncertainty. T is result implies t at, not only are 

nitrogen loads expected to increase, but t e magnitude of t e increase is quite uncertain. For t e 

far future under t e business-as-usual scenario, t e spread between t e first and t ird quartiles 

for t e continental US represents increases ranging from 9% to 24%, w ile for t e Nort east t is 

range spans an 18% to 39% increase. T e full range is broader still (Fig. 2). 
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We furt er find t at t e magnitude of predicted c anges in t e nitrogen flux is explained 

by t e compounding impacts of c anges in t e total annual and springtime extreme precipitation, 

but only t e c anges due to total precipitation are robust on t eir own (Fig. 3). T e spatial 

patterns of c ange in future nitrogen flux (Fig. 1C) are comparable to t ose t at would result 

only from future c anges in total annual precipitation (see supplementary materials; Fig. 3A). 

Conversely, accounting only for projected c anges in springtime extreme precipitation or 

c anges to t e correlation between total annual and springtime extreme precipitation does not 

lead to robust c anges in future nitrogen flux at t e waters ed scale (Fig. 3B,C). T is conclusion 

 olds true even at regional scales, including for t e continental US, w ere t e magnitude of 

c ange is explained by c anges to bot  total and extreme precipitation, wit  t e c ange in total 

annual precipitation  aving t e largest impact and leading to a robust increase on its own for 

most regions (Fig. S4). T e larger contribution of c ange in annual precipitation to t e c ange in 

mean annual nitrogen flux is attributable to t e robustness of t e projected c anges in annual 

precipitation (Fig. S5B), and t e larger sensitivity of nitrogen flux to total annual precipitation 

relative to extreme precipitation (see supplementary materials). 
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Overall, we find t at regions wit   ig   istorical loading (w ic  correspond to regions 

wit   ig  nitrogen inputs and  ig  precipitation) and a robust projected increase in precipitation 

are most likely to experience a large and robust future increase in nitrogen loading, bot  at t e 

waters ed and regional scale. T e empirical model used  ere to relate nitrogen inputs, land use, 

and precipitation statistics to nitrogen flux is specific to t e continental US, precluding its direct 

application to ot er regions of t e globe. We may  owever seek analogues in ot er regions t at 

meet certain criteria and use t ose as  euristics to identify ot er regions w ere similar conditions 

exist and similar outcomes may be expected. Namely, t e general finding t at large increases in 

nitrogen load are expected for regions wit  (i)  ig  nitrogen inputs, (ii)  ig  precipitation, and 

(iii) a robust projected increase in precipitation is likely to be true beyond t e continental US. We 

t erefore re-examine t e business-as-usual far future precipitation projections across t e 21 

available CMIP5 models globally (bias corrected and spatially downscaled to 1/4°) to identify 

regions t at ex ibit all t ree risk factors (see supplementary materials). We find t at identifying 

regions wit  robust projected precipitation increases (Fig. S6A) and  ig   istorical total annual 

precipitation (>75t  percentile globally; 656 [mm yr-1]; Fig. S6B), combined wit  data on 

 istorical fertilizer application rates (as a proxy for nitrogen inputs) (Fig. S6C), provides a good 

approximation of t e regions wit in t e continental US t at are likely to experience a large and 

robust increase in nitrogen flux (stippled region in Fig. 1C vs. continental US area in Fig. 4). 
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Applying t is  euristic approac  globally makes it possible to identify ot er regions 

w ere c anges in precipitation are likely to engender substantial increases in nitrogen load (Fig. 

4); we find t at large portions of East, Sout , and Sout east Asia, including India and eastern 

C ina, ex ibit conditions t at are directly analogous to t ose in t e upper Mississippi 

Atc afalaya River Basin, Nort east, and Great Lakes regions of t e continental US, and t ese 

regions are t erefore likely to undergo large increases in nitrogen load as a result of projected 

c anges in precipitation. T ese regions are also  ome to over  alf of t e world’s population (33), 

and are  eavily dependent on surface water supplies (34). As a result, increased eutrop ication 

would  ave widespread impacts. Among countries in t is region, India is especially notewort y 

because it ex ibits all t ree risk factors across over two t irds of its area, is one of t e fastest 

developing countries in t e world, and  as one of t e fastest growing populations (33). T e 

precipitation projections in t is region are also  ig ly sensitive to aerosol emission trajectories 

(35), w ic  are t emselves uncertain (36). Portions of Europe (e.g., Italy, sout ern France, 

Denmark, nort ern Germany) also display all t ree risk factors. Ot er  ig ly agricultural regions 

(e.g. central Europe, eastern Sout  America, sout ern Australia)  ave comparable fertilizer 

application rates (Fig. S6C) but  ave eit er lower  istorical precipitation or a less robust 

projected precipitation c ange. In general, t is  euristic approac  identifies global agricultural 

regions t at are particularly susceptible to t e impacts of precipitation c anges. 
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Overall, we conclude t at c anges in precipitation patterns will  ave substantial impacts 

on nitrogen loading wit in t e continental US. T ese trends will eit er compound c anges due to 

anticipated intensification of land use (9, 10), or may negate t e benefits of strategies aimed at 

load reductions (9, 10), t ereby exacerbating water quality impairments (3 ). T e same scenario 

is likely to play out in East, Sout , and Sout east Asia, and India and eastern C ina in particular, 

w ic   ave  ig  precipitation and fertilizer application rates, and are projected to experience 

future precipitation increases. Our findings imply t at strategies aimed at managing 

eutrop ication and associated water quality problems must account for t e impact of c anging 

precipitation patterns on nutrient loading. 
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listed in Table S3. 
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Fig. 1: Projected c anges in mean total nitrogen flux for waters eds wit in t e continental US 
for t e RCP8.5 ‘business-as-usual’ emission scenario. (A) total nitrogen flux for t e  istorical pe-
riod (1976-2005), averaged across 30 years and 21 CMIP5 models. (B,C) Projected c ange in 
mean total nitrogen flux for near future (2031-2060) and far future (2071-2100) relative to  istor-
ical period. For panels (B) and (C), stippling  ig lig ts waters eds wit  a robust c ange in total 
nitrogen flux (i.e., more t an 50% of t e models s ow a significant c ange and more t an 80% 
of t e models are consistent on t e sign of c ange). Waters eds wit  inconsistent projections 
(i.e., more t an 50% of t e models s ow significant c ange but fewer t an 80% of t e models 
agree on t e sign of c ange) are s own in w ite. Remaining waters eds are s own in color wit -
out stippling. T e black polygons outline t e upper Mississippi Atc afalaya River Basin and t e 
Nort east region (Fig. 2). 
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Fig. 2: Percent c anges in mean total nitrogen load wit in large regions wit in t e continental 
US for t e RCP2.6 ‘mitigation’, RCP4.5 ‘stabilization’, and RCP8.5 ‘business-as-usual’ emis-
sion scenarios. For a given model, total nitrogen load is first averaged for eac  30-year period 
( istorical, near future, far future), eac  scenario, and eac  region (using an area-weig ted aver-
age of contributing waters eds), and t ese values are t en expressed as a percent c ange in pro-
jected total nitrogen load wit in a given region, period, and model. Box plots represent t e 
spread across t e 21 examined models for specific periods and scenarios, wit  outliers marked as 
dots. Filled boxplot  ig lig t regions wit  a robust c ange in total nitrogen load (i.e., more t an 
50% of t e models s ow a significant c ange and more t an 80% of t e models are consistent on 
t e sign of c ange). Grey outlines s ow HUC2 regions for reference (Fig. S1). 
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Fig. 3:  Contribution of total annual precipitation (A), extreme springtime precipitation (B), and 
correlation between annual and extreme precipitation (C) to projected c anges in mean total 
nitrogen flux for waters eds wit in t e continental US for t e business-as-usual emission 
scenario (Fig. 1C). T e individual contributions of t ese t ree factors were calculated by 
eliminating t e contribution of t e two ot er factors to t e total c ange in t e total nitrogen flux 
(see supplementary material). Note t at t e contributions are not additive due to t e nonlinearity 
of t e total nitrogen flux model (see supplementary materials). Colors and stippling are as 
defined in Fig. 1. 
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Fig. 4: Warm colors  ig lig t global regions most likely to experience large increases in total ni-
trogen flux. Map s ows 2015 fertilizer application rate for regions wit   istorical (1976-2005) 
annual precipitation rates above t e 75t  percentile (averaged over 30-year period and 21 models) 
and projected robust increases in annual precipitation by t e far future (2071-2100) for t e busi-
ness-as-usual emission scenario. Global regions in dark orange and red t erefore ex ibit all t ree 
risk factors for increased future loading. Regions in yellow and lig t orange meet t e precipita-
tion criteria but  ave low nitrogen inputs, w ile  atc ed regions do not meet one (diagonal 
 atc ing) or bot  (cross  atc ing) of t e precipitation criteria. T e black outlines  ig lig t t e 
continental US, and Sout , East, and Sout east Asia. 
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