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Executive Summary 
Stock assessments, as required by the Magnuson-Stevens Fishery Conservation and Management 
Act, are the cornerstone of U.S. marine resource management. However, inadequate abundance 
data remains an impediment. 

Increasingly, fisheries surveys are conducted using imaging systems that allow for efficient and 
non-lethal collection of voluminous data to fill this gap. However, the generated image data 
volumes exceed human analysis capacity. Automated image processing methods exist, but are 
nascent within the marine science community. 

The NOAA Fisheries Office of Science and Technology initiated a Strategic Initiative (SI) on 
Automated Image Analysis with the goal of creating an open-source software toolkit allowing 
for automated analysis of optical data streams to provide fishery-independent abundance 
estimates for use in stock assessment. 

The SI was directed by a research board comprising representatives from each of the NOAA 
Fisheries Science Centers (SC) as well as academic and private industry partners. Over the 
course of its five-year term, the SI developed two main products, the Video and Image Analytics 
for a Marine Environment (VIAME) open-source software toolkit and the CoralNet web-based 
solution for benthic image analysis. 

CoralNet has become the operational image analysis tool for the Pacific Islands Fisheries 
Science Center (PIFSC) Coral Reef Ecosystem Program (CREP), accounting for more than 1 
million annotations comprising more than 100,000 images. 

VIAME has been released on GitHub as an open-source, publicly available software tool. 
Computing hardware has been procured and training sessions have been conducted at each 
NOAA Fisheries Science Center. VIAME is currently being used within the analysis workflow 
for (1) CamTrawl— AFSC Walleye Pollock assessment; (2) HabCam—NEFSC Scallop 
assessment; and (3) MOUSS—PIFSC Deep7 Bottomfish assessment. 

Although VIAME is primarily used for underwater imagery, it is based on a generic, pipelined, 
deep learning-based processing system that applies to any domain. VIAME includes a graphical 
user interface (GUI) and modeling capabilities for users to create new automated analytics, 
interactively without any programming, enabling direct applicability to other NOAA imaging 
domains such as protected species (e.g. marine mammals, turtles), plankton, and electronic 
monitoring. Efforts are underway to raise awareness of VIAME and nascent collaborations exist 
within these domains. 

VIAME and CoralNet exceeded expectations and continue to grow with increased utility 
spanning a broad range of programs. With major development complete, support for ongoing 
maintenance and customer support is needed to ensure continued utility and to support project-
specific development. To maximize development imagery should be curated with a priority on 
access for machine learning.
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Introduction 

The framework for fisheries management in the United States is specified by The Magnuson-
Stevens Fishery Conservation and Management Act (Magnuson-Stevens Fishery Conservation 
and Management Act 2007), which requires that managed fish stocks undergo periodic 
assessment to determine if they are overfished or are experiencing overfishing. Fishery stock 
assessments generated by NOAA Fisheries are the cornerstone of marine resource management 
in the United States. Assessments provide high-quality scientific information to marine resource 
managers to address (1) current stock status relative to established targets, (2) the level of 
sustainable catch a given stock can support and, if a stock becomes depleted, (3) what steps are 
required to rebuild it to health abundance levels.  

A basic stock assessment requires data on fish abundance, biology (e.g. age, growth, fecundity), 
and catch (Quinn and Deriso 1999). While demands to continually improve stock assessments 
are high, a lack of adequate input data, particularly more precise, accurate, efficient and timely 
scientific surveys of fish abundance and their associated habitat and ecosystem, remains an 
impediment to accuracy and precision (Mace et al. 2001). Such input data can be derived from 
both fishery-dependent and fishery-independent sources. Fishery-dependent data, which 
generally include estimates of catch, effort, and size structure, are derived directly from the 
fishery through vessel and dealer reports. Fishery-independent data fall into the same general 
categories, but are collected independently from the fishery, often through dedicated surveys. 

Recent developments in low-cost autonomous underwater vehicles (AUVs), stationary camera 
arrays, and towed vehicles have made it possible for fishery scientists to begin using optical data 
streams (e.g. still and video imagery) to generate species-specific, size-structured abundance 
estimates for different species of marine organisms. Increasingly, NOAA Fisheries and other 
agencies are employing camera-based surveys to estimate size-structured abundance for key 
stocks. While there are many benefits to optical surveys, including reduced inter-observer error 
as well as the ability to audit the observations and generate high sample sizes with reduced 
personnel and days at sea, the volume of optical data generated quickly exceeds the capabilities 
of human analysis. 

Automated image processing methods have been developed and utilized in the human 
surveillance, biomedical, and defense domains for some time (LeCun et al. 2015; Szeliski 2010) 
and there are currently many open-source computer vision libraries and packages available on 
the internet. In the marine science environment, however, computer vision has yet to reach its 
full potential. Techniques for automated detection, identification, measurement, tracking, and 
counting fish in underwater optical data streams do exist (Chuang et al. 2014a, 2014b, 2013, 
2011; Williams et al. 2016), however, few of these systems are fully automated, with all of the 
functions required to produce highly successful and accurate results. 

Marine scientists rarely possess formal programming and development experience. Hence, 
existing solutions typically exist as one-off, localized applications, specific to particular analysis 
tasks. As such, they are generally non-transferrable as functional applications with utility across 
the domain. Consequently, with few exceptions (Huang et al. 2012; Williams et al. 2012; Chuang 
et al. 2014b; Chuang et al. 2014a; National Research Council 2014; Fisher et al. 2016; and 
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Williams et al. 2016) there has been little operational use of automated analysis within the 
marine science community. 

In response to this need, in 2011, the NOAA Fisheries OST initiated a Strategic Initiative on 
Automated Image Analysis (SI). The mission of this SI was to develop guidelines, set priorities, 
and fund projects to develop broad-scale, standardized, and efficient automated tools for the 
analysis of optical data for use in stock assessment. The goal is to create an end-to-end open 
source software toolkit that allows for the automated analysis of optical data streams and in turn 
provide fishery-independent abundance estimates for use in stock assessment. 

Methods 

The NOAA Fisheries Strategic Initiative on Automated Image Analysis was envisioned by the 
NOAA Fisheries Science Board in 2011 as a research board consisting of representatives from 
each of the NOAA Fisheries Science Centers, academia, and the private sector. The rationale 
was to bring together a diverse group of experts from across the fisheries science, machine 
vision, and artificial intelligence domains to identify broad goals and solutions to span the 
myriad proposals received through the ST Advanced Sampling Technology Working Group 
(ASTWG). Ideas were solicited from across all six NOAA Fisheries Science Centers and, in 
2013, a workshop was convened under the direction of the National Research Council (NRC) 
(National Research Council 2014). 

The NRC workshop catalyzed collaboration between the marine science and computer vision 
communities and the solidification of the SI committee (Table 1). The SI considered both “top- 
down” and “bottom-up” approaches, soliciting input from each SC representative regarding key 
optical data streams existing at their SC that (1) could be informative to an existing stock 
assessment and (2) could not be fully analyzed by existing human resources. Optical data 
streams were categorized by physical properties of the sensor (e.g. mono vs stereo cameras, color 
vs grayscale, natural vs artificial light) and by the target of interest (e.g. fish underwater, fish on 
deck, marine mammals, corals). Finally, SC representatives were asked to identify any existing 
automated processing capabilities in existence at their SC. 

Table 1. NOAA Fisheries Strategic Initiative on Automated Image Analysis committee 
members. 

Name Role Affiliation 
Benjamin L. Richards Chair NOAA Pacific Islands Fisheries Science 

Center 
M. Elizabeth Clarke Member NOAA Northwest Fisheries Science Center 
George Cutter Member NOAA Southwest Fisheries Science Center 
Debora R. Hart Member NOAA Northeast Fisheries Science Center 
Charles H. Thompson Member NOAA Southeast Fisheries Science Center 
Kresimir Williams Member NOAA Alaska Fisheries Science Center 
Clay Cuntz Member Google, Inc. 
Alexandra Branzan-Albu Member University of Victoria 
Duane Edgington Member Monterey Bay Aquarium Research Institute 
Anthony Hoogs Member Kitware, Inc. 
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Name Role Affiliation 
David Kriegman Member University of California, San Diego 
Michael Piacentino Member Stanford Research Institute 
Lakshman Prasad Member Los Alamos National Laboratories 
William L. Michaels Liaison NOAA Fisheries Office of Science and 

Technology 

The SI committee reviewed and ranked the information provided in terms of (1) national 
importance of the stock, (2) existence of pilot automated processing capabilities, (3) complexity 
of the optical data set. Following this ranking, three data sets were chosen as the basis for 
automated image analysis development: CamTrawl imagery pertaining to the Alaska walleye 
pollock (Gadus chalcogrammus) fishery, HabCam imagery pertaining to the northeast sea 
scallop (Placopecten magellanicus) fishery, and benthic imagery pertaining to coral reef 
ecosystems throughout the southeast and Pacific islands regions. 

Data Sets 
CamTrawl: Walleye Pollock (Alaska Fisheries Science Center) 
Walleye pollock populations support the largest fishery by volume in the United States, and is 
one of the largest fisheries in the world (NMFS 2017). To date, the stock has been managed by 
assessing population abundance and size composition using annual acoustic surveys (Ianelli et al. 
2009). Trawl samples are also obtained to identify the species and size composition of fish 
aggregations (Honkalehto et al. 2012). Researchers at the Alaska Fisheries Science Center 
(AFSC) developed a camera system (CamTrawl) that is placed within the survey trawl, allowing 
for increased precision in identifying fish schools, especially where different fish species or sizes 
occur in several distinct depth layers (Williams et al. 2010). CamTrawl collects stereo-image 
pairs that are analyzed to provide depth-, time-, and species-specific size-structured abundance 
information. 

CamTrawl records stereo-images at two to four (2–4) frames per second, resulting in millions of 
images within a given survey. Automated image processing represents the only viable analytical 
approach for extracting timely abundance estimates for the stock. Fish are imaged within the 
constrained trawl environment and against a uniform background. Fish targets are extracted from 
both left and right camera images, matched, classified to species, and sized using stereo 
triangulation to estimate the XYZ coordinates of, and Euclidean distance between, the head and 
tail of each target.  

Prior to the SI, AFSC scientists had collaborated with computer vision scientists at the 
University of Washington Electrical Engineering department to develop algorithms to process 
CamTrawl images (Chuang et al. 2014ab; Williams et al. 2016). 

HabCam: Scallops, demersal fish, benthic invertebrates (Northeast Fisheries Science 
Center) 
Sea scallops support one of the most valuable fisheries in the U.S. They occur mainly at depths 
from 30 to 120 m on the main U.S. scallop ground of Georges Bank and the Mid-Atlantic Bight. 
The NOAA HabCam is towed at between 5 and 7 kt, capturing approximately 6 digital still 
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photo pairs per second. While its principal target is sea scallops, it also images demersal finfish 
and a wide variety of benthic invertebrates. Since 2011, about 40 million images have been 
captured by NOAA HabCam surveys. Only about two percent of these images have been 
manually annotated.  

Coral Reef Benthic Imagery (Pacific Islands Fisheries Science Center) 
Coral reefs support significant fisheries in both the U.S. southeast and Pacific Islands regions 
(Heenan et al. 2016). The scale, severity, and frequency of threats to coral reefs have increased 
substantially in recent years (Burke 2011; De’ath et al. 2012; Hughes et al. 2018). Given the 
speed of change and the increasing severity of threats to coral reefs, scientists and managers need 
the capability to rapidly assess coral reef status, ideally over large representative areas, and to 
quantify changes. While a variety of metrics are used to assess reef status, the majority of coral 
reef surveys and monitoring programs gather information on percent cover of benthic organisms, 
particularly coral cover (De’ath et al. 2012; Johansson et al. 2013). Recently, many benthic 
monitoring programs have transitioned from in situ measurements of benthic cover to some form 
of photographic survey (Heenan et al. 2016). 

The imagery and benthic data used in this study come from the PIFSC, Ecosystem Science 
Division (ESD), Pacific Reef Assessment and Monitoring Program (Pacific RAMP), which is 
part of NOAA’s National Coral Reef Monitoring Program. Survey sites are randomly allocated 
within three depth strata comprising all hard bottom habitats in less than 30 m of water and 
encompass substantial variability in habitat type, reef condition, and benthos, including coral 
assemblage and abundance. For this effort, images from 468 sites within American Samoa and 
913 sites within the main Hawaiian Islands were used. At each site, 30 benthic images were 
captured along one or two transect lines with a total combined length of 30 m. Images were 
collected using digital cameras, maintained at a standard height above the substrate using a 1-m 
PVC monopod. No artificial lighting was used; instead, cameras were manually white-balanced 
immediately before each transect. 

Prior to the SI, images were typically analyzed manually using point annotation software, such as 
Coral Point Count with Excel extensions (CPCe), photoQuad, pointCount99, PhotoGrid, or 
Biigle (Kohler and Gill 2006; Langenkämper et al. 2017; Porter et al. 2001; Trygonis and Sini 
2012). CPCe represented a significant step forward compared to prior ad hoc means, in that 
CPCe employed an integrated interface with Microsoft Excel. Analysts could develop a unique 
set of target codes, and overlay points on each image in a stratified random format. CPCe would 
also generate a summary file for each site or set of photos. Significantly, CPCe was free, so it 
was widely used by researchers. 

CPCe suffers two core limitations. First, it is purely a manual annotation tool, with no capacity 
for automation. As mentioned earlier, manual annotation of survey imagery is time consuming 
and expensive due to the high cost of labor, which not only limits the amount of survey data that 
can feasibly be analyzed, but also often leads to significant temporal lags before results become 
available, reducing their utility. Secondly, individual annotation data files are generated for each 
image. These summary data files are linked to specific image files, and the links break with any 
modification to the folder structure used for data management. 
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Software Development 
Software development was undertaken by two main contractors, Kitware Inc. and the Stanford 
Research Institute (SRI International). Kitware was tasked with development of the overall 
software platform while SRI was responsible for development of discrete modules and products. 

VIAME: Video and Image Analytics for a Marine Environment 
Across the Automated Analysis Strategic Initiative (AIASI) and the broader marine research 
community, many algorithms and corresponding software modules have been developed for 
image and video analytics on a wide variety of data sources. Many of these algorithms address 
similar problems but were developed independently at different research centers, resulting in 
different, incompatible implementations that can be difficult to re-use and compare. In addition, 
many marine scientists are not programmers, and do not have access to programming resources 
with computer vision expertise to implement image and video analytics. 

VIAME (Dawkins et al. 2017) was developed to address both of these problems through a 
comprehensive set of capabilities shown in Figure 1. Utilizing the open-source video analytics 
toolkit, Kitware Image and Video Exploitation and Retrieval (KWIVER) (Fieldhouse et al. 
2014), VIAME enables the rapid integration of visual analytics modules into a pipelined 
architecture. Implementation challenges related to parallel processing and sequential operations 
are addressed and hidden from the algorithm module developer. User interfaces, databases, 
evaluation/scoring capabilities and other useful standalone tools are included in VIAME as well. 
Algorithms from multiple FSC’s are integrated, such as length measurement from Alaska FSC. 

To address the challenge of applying VIAME algorithms to new data sets and problems without 
programming, two deep-learning capabilities were developed within VIAME that enable users to 
create object detectors, classifiers and other analytics through user interfaces as shown in Figure 
[VIAME-capabilities-architecture]. Through image search and interactive query refinement, 
users can quickly build a complete detection and classification capability for a novel problem 
and then run it on any amount of imagery or video. For more challenging analytical problems, 
users can manually annotate images and then train a deep learning detection and classification 
capability specific to their problem. Both methods were successfully used by marine scientists 
during the VIAME training sessions to develop analytics on data sets that VIAME had not seen 
previously. 
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Figure 1. Visual overview of all of VIAME’s functionality. From top left to bottom right: 
video search, object tracking, running multiple automated detectors from the annotation 
GUI, measurement using stereo, image search in a web browser, MaxN detection 
plotting, color correction, and algorithm scoring. 

At the training sessions numerous requests arose for additional VIAME capabilities to address 
stereo video, aerial imagery mosaics, geographic information and others. While VIAME in its 
current form can address many NOAA problems, it seems clear that further extensions related to 
electronic monitoring or non-fish targets (e.g. marine mammals, seabirds, etc.) would enable a 
larger pool of scientists to benefit from it. 

VIAME is hosted on GitHub (VIAME 2016/2018). GitHub is a public open-source software 
repository containing thousands of software tools. Updates and releases are made through 
GitHub, allowing anyone within NOAA or externally to download the software, see the source 
code, and modify it as desired. Binaries for common operating systems including Linux and 
windows are also available for users to install directly without compilation. 

FLASK 
FLASKS was designed as a means for scientists to rapidly count and classify fish observed in 
optical surveys using remote camera systems. During initial design and development, it was 
determined that recently available neural network capabilities for automated image processing 
would be beneficial. We integrated an Artificial Intelligence (AI) framework into the FLASK 
tools for automated fish counting and classification. During development it also became clear 
that many groups possessed large-image data sets without the bounding-box-level annotations 
required to provide usable training data for algorithm development. To meet this need, SRI 
developed a semi-automated rapid annotation tool that allows analysts to rapidly ingest and 
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annotate their video as they train a novel neural network. The neural network is then used for 
performing rapid classification of other video sources producing a JSON or HDF5 output file 
containing all ROI bounding boxes with fish types. This data can then be parsed to provide fish 
types and counts. Recent work on FLASK has added new capabilities requested by scientists, 
including adding more robustness to the counts by adding temporal fish tracking and allowing 
for creating user definable training models based on different video sources and selectable sets of 
classes in each model. 

CoralNet 
Efforts at automated analysis of coral reef benthic imagery were advanced through the further 
development of the CoralNet web-based repository and a resource for benthic image analysis 
(Beijbom et al. 2015). CoralNet implements computer vision algorithms, which allow for fully 
semi-automated annotation, while also serving as a repository and collaboration platform. Unlike 
prior manual annotation tools, CoralNet provides a function where human analysts first identify 
targets manually, and these annotations are used to train a machine learning model. Once a 
suitable level of accuracy is achieved on a validation set, CoralNet can be used to automatically 
annotate new imagery, reducing time and effort required by human analysts. Through the web-
based GUI, a user-defined number of points are randomly distributed across an image of the 
coral reef benthos. Two versions of the classification methods were developed and deployed as 
CoralNet Alpha and CoralNet Beta. 

As benthic targets lack clear boundaries and a clear sense of shape, they are represented using 
texture and color descriptors. In CoralNet Alpha, images are first re-scaled to maintain a 
consistent pixel/mm ratio and are color-corrected using the ColorChannelStretch method 
(Beijbom et al. 2015). The Maximum Response filter bank is then used to encode rotational 
invariance by first filtering with bar and edge filters at different orientations and then outputting 
the maximum over the orientations. By cross-validating over different sizes we arrived at bar and 
edge filters with standard deviations of 1, 3, and 8 pixels along the short dimension, and circular 
filters standard deviation of 6 pixels, thus producing an 8-dimensional filter output vector. Color 
information is encoded by applying the filters to each color channel in the L*a*b* color space 
and then stacking the filter response vectors. 

Texton maps were created using a dictionary of textons. Filter responses from each of nine 
classes were separately aggregated across images, and k-means clustering with 15 cluster centers 
was applied to each set of filter responses (Beijbom et al. 2015). Finally the cluster centers, or 
textons, from the different classes were merged to create a dictionary of 135 24-dimensional 
words. Texture descriptors are extracted by first applying the filters over a whole image, which 
yields a 24-dimensional feature vector for each image pixel. Filter responses are then mapped to 
the texton with smallest 2-norm distance, creating an integer valued texton map. The feature 
vector, or descriptor, is defined as the normalized histogram of textons around a patch of interest. 
Classification was finally performed using a support vector machine (SVM). 

CoralNet Alpha was built using the algorithm described above (Beijbom et al. 2015) and ran on a 
deskside server. During the course of the SI, CoralNet was rewritten to support the annotation 
load of a government agency and to improve accuracy. AIASI support allowed further 
development of CoralNet and a transition from CoralNet Alpha to CoralNet Beta, which 
included transitioning from a desktop server to Amazon Web Services. Moving to cloud 
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computing provides significantly greater uptime, robustness, and security, and computing 
resources can be elastically scaled up to a 100 machine cluster in order to process large 
workloads in a short time period. Accuracy was significantly improved by moving from color 
texton features and an SVM to a deep learning model. The particular network on CoralNet Beta 
is based on a convolutional neural network called VGG which was initially trained on ImageNet. 
We then retrained VGG, starting from the ImageNet weights, using 2.5 M annotations with 956 
classes from 60,000 images that had been uploaded and manually annotated on CoralNet Alpha. 
For a specific source (a data set with specific set of labels), the final softmax layer of the network 
is trained with a modest set of manual annotations from that set. Figure 2 shows a comparison of 
the accuracy of CoralNet Alpha, CoralNet Beta, and human annotation. Improvements were also 
made to the CoralNet GUI including the addition of different annotation modes and upload 
methods. 

 

Figure 2. Accuracy of annotation using Cohen’s Kappa as a metric for four classes 
(Coral, Macroalgae, Crustose Coralline Algae (CCA), and Turf Algae) when evaluated by 
(1) the Same expert re-annotating the same data (Intra Expert), a different human expert 
annotation (Inter Expert), Bag-of-Words classifier used in CoralNet Alpha (Texton), VGG 
convolutional network trained on CoralNet data (CoralNet beta). 
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Results 

The Automated Image Analysis Strategic Initiative was successful in meeting its goal of 
developing an end-to-end open-source software toolkit allowing for the automated analysis of 
optical data streams to provide fishery-independent abundance estimates for use in stock 
assessment. It was also successful in its broader mission to develop guidelines, set priorities, and 
fund projects to develop broad-scale, standardized, and efficient automated tools for the analysis 
of optical data for use in stock assessment. The products created and improved by SI support 
offer a set of tools that are applicable not only to underwater image survey analysis, as 
prioritized by the SI, but also are proving useful to NOAA imagery from other domains.  

VIAME: Video and Image Analytics for a Marine Environment 
A key product developed under the Automated Image Analysis Strategic Initiative is the open-
source computer vision software framework named VIAME: Video and Image Analytics for a 
Marine Environment (Dawkins et al. 2017). VIAME provides a common interface for several 
algorithm stages (stereo matching, object detection, object tracking, and object classification), 
multiple implementations of each, as well as unified methods for performance evaluation for 
different algorithms applied to the same task. The common open-source framework facilitates 
the development of additional image analysis modules and pipelines through continuing 
collaboration within the image analysis and fisheries science communities. 

Initial specifications for VIAME included incorporation of algorithms previously developed by 
NOAA Fisheries personnel and implemented for CamTrawl and HabCam, as well as a fish 
detection module. This allows for access to existing proven methods as a core part of the toolkit 
and also provides examples of integrated plug-in modules, which could then be emulated for 
other algorithms.  

VIAME is built on the concept of modular, dynamically-loadable plugins. The software can be 
divided into three core components: (1) the pipeline processing framework and infrastructure; (2) 
image processing elements that fit into the framework; and (3) auxiliary tools outside the 
streaming framework that provide training, graphical user interfaces (GUIs) and evaluation 
(Figure 3). The pipeline subsystem allows image processing elements to be implemented in the 
most popular languages used for computer vision (e.g. C, C++, Python, and MATLAB). VIAME 
provides a graphical interface (GUI) for creating new annotations (marking locations, bounding 
boxes, and class identity) for target objects, for visualizing individual object detections and 
filtering detections based on classification values, for iterative queries of image data sets that are 
used to create novel classifiers based on support vector machine (SVM) models, and for training 
of deep-learning models for detection and tracking. There are two evaluation tools included in 
VIAME, one for generating basic statistics for target detection performance compared with 
groundtruth (detection rates, specificity, false alarm rate) and a second for generating receiver 
operating characteristic (ROC) curves for detections which contain associated category 
probabilities. 
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Figure 3. VIAME capabilities and data flow. Analysts can create new analytic modules for 
detection and classification unique to their data using GUIs and databases within VIAME. 

VIAME has been released as cross-platform (Windows, Mac, Linux) open-source software on 
GitHub1, with extensive documentation, tutorials, and training examples2. A number of initial 
algorithm modules have either been implemented or wrapped within the platform. 

FLASK 

SRI’s fish detection and classification tool, called FLASK, was developed to rapidly annotate 
and classify fish type and fish counts from large volumes of recorded video, with minimal 
operator interaction. The tool has preprocessing functionality that identifies key fish features and 
segments fish images to allow for interactive annotation and training. The tool is able to rapidly 
pool similar features into clusters, which can then be viewed through a GUI that allows for rapid 
annotation (hundreds to thousands) of segmented objects simultaneously (Figure 4).  

Following manual annotation of a typically less than 50 cluster sets, the annotation and 
associated metadata is input to a neural network for fine-tuning. Once the fine-tuning cycle is 
complete the user can (1) identify other untrained clusters in the video sources or (2) begin 
running video sources through the trained network, yielding automatically-annotated region of 
                                                 

1 https://github.com/Kitware/VIAME 
2 https://viame.readthedocs.io/en/latest/ 

https://github.com/Kitware/VIAME
https://viame.readthedocs.io/en/latest/
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interest (ROI) bounding boxes around each fish in each video frame (Figure 4). These 
annotations are output in a parsable JSON file set containing a frame-by-frame record of all the 
fish in each video, allowing rapid fish classification and count reporting. 

 

Figure 4. The orange region illustrates the GUI interface with the neural network. The 
users are presented with clusters of many similar objects that can be annotated by the 
users and then used for retraining of the neural network. 

CoralNet 

CoralNet is a web-based system for automatic analysis of benthic images acquired in the course 
of coral reef surveys. Under AIASI funding, the accuracy of CoralNet was significantly 
improved using deep learning, the system was transferred from a single host to a scalable 
distributed system on Amazon Web Services to handle large data sets, and workflows were 
improved to reduce the time users spend annotating images. 

CoralNet preserves many desirable characteristics of CPCe, including a familiar interface, the 
ability for users to create a unique set of target descriptor codes, a function to overlay points 
randomly, and no acquisition or usage fees. The flat data structure used by CoralNet removes the 
inherent file structure problem in CPCe. Image metadata and annotations can be downloaded and 
archived and images can be randomly assigned to different analysts, a desired feature that was 
not possible using CPCe. The web-based deployment of CoralNet also makes it possible to easily 
collaborate with remote analysts. 

CoralNet Alpha allowed users to upload image data sets, randomly distribute annotation points 
across those images, manually annotate a subset of the images using a web interface with study-
specific labels (e.g., functional groups), and use those manual annotations as training data. It then 
automatically proposed labels for annotation points across the rest of the images and allowed 
users to verify and correct the proposals. In estimation of coral cover at the functional group 
level, CoralNet Alpha achieved a level of accuracy commensurate with human analysts (Beijbom 
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et al. 2015), but challenges remained in identifying algal classes and many coral species. 
CoralNet Alpha characterized intra- and inter-expert variation, and found significant variation, 
particularly amongst algal classes.  

The transition from CoralNet Alpha to CoralNet Beta resulted in significant improvements. 
Cloud-based processing significantly increased throughput, decreased latency, and reduced 
model training time. The transition from a bag-of-words style recognition system with texture 
and color features and SVM classifier to Deep Learning (deep CNN) increased classification 
accuracy and reduced end-to-end human analyst effort. 

To date, 750,000 images have been uploaded to CoralNet Beta from 960 sources from around the 
globe, comprising over 27 million annotations. Currently, CoralNet supports nearly 1,000 
registered users with more than 1,000 images uploaded and analyzed every day. Of the 750,000 
images, more than 100,000 are from NOAA. The Pacific Islands Fisheries Science Center has 
been the primary NOAA Fisheries user of CoralNet. Their results are detailed in the PIFSC-
specific results section below. 

Region-Specific Results 

Alaska Fisheries Science Center 

The Alaska Fisheries Science Center (AFSC) has developed an automated image analysis 
protocol to process images collected by the CamTrawl system during acoustic pollock surveys. 
The system consists of paired still stereo images which are analyzed for fish length and species 
compositions. For length estimation, an automated software tool was developed in collaboration 
with computer vision specialists at the University of Washington (Williams et al. 2016). This 
code base was originally developed using the Matlab programming language and was then 
incorporated as a module within the VIAME framework by creating parallel routines for object 
detection, stereo correspondence, and triangulation using the open source Python language 
(Figure 5). 
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Figure 5. Automated length estimation from CamTrawl stereo-camera imagery. 
a) MATLAB processing routine and b) Python language routine using GMM detection 
(Jon Krall, Kitware). The latter process has been incorporated as a module within the 
VIAME automated image processing package.  

The comparison of the original Matlab routine and the Python version show that the length 
estimations are similar (Table 2). 

Table 2. A comparison of stereo image based fish length and range (distance) from 
camera estimates of using MATLAB- and Python-based programs. (Developed by Jon 
Crall, Kitware). 

 MATLAB Python (VIAME) 

Fish Length (mm) 45.36 ± 4.54 44.75 ± 5.73 

Fish Range (mm) 1191.41 ± 207.72 1217.51 ± 224.42 

Error 4.27 ± 2.90 3.96 ± 3.51 
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This code base has been incorporated as one of the standard modules and analysis examples 
within the VIAME package. In addition, a species identification module was developed at the 
University of Washington and funded in part by AIASI (Figure 6; Wang et al. 2016a). This 
algorithm relies on Gaussian Mixture Model (GMM) to detect fish objects, a Bag-of-Features 
framework to extract object features and classify them using and Support Vector Machine 
(SVM) classifier. 

 

Figure 6. Diagram of fish species classification analysis for CamTrawl image data (from 
Wang et al. 2016a). 

Results show a high degree of accuracy can be achieved with a lower number of fish categories 
(Table 3).  
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Table 3. The confusion matrix for CamTrawl data set using Bag-of-features framework 
and SVM classifier. 

 Eulachon Pollock Rockfish Salmon Squid 
Eulachon 113 3 1 2 0 
Pollock 0 416 0 0 0 
Rockfish 0 0 215 0 1 
Salmon 1 1 1 156 0 
Squid 1 5 0 0 110 

An earlier version of the current identification algorithm was incorporated into VIAME in 2015. 
VIAME framework also includes and alternative fish detection module based on a deep “You 
Only Look Once” (YOLO) (Redmon et al. 2016) approach (Figure 7). 

 

Figure 7. VIAME graphical user interface showing the results of fish detection algorithm 
based on deep Yolo architecture. 

A collaborative project between AFSC, SWFSC, and UW with funding support from AIASI was 
established to develop automated methods for fish detection and tracking in ROV video. Custom 
routines that integrate detection and tracking components using a Deformable Part Model (DPM) 
for detection and multiple kernel tracking (Wang et al. 2016b). This closed-loop mechanism 
between detection and tracking greatly decreased the number of false detections, such as non-fish 
objects (Figure 8). 
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Figure 8. Example of a frame from automated ROV tracking using closed-loop with DPM 
features and motion features. 

An AIASI sponsored detection/classification open challenge was carried out as part of a CVPR 
2018 Workshop (Kitware Inc. 2018). AFSC provided an extensive manually annotated data set 
(~5,500 identified fish targets) based on still imagery. 

During June 14–18, 2018, a VIAME installation and operationalization site visit was conducted 
in Seattle. During this meeting, the NWFSC and AFSC groups worked with VIAME 
representatives to develop working VIAME processing pipelines for existing image processing 
tasks at each center, using dedicated image processing hardware supplied through the AIASI 
funding. For AFSC, this included installation and running of the latest versions of the VIAME 
CamTrawl stereo fish length estimation, as well as investigating possible future VIAME uses 
such as fish detection in untrawlable habitat stereo imagery and video segments. 

Additionally, representatives from the National Marine Mammal Laboratory worked with 
VIAME representatives to produce an initial detection model for seals from images collected 
during the annual ice seals aerial survey. Surveys for ice-associated seals rely on overlapping 
color and thermal imagery to detect and classify seals on the ice from a target altitude of 1000 ft. 
VIAME was not developed with this image model in mind, so training focused on preparing a 
training run on annotated color imagery. Augmentation modifications were implemented to 
address the high-resolution imagery. The model completed 4000 iterations and provided an 
opportunity to explore the process of reviewing and correcting results from a validation run. 
Approaches to improve performance were also discussed and 16-bit thermal imagery was shared 
with the development team.  

Pacific Islands Fisheries Science Center 

The Pacific Islands Fisheries Science Center (PIFSC) has implemented the CoralNet tool for 
operational annotation of benthic photoquadrat imagery from Reef Assessment and Monitoring 
Program (RAMP) surveys in the U.S. Pacific Island region. In trials using manually annotated 
imagery from the main Hawaiian Islands and American Samoa, a trained CoralNet Beta model 
was able to generate estimates of site-level coral cover that were highly comparable to those 
generated by human analysts (Pearson’s r > 0.97, and with bias of 1% or less) (Figure 9). 
CoralNet Beta was also effective at estimating cover of common coral genera (Pearson’s r > 0.92 
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and with bias of 2% or less in 6 of 7 cases), but performance was mixed for other groups 
including algal categories. 

 

Figure 9. Site-level coral cover computed via manual (human) and automated (CoralNet) 
analysis for all coral and for common coral genera. Data comes from sites in American 
Samoa, surveyed by NOAA PIFSC in 2015. The solid black line is the 1:1 line, the dashed 
reline is a linear fit of the point data. 

The VIAME training workshop at the PIFSC spanned 5 days and involved nearly 40 participants 
across 4 different divisions. A new GPS machine from image processing was set up and potential 
future collaboration were discussed with the cetacean and seal research groups as well as with 
the electronic monitoring group. 

Following this workshop and training session, PIFSC has begun using VIAME to aid in 
annotation of modular optical underwater survey system (MOUSS) stereo-camera data from the 
Bottomfish Fishery-Independent Survey in Hawaii (BFISH). To assist in tuning VIAME 
detection and classification modules for the Hawaii Deep7 bottomfish complex (six species of 
deep-water snapper and one deep-water grouper), bounding boxes and track lines have been 
made for all species using the WAMI-Viewer semi-automated annotation module within 
VIAME. Annotations with track lines should assist the software to identify fish moving over 
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complex backgrounds where they may be difficult to distinguish from the substrate in still 
images. These training annotations were used to tune a species-specific VIAME convolutional 
neural network (CNN), which is currently being tested. Work is also being initiated to develop 
training data to detect “heads” and “tails” of Deep7 species to aid in automated length 
measurement. 

Northwest Fisheries Science Center 

Training on VIAME was conducted at the NOAA Northwest Fisheries Science Center for 
analysts from the AFSC and the NWFSC on June 12–15, 2018. The workshop was attended by 
20 participants representing the NWFSC, AFSC, SWFSC, University of Washington, and 
Harvey Mudd College. Presentations were made by Kitware and SRI on the first day of the 
workshop describing the software and its capabilities. On the last 3 days, hands-on training was 
conducted for a smaller group of about 10 analysts. 

Activities during workshop included installation and running of the latest versions of the VIAME 
CamTrawl stereo fish length estimation as well as investigating possible future uses of VIAME, 
such as fish detection in untrawlable habitat stereo imagery and video segments, and examination 
of stereo images from the AUV to test detection of fish, corals and sponges. The focus was on 
ingesting still image sets, using the iterative query and refinement (IQR) tools and training of 
SVM models, and examination of IQR/SVM model based detections. 

The newly acquired computer platforms were accessed directly by VIAME workshop attendees 
and the example version of the CamTrawl stereo length estimation available from the VIAME 
website was run with a new set of CamTrawl images to check for operability. Underwater video 
footage from the untrawlable habitat strategic initiative (UHSI) Channel Islands project was used 
as a trial for the iterative query and refinement (IQR) module in VIAME. NWFSC stereo-images 
collected from a bottom tracking AUV also were used as a trial for the IQR module. 

While there were some initial challenges in operating the software, VIAME is now up and 
running for our analysts. Similar challenges were also encountered when trying to run the SRI 
Flask tool within CentOS (the preferred system for both the NWFSC and PIFSC). With some re-
coding, this issue has also now been addressed.  

As mentioned earlier, Ice seal researchers from the AFSC Marine Mammal Lab also attended the 
VIAME workshop at the NWFSC in order to explore the capabilities of the program and receive 
training in its operation.  

The NWFSC goal is to use VIAME for automated detection of fish, coral and sponges in stereo 
still images collected by a bottom-tracking AUV. Subsequent to the workshop, more progress 
was made by individual analysts using the IQR tools and training SVM models. Currently, the 
NWFSC AUV analysts are using VIAME to develop detectors for pyrosomes in still imagery. 
This test case was chosen because, while pyrosomes are not a primary focus of our research, 
pyrosomes have unique physical characteristics well suited to automated detection. The NWFSC 
is continuing the development of new annotated image training data sets from still imagery and 
is installing a multi-user graphics processing unit (GPU) workstation, which will allow VIAME 
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usage by a variety of research groups. The NWFSC is also exploring the use of breakaway boxes 
to enhance GPU capabilities of existing multiple use computers.  

Southwest Fisheries Science Center 

A workshop on Automated Image Analysis Workshop and VIAME training was convened at 
NOAA Southwest Fisheries Science Center in San Diego, CA during August 20–24, 2018. The 
workshop was attended by approximately 20 participants representing: NOAA SWFSC La 
Jolla—Antarctic Ecosystem Research Division (AERD), Marine Mammal and Turtle Division 
(MMTD), Fisheries Resources Division (FRD), Information Technology Services (ITS); NOAA 
SWFSC Santa Cruz—Fisheries Ecology Division (FED) Habitat team, Fisheries Ecology 
Division (FED) Biophysical Ecology group; NOAA ERD Monterey—Environmental Research 
Division (ERD); Monterey Bay Aquarium Research Institute (MBARI); NOAA Southwest 
Region Office; SRI International; University of California San Diego/DropBox; and Kitware, 
Inc.  

The SWFSC workshop included 14 presentations on a wide variety of imaging topics. Some 
topics were specific to SWFSC work, but most had commonality with work being conducted 
throughout NOAA.  

Eleven analysts attended and participated in the hands-on VIAME training for 2 to 3 days. 
VIAME was introduced to SWFSC image analysts during the afternoon of the first day, and 
within 2 days remarkable progress was made by several groups and individuals using VIAME 
for analysis of their own imagery and starting with no prior experience or understanding of the 
framework.  

Participants of the VIAME training at Southwest Fisheries Science Center used VIAME on their 
own survey imagery or shared imagery to do the following: ingest still image sets and video 
imagery; use the iterative query and refinement (IQR) tools and train SVM models; examine 
IQR/SVM model based detections; filter classifications based on confidence statistics; create 
manual annotations and tracks of fish and other targets; train deep-learning based object 
detectors, and apply the detector to underwater and aerial image survey targets (such as fish, sea 
lions, and penguins) (Figure 10). Others applied default object detectors to image sequences 
from a lander camera system, and modified VIAME configurations to operate on computer with 
a sub-optimal GPU.  
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Figure 10. Examples of VIAME processes and results produced by analysts during the 
workshop at SWFSC. 

The ability of SWFSC analysts to rapidly learn and apply the advanced techniques available in 
VIAME to their wide variety of imagery was possible because of the responsive development 
and attention by Kitware to the needs and requests from analysts who participated in previous 
training sessions.  

VIAME has been adopted by a group at SWFSC doing censuses of pinnipeds from aerial 
imagery, and others are planning to use it for their analyses after realizing the potential during 
training. Currently there are is one desktop computer workstation at SWFSC that was procured 
using SI support and is suitably equipped for running VIAME’s processes that require lots of 
computing resources and a GPU. If funds were available, SWFSC ITS would provide an 
enterprise computing system allowing multiple user access to VIAME and equipped with 
multiple GPUs to enable fast and potentially simultaneous model training.  

Southeast Fisheries Science Center 

The NOAA Southeast Fisheries Science Center (SEFSC) initially tested previous versions of 
VIAME using the incorporated default detector that had been trained using HabCam and 
CamTrawl images. This detector had very limited success in application to SEFSC data. Since 
that time, significant development, refinement, and additional features included in VIAME have 
produced much more promising results. 

A workshop was conducted at the SEFSC Pascagoula, MS Laboratory on August 27–30, 2018. It 
was attended by 16 participants from SEFSC's Stennis Space Center, MS, Pascagoula, MS, 
Panama City, FL, and Beaufort, NC Laboratories, the NOAA Fisheries Office of Science and 
Technology, SRI International, and Kitware. Kitware provided an overview of VIAME (Figure 
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11) and SRI provided an overview of FLASK. Each of the attending laboratories presented an 
overview of their current methodology for acquisition and analysis of images and video that 
focused on reef fish surveys in the Gulf of Mexico (Pascagoula and Panama City Labs), Atlantic 
(Beaufort Lab), and Caribbean Sea (Pascagoula Lab). The remainder of the workshop consisted 
of tutorials for utilizing VIAME and hands-on training by attendees working with their own data. 

Attendees acquired a good understanding of VIAME's capabilities and a comparative overview 
of the multiple analysis pathways that can be used. They tested VIAME's currently incorporated 
default detectors, facilities for manual annotation of data, Rapid Model Development using 
Iterative Query Refinement (IQR), and training and utilization of Deep-learning algorithms, and 
received training on facilities for performance evaluation and scoring of results. 

 

Figure 11. Example of analysis using VIAME during the SEFSC workshop. This image 
shows detections and identifications of multiple species in one of a sequence of images 
using a detector trained using VIAME’s deep learning algorithms. Not all fish in the image 
sequence were detected and/or correctly identified. However, results are promising, 
given limited training data and few observations of some species included in the model. 

Although most of the workshop attendees were focused on camera surveys for reef fish, several 
additional applications were explored to better understand VIAME’s capability for full-frame 
video analysis, including automated detection and counting of turtles using trawl-mounted 
cameras. Potential application of VIAME for plankton image analysis is also being considered. 

Recognizing the deep-learning model capabilities of VIAME as the most likely methodology to 
perform well for detecting and classifying the wide range of species encountered during reef fish 
surveys in the southeast, SEFSC is proceeding with creation of annotated image training data 
sets that will include a large number of ground-truth identifications of many reef fish species in 
diverse habitats and lighting conditions. As these image sets are produced, they will be used to 
train and test deep-learning models using VIAME. The creation of this training data would likely 
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not have been possible without the IQR and other semi-automated annotation tools provided 
within VIAME. Where possible, SEFSC also plans to work collaboratively with other groups 
collecting similar data, including the Florida Fish and Wildlife Conservation Commission, to 
expand these training data sets and utilization of VIAME. SEFSC also plans to annotate a large 
number of nose and tail locations of fish in images to aid automation of length measurements 
from stereo cameras. Once an improved detector is compiled, we will test the video annotation 
against manually annotated QA/QC data sets collected in the last 2 years. 

Northeast Fisheries Science Center 

At the Northeast Fisheries Science Center, VIAME has been employed to analyze HabCam 
images for sea scallops, skates, and other fish. Currently, two percent of the images are manually 
annotated for scallops. Although this rate is adequate to obtain precise estimates of scallop 
abundance, it is insufficient for fish.  

We used the northeast skate complex for a pilot study to estimate absolute abundance using 
HabCam images and VIAME (Figure 12). We plan to expand this study to other fish species 
such as red and silver hake in the future. Because catch of skates is uncertain, especially on the 
species level, conventional assessment methods cannot be used to estimate absolute abundance. 
VIAME was used to develop an automated annotator for skates using the YOLOv2 and to 
automatically process 4 million images from the 2016 HabCam survey. When properly 
calibrated, the skate annotator was used to obtain fairly precise (e.g. CV = 20–30%) spatial 
estimates of absolute skate abundance for 2016. This work was presented at the 2018 AFS 
annual meeting (Hart et al. 2018).  

Automated annotators for other fish as well as scallops are also promising. Automated annotation 
of scallop imagery may allow for a reduction of the manual annotation rate required to obtain a 
desired precision (Chang et al. 2016). As manual annotation currently comprises more than 
100,000 images, any reduction would result in substantial cost savings and allow for faster 
production of survey data for management. 

Ten participants attended the NEFSC VIAME training workshop: four interested in HabCam 
applications, two for marine mammals (seals and whales), two for plankton, and two interested 
in applications related to on-deck electronic monitoring. 

VIAME is currently being used to help estimate seal abundance from aerial photos. The rapid 
model generation module was first used to generate a potential training set, which was checked 
and cleaned manually, and was then used to train a CNN seal detector.  

NEFSC has also been collecting plankton data using a Video Plankton Recorder (VPR). Existing 
software is able to segment images to extract regions of interest (ROI), but there has been no 
algorithm to classify the detections. Work was initiated during the workshop to develop such 
classification software using IQR and convolutional neural networks (CNNs). 
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Figure 12. A HabCam image of a skate (Leucoraja erinacea or L. ocellata) with an 
automatically generated region of interest (ROI) outlined in yellow. 

Untrawlable Habitat Strategic Initiative 

While the AIASI was progressing, NOAA Fisheries was also pursuing a SI focused on 
developing survey methods for untrawlable habitats (Somerton et al. 2017). A central focus of 
the UHSI was to investigate the reaction of fish to various survey gears. Testing locations were 
established in the Gulf of Mexico and on the California shelf. At each location, a set of MOUSS 
camera systems were deployed to the seafloor. After a period of time, a variety of optical survey 
vehicles (e.g. SeaBed AUV, C-BASS camera sled) were deployed within the field of view of the 
MOUSS. The MOUSS was able to record footage of resident fish assemblages before, during, 
and after the passage of these vehicles, allowing researchers to investigate behavioral reactions 
(Somerton et al. 2017). 

One of the main limitations associated with the UHSI survey has been the bottleneck associated 
with manual annotation of the collected video. During the 2014 UHSI survey approximately 20 
terabytes (TB) of image data were acquired. Despite having metadata showing the approximate 
time of vehicle passage in front of the MOUSS array, significant manual effort was required to 
target and extract images immediately before, during, and after vehicle passage. To mitigate 
future manual search needs, a collaboration was established between the UHSI and AIASI to 
employ automated methods to help identify target image sequences (Girdhar et al. 2015). 

Image annotation remains a bottleneck and, to date, only a small subset of the available UHSI 
imagery has been evaluated. Automated analysis tools, such as those described here, will allow 
for a far more intensive approach to understanding how fish acclimated to the presence of the 
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sampling gear and to evaluate abundance and behavior trends over much longer time periods 
than are traditionally sampled (30 min vs 10 hr). Frame-by-frame data annotation could 
potentially allow for more precise understanding of exact stimuli causing fish response (e.g. 
vehicle noise vs visual sighting). 

Workshops and Data Challenge 

The Automated Image Analysis Strategic Initiative also supported four annual workshops (2015–
2018) on Automated Analysis of Video Data for Wildlife Surveillance (NOAA AIASI 2017), 
hosted in conjunction with the Institute of Electrical and Electronics Engineers (IEEE) Winter 
Conference on Applications of Computer Vision (WACV) and the American Geophysical Union 
(AGU), Association for the Sciences of Limnology and Oceanography (ASLO), and The 
Oceanography Society (TOS) Ocean Sciences Meeting. Workshop attendance grew from 25 to 
more than 75 participants from domestic and foreign private industry, academia, as well as local, 
state, and national government agencies. 

The UHSI and AIASI jointly hosted a session at the 2017 American Fisheries Society Annual 
Meeting in Tampa Bay, FL (Callouet et al. 2017). Presentations on automated image analysis 
were delivered by two different groups including SRI International and C-Vision Incorporated, 
both of which are using deep learning algorithms to identify fish in imagery. SRI the 
aforementioned FLASK tool that uses a clustering approach to classifying ‘like’ images, which 
can later be manually validated to improve classification incrementally. FLASK was used to 
identify habitat and fish observed using the C-BASS towed vehicle (Lembke et al. 2017), but the 
software was not available during the UHSI experiments for use. C-Vision demonstrated a 
separate deep learning tool used to automatically identify fish entering into trawls in the 
northeast United States. While C-Vision was not funded by NOAA Fisheries, collaborations 
have been initiated based on communication at this joint session. 

Presentations were also given by groups integrating optics and acoustics to collect fish diversity, 
abundance, and biomass data. Coupled acoustic and optic approaches can provide a much 
broader picture of the sampled habitat but are currently limited primarily due to the manual 
approaches to annotating optical data. During discussion, automated methods to identify both 
fish and their habitat were highlighted as a strong needs, given the data volume that can be 
collected using integrated approaches. 

The AIASI also supported a fifth workshop on Automated Analysis of Marine Video for 
Environmental Monitoring at the Institute of Electrical and Electronics Engineers (IEEE) 
Conference on Computer Vision and Pattern Recognition (CVPR) in June 2018 (“CVPR 2018 
Workshop | viametoolkit.org,” n.d.). CVPR is the premier conference in computer vision, 
attracting more than 6000 attendees in 2018, and the workshop there reached a broader audience 
than at WACV. 

In conjunction with the CVPR 2018 workshop, the AIASI sponsored a public data challenge on 
NOAA data with annotations provided by NOAA and Kitware (“CVPR 2018 Workshop Data 
Challenge | viametoolkit.org,” n.d.). The challenge problem is to automatically detect and 
classify fish and scallops in thousands of images into 10 or more classes. The challenge was 
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announced just before the workshop, and will remain open indefinitely pending continuing 
support from NOAA. 

Through these workshops and the data challenge, new partnerships were developed between 
marine and computer visions researchers; collaborations that have and will continue to bear fruit 
as this domain continues to grow. 
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Discussion 

The AIASI (2013–2018) occurred during a very dynamic time in the evolution of computer 
vision. During this period, machine-learning tools evolved from hand-crafted, gradient-based 
methods into biologically-inspired, neural network-based systems. These new methods, although 
foreign to many analysts, outperform most previous methods for classification, localization, and 
detection (Krizhevsky et al. 2012). 

The SI model provided a novel mechanism to integrate the needs of NOAA Fisheries with a 
diverse range of expertise spanning academic, non-profit, and private domains. This model, with 
dedicated and consistent personnel and funding, allowed a diverse group of experts to work 
consistently, collaboratively, and iteratively on a significant challenge for several years. The 
AIASI identified key optical data sets that, if they could be analyzed, could provide great benefit 
to national stock assessments. The AIASI also identified the breakthroughs in vision 
technologies, and reoriented its efforts to exploit deep learning, interactive model training, and 
model adaptation rather than further integration of heritage methods. 

VIAME: Video and Image Analytics for a Marine Environment 
Much of the existing code for automated image analysis and video analytics in the maritime 
domain was unique to a specific sensor, data type, or research question. The development of the 
VIAME deep learning architecture has led to more complete and versatile algorithmic pipelines, 
capable of taking the novice image analyst from imagery to data with minimal effort. The open-
source, modular nature of the VIAME system facilitates the continued development of a versatile 
and dynamic platform capable of addressing current and future needs in automated image 
processing.  

In addition to the ability to run and compare several state-of-the-art algorithms within 
operational pipelines, the VIAME platform contains multiple features, which aid in the rapid 
integration of new algorithms. Future work will involve the addition of new algorithm types 
(such as habitat classification and additional object trackers), the integration of new algorithms 
(e.g. detectors, trackers, classifiers), adding new GUIs to the system, and additional general 
system improvements. The ability to configure and change algorithm pipelines in a GUI will be a 
useful addition as well as a useful debugging tool. All of these capabilities would be highly 
valuable across a wide range of government agencies including the Defense Advanced Research 
Projects Agency (DARPA), Intelligence Advanced Research Projects Activity (IARPA), Air 
Force, Army, Navy and Department of Energy through the common KWIVER platform that 
underlies VIAME. Kitware develops KWIVER and builds on it for research and applications for 
all of these agencies. 

CoralNet 
The close match between manual and automated estimates of coral cover (Figure 9) pooled to the 
scale of island and year demonstrates the capability of CoralNet in generating data suitable for 
assessing spatial patterns and temporal trends. As image acquisition is relatively straightforward, 
the capacity for fully-automated tools to ameliorate the need for resource intensive human 
analysis opens possibilities for enormous increases in the quantity and consistency of coral reef 
benthic data available to researchers and managers. 
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VIAME and CoralNet exceed expectations and continue to grow with increased utility spanning 
a broad range of programs. Although VIAME is primarily used for underwater imagery at 
present, it is based on a generic pipelined vision processing system that applies to video analytics 
in any domain. It is hoped that the general vision community will find VIAME useful and that a 
vibrant open-source community will develop around the platform. 

Discussions among AIASI members and representatives from other NOAA and NOAA Fisheries 
offices suggest that VIAME is valuable to many line offices, divisions, and programs. AIASI 
efforts have provided potential solutions to problems that other groups are just beginning to 
consider. 

Electronic Monitoring 
NOAA Fisheries is working with fishermen, Fishery Management Councils, and other partners 
to integrate technology to improve timeliness, quality, integration, cost effectiveness, and 
accessibility of fishery-dependent data. Electronic monitoring (EM) has clear potential to meet 
these challenges by incorporating cameras, gear sensors, and electronic reporting systems into 
fishing operations. However, as with the other domains discussed, the costs of human video 
review and video storage present significant barriers to moving EM programs forward. To date, 
NOAA Fisheries has implemented six programs, including the Atlantic Highly Migratory 
Species (HMS) pelagic longline fishery (2015), Bering Sea and Aleutian Island (BSAI) Non-
Pollock Trawl Catcher/Processor (CP) (2007), Pollock CP (2011), Central Gulf of Alaska 
Rockfish Trawl CP (2012), BSAI Cod Longline CP (2013), and Small Boat Fixed-Gear (2018). 
On the West Coast, EM will be implemented for the whiting mid-water trawl and fixed-gear 
fisheries in 2018, and for the bottom trawl and non-whiting mid-water trawl fisheries in 2019. 
On the East Coast, the northeast groundfish fishery is targeting full implementation in the year 
2020, and the mid-water trawl herring fishery in 2019. 

Machine learning applications, based on image-training data sets, global positioning systems 
(GPS), and sensors, could substantially reduce data collection and processing costs for existing 
and future EM programs. As this paper describes, technological advancements in image 
processing and storage suggest that the automated methods described herein hold much promise 
for the EM community. While the AIASI focused on in-situ imagery, researchers at AFSC are 
currently building upon AIASI efforts, developing machine vision systems for chute and stereo 
camera tools that incorporate machine learning to automate image processing. Additionally, the 
NOAA Ship Henry Bigelow has recently added machine-vision camera systems in its laboratory 
spaces for the sole purpose of collecting images necessary to support electronic monitoring.  

As in other marine science domains, few EM researchers have experience with annotation 
techniques or developing novel machine-learning algorithms. A great advantage of many of the 
algorithms described herein is that they can be re-trained using image data sets from disparate 
fisheries, providing a cost effective transfer of technology. Recently, several Science Centers 
have submitted proposals to The Fisheries Information Systems Program (FIS) to build EM 
image libraries. A workshop in November 2018 will discuss regional vs national needs as well as 
the creation of a national library, potentially using VIAME as the main interface and analysis 
tool. VIAME provides a framework within which to organize the many competing on-deck fish 
identification projects while requiring reviewers, whom are usually highly experienced at-sea 
observers, to learn a single annotation protocol. EM technicians have already found the VIAME 



28 

GUI easy to use and operate. VIAME could also provide wide-ranging access to a current suite 
of EM-specific machine learning code developed by NOAA Fisheries. 

Ocean Exploration 
Automated detection and classification of different kinds of marine fauna is also an important 
problem in the Ocean Exploration domain. Underwater robotic vehicles are routinely deployed 
into the ocean by various oceanographic institutions and groups around the world, and usually 
include video or still cameras. Today, the only reliable method to detect and identify targets of 
interest is to have a trained expert manually annotate the imagery. The Monterey Bay Aquarium 
Research Institute has spent nearly 30 years collecting and carefully curating images, cataloging 
more than 23,500 hours of underwater video, which has been manually annotated for more than 
4,200 categories (including taxonomic species identification of observed animals) resulting in 
over 5.5 million annotation stored in an searchable database (Barr 2015) and Deep Sea Guide 
(Dalit 2016). 

As an ever-increasing number of platforms are deployed for longer periods, the requirement for 
expert human annotation—as well as the factors such as fatigue, inconsistency between experts, 
and training—has become the critical bottleneck in assessing habitats and fisheries as well as in 
addressing scientific and societal questions of ecology, human impacts, climate change, and 
environmental stress. VIAME offers a framework through which recent and future advances in 
computer vision and pattern recognition can be applied to these challenges in ocean data 
analysis. 

Protected Species 
Cetacean (whale and dolphin) surveys often include the collection of digital photographs of 
dorsal fins and flukes, which are used to identify unique individuals. The photo-identification 
data are used to analyze movements and distribution, population and social structure, as well as 
to estimate abundance and other demographic parameters. A single image may contain one or 
more individual animals. For each group encounter, every fluke or dorsal fin is manually sorted 
and stored within a separate folder representing a unique individual. Each individual is assigned 
a distinctiveness rating, and each image of the individual is assigned a quality rating (e.g. Urian 
et al. 2015). Each fin or fluke is then manually matched to an existing catalog of identified 
individuals. This process can take several days to several months for each encounter, depending 
on the size of the group photographed. A typical survey can last up to 30 days, with 1–2 
encounters per day. 

Recently, aerial photography and photogrammetry has been used to remotely and non-invasively 
investigate the health of cetacean populations and individual animals (Christiansen et al. 2018; 
Cramer et al. 2008). Aerial photographs are collected by means of an aircraft or unmanned aerial 
system (UAS). Counts of individuals photographed in a group can improve group size estimates 
used in abundance estimation, and counts of mother-calf pairs or other age classes can serve as 
an index of population status. Given a known altitude, measurements of length and width at 
various points along the body can be made, which provides a quantitative measure of individual 
body condition. These processes can take several minutes per image—or longer if multiple 
images need to be mosaicked or considered together to achieve a full view of the group or 
individual. 
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VIAME and other tools described in this paper have the potential to improve and automate both 
of these efforts, drastically reducing time and cost required to process imagery. Currently, image 
quality hinders data collection as many images are of low contrast or contain excessive glare or 
reflection. Several algorithms have been developed to automate pre-processing to include color 
and contrast correction and glare removal (Kay et al. 2009; Hedley et al. 2005). Automated 
detection, segmentation, and matching of fluke and dorsal fins can be accomplished using 
FLASK and the IQR and/or deep learning training modules within VIAME. With modification, 
the length measurement software module within VIAME could automate current 
photogrammetry procedures and could expand them through automated calculations of additional 
diagnostic metrics such as body area and curvature. 

Image-based surveys are also being used to assess populations of seals and turtles (Harting et al. 
2004). Time-lapse cameras have been deployed on remote and often inaccessible beaches in the 
Northwestern Hawaiian Islands to survey the highly endangered Hawaiian monk seal (Monachus 
schauinslandi), producing more than 20,000 images per year. The goal is to use this imagery to 
detect and count seals as well as to distinguish individual animals. Each seal is matched to an 
image database through distinctive natural markings as well as tags and bleach marks. To date, 
these images have yet to be processed due to a lack of human resources. 

UAS aerial surveys are also conducted to estimate population levels as well as to estimate body 
size and health of individuals through photogrammetry. 

As with cetaceans, several tools developed by the AIASI—including VIAME and FLASK—
could potentially automate detection and identification of individual animals and could automate 
the photogrammetric process. 

Aerial surveys for ice associated seals in Alaska (bearded seals, Erignathus barbatus; ribbon 
seals, Histriophoca fasciata; ringed seals, Phoca hispida; and spotted seals, Phoca largha) 
shifted to an image based approach in 2012. Since then, more than 4 million images (20 TB of 
data) have been collected of the sea ice habitat of the Bering and Chukchi seas. The analysis of 
this imagery has been aided by the inclusion of thermal imagery to help detect warm bodies on 
the cold sea ice, but image processing is still cumbersome and time-consuming. Efforts are 
underway to implement machine learning as an approach to improve both detection and 
classification of animals on the sea ice and to reduce overall image collection during these 
survey efforts. VIAME modifications to accommodate and fuse thermal and color imagery will 
provide an avenue to develop algorithms using existing imagery. An additional effort to integrate 
machine learning into the image acquisition system will allow on-board testing and real-time 
processing with the goal of completing surveys with data in hand.  This will reduce the demand 
on the AFSCs data storage infrastructure and support timely analysis for abundance estimation 
and stock assessment.  

Data Accessibility 
The emergence of relatively inexpensive, high-quality, optical sampling technologies have 
resulted in data volumes that overwhelm not only human analysts, but also traditional storage 
mechanisms. Until recently, the majority of optical data has been stored on individual hard drives 
associated with an individual researcher or project. As this became untenable, efforts were made 
to migrate data to local, Science Center-based clusters and—more recently—to the National 
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Centers for Environmental Information (NCEI), through the NOAA Fisheries Video Data 
Management and N-Wave Projects (NOAA NOC, n.d.). Currently, across the various Science 
Centers, NOAA Fisheries holds approximately 800 TB of optical data, with an anticipated 
annual growth of 250–900 TB. Yet, an enterprise-level operational solution to large-scale optical 
data storage has yet to be identified. 

In this sense, storage and archiving are defined differently. Archiving of imagery is a form a 
deep storage that is not easily accessible, but which is maintained for an extended period of time, 
in accordance with the Federal Records Act. However, we should de-emphasize the archiving of 
data when discussing data accessibility because archives are not typically accessible quickly 
enough for timely processing or the development of novel analytical tools. 

Storage of imagery is temporary and is less restrictive than archiving, but allows for faster and 
more general access to imagery for research and development of machine learning and other 
analytical tools. In recent years, the information technology industry has created cost-effective, 
scalable, cloud-based solutions allowing for storage and retrieval of large volumes of image data 
with minimal management effort. The NOAA Data Management Integration Team is exploring 
the use of cloud-based storage through cooperative research and development agreements with 
Amazon Web Services, Google, IBM, Microsoft and the Open Commons Consortium.  

To encourage vision researchers to work in the marine domain, the AIASI sponsored the 
development of an image recognition challenge (“CVPR 2018 Workshop Data Challenge | 
viametoolkit.org,” n.d.). The challenge includes a sampling of image data from multiple 
Fisheries Science Centers, with manual annotations of species of interest on all images. Correct 
and complete annotations are critical for enabling machine learning algorithm training and 
development, which should be carefully considered when storing and archiving data for research. 
Any available annotations, image metadata and other collection information should be preserved 
and completely cross-referenced with the original imagery. 

The marine imagery challenge data is approximately 300 gigabytes (GB), which is too large for 
many researchers to easily and reliably download resulting in less participation and interest. 
Cloud storage and computation for the challenge would encourage researchers to examine the 
data and provide solutions to its difficult fine-grained recognition challenges. 

As with any nascent research field, continued energetic development efforts are predicated on 
availability of data. Within the computer vision community, new algorithms are continually 
developed and tested using commonly accessible image libraries for training, testing, and 
evaluation (Krizhevsky et al. 2012). The AIASI brought a new domain of imagery to the 
computer vision world and catalyzed new algorithm development. However, as outlined by 
Margolis et al. (in prep), continued development is largely predicated on availability and 
accessibility of marine image data. To this end, imagery should be archived for long-term storage 
to meet requirements, while also being stored to allow for quick accessibility. A user-friendly, 
query and map-based interface should be created to promote discovery and access to imagery. To 
maximize development imagery should be curated in a way so that access for machine learning 
is prioritized. 
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Conclusions 

The NOAA Fisheries Strategic Initiative on Automated Image Analysis was successful in its 
mission to develop guidelines, set priorities, and fund projects to develop broad-scale, 
standardized, and efficient automated tools for the analysis of optical data for use in stock 
assessment and in its goal to develop an open source software toolkit allowing for the automated 
analysis of optical data streams to provide fishery-independent abundance estimates for use in 
stock assessment. VIAME and CoralNet exceed expectations and continue to grow with 
increased utility spanning a broad range of programs. VIAME became an end-to-end system for 
analyzing NOAA imagery with state of the art techniques. Continued support will ensure that 
these tools remain state-of-the-art and applicable to NOAA’s needs. The Strategic Initiative 
model—with specific objectives and leadership support—proved an effective model for 
conducting large-scale, multi-year, research and development projects to address national 
priorities.  
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Recommendations 

VIAME, which has been installed at all the Science Centers, has transitioned from research and 
development into the initial deployment phase. Users are actively engaged with VIAME, and 
many requests for new features, improvements and bug fixes are being submitted. Computer 
vision is a rapidly developing field and new algorithms are continually being developed. For 
example, a new version of the YOLO CNN algorithm (v3) was just released (Redmon and 
Farhadi 2018). Incorporating effective algorithms, as well as support for rapidly-evolving deep 
learning capabilities, operating systems, processors, GPUs, and programming languages will be 
important to ensure that VIAME does not become obsolete. A modest level of funding (on the 
order of $100,000 per year) should be continued while VIAME is in active use. Such funding 
would be used to (1) support routine version updates to maintain compatibility with base 
operating systems, (2) correct software errors identified during the initial use period, and (3) 
provide overall customer and technical support to users. While NOAA is under no obligation to 
maintain support and while VIAME may continue to expand under disparate funding sources, 
such support would ensure that NOAA Fisheries needs continue to be a priority during future 
software development. While it is expected that NOAA scientists will adapt and expand VIAME 
to their purposes by implementing their own algorithms, by writing plug-ins, or by modifying the 
open source codebase, efficiencies are gained through continued support for VIAME’s core 
developers. 

Likewise, the CoralNet tool would benefit from a modest continued support package. CoralNet 
beta runs on Amazon Web Services cloud-based computing structure, with an annual hosting 
cost of $6k. Basic maintenance and technical support are estimated at $30k per year. 

Hence, the total projected cost for ongoing support of AIASI-developed tools is $136k per year. 

More significantly, the training sessions, workshops, and NOAA outreach exposed new user 
groups to the capabilities of VIAME and identified several new and important capability gaps. 
Addressing these new constituents will greatly enhance the range of marine science problems 
that VIAME can address, and consequently the impact it could have across NOAA and the 
broader marine science community. The most important features recommended for future 
development include: 

● Improved animal tracking to enable species ID on tracks, robust MaxN counts, behavior 
identification on tracks; 

● Stereo image processing, including length measurement as well as dense 3D-image depth 
estimation to improve animal detection, species ID, habitat classification, and habitat 
segmentation; 

● Stereo video processing including depth-informed tracking, 3D scene reconstruction and 
stereo video display; 

● Individual animal recognition and re-identification to track individuals within single 
collections (to prevent double counting) and across collections for migratory analysis; 

● Behavior and event detection and classification to determine platform avoidance or 
attraction, predator-prey interactions, feeding and other actions of interest; 
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● Integration and adaptation of new and emerging deep learning capabilities such as new 
versions of YOLO (detection and classification), RCNN (detection and classification) (Ren 
et al. 2017), Mask-RCNN (semantic segmentation) (He et al. 2017), RC3D (event/behavior 
detection) (Ji et al. 2013); 

● Improvement of detection and classification through the fusion of different camera and 
sensor modalities such as red, green, and blue color channels (RGB)infrared (IR), Light 
Detection and Ranging (LIDAR), Sound Detection and Ranging (SONAR), and others; 

● Anomaly detection to identify unusual objects, animals, flora, habitats and behaviors; 
● Improved user interfaces to facilitate annotation and interactive construction of new 

detectors; new user interfaces for added capabilities such as event detection; 
● Incorporation of geospatial data associated with imagery and detections into GUIs and 

associated functionality; 
● Cloud-enabled processing to allow VIAME to ingest and analyze data sets hosted in cloud 

services; and 
● Integration with existing NOAA Fisheries Science Center systems, workflows and 

databases. 

The VIAME user base continues to grow and, with it, we have seen a large increase in requests 
for new features, bug fixes, and general communication. We suggest a system through which 
users are able to enter requests for new features and bug fixes, such that they can be prioritized 
and tracked. Furthermore, we suggest the creation of a NOAA-hosted VIAME users group and 
mailing list, to enable users to communicate freely and easily. This users group would meet 
periodically, either physically or virtually, to facilitate and coordinate future development in 
automated image processing and to develop partnerships with future groups interested in 
automated image processing. We envision this type of future development funded via direct 
contract or grant from the requesting entity to developers. 

Future Strategic Initiatives 
As the NOAA Fisheries Office of Science and Technology considers new strategic initiatives, 
several considerations are worth noting. Membership from each of the Fisheries Science Centers 
ensured that results were widely applicable. The inclusion of representatives from academia and 
private industry ensured that our efforts remained on the cutting edge of technological 
development. Working with contractors who had already developed software code under other 
government research projects has allowed us to leverage additional funding and resources that 
would not otherwise have been available. 

The initiative also benefited from clear and specific goals with respect to mission, goal, and 
deliverables. This clear direction, established early in the strategic initiative processes, allowed 
tasks to be defined and clear statements of work to be written. Each Science Center 
representative was able to bring to the table specific data sets and workflows in need of 
automation. This helped to define scope, priorities, and work plans.  

Software development was completed through various funding mechanisms including contracts 
and grants, which supported staff at NOAA’s cooperative institutes (CI) as well as developers at 
universities and private-sector companies. Providing funding through the Cis was 



34 

straightforward, allowed support of academic affiliates, and improved university collaborations. 
Providing funding opportunities to private sector entities was more challenging. Restrictions also 
limited the initiative’s ability to benefit from significant developments within the international 
community. 

Despite these administrative challenges, the strategic initiative proved to be an effective and 
efficient model, allowing NOAA Fisheries to focus on large-scale goals with multi-year 
continuity across multiple Science Centers. 
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Appendix 1—Terms of Reference 

Terms of Reference for 
NOAA Fisheries Strategic Initiative on Automated Image Analysis 

The demand to improve stock assessments drives a need for improved data, particularly more 
precise, accurate, efficient and timely scientific surveys of fish abundance and their associated 
habitat and ecosystem. Increasingly, NOAA Fisheries and other agencies are employing camera-
based surveys to estimate size-structured abundance for key stocks. However, the volume of data 
produced by camera-based survey platforms quickly exceeds the capabilities of human analysis. 
Automated video analysis solutions are needed to extract species-specific, size-structured 
abundance measures from optical data streams. To affect this development, the NOAA Fisheries 
Office of Science and Technology (OST) has created the Strategic Initiative on Automated 
Image Analysis (AIASI). These Terms of References (ToRs) have been developed by the AIASI 
chair, with input from the AIASI members, OST, and the Advanced Sampling Technologies 
Working Group (ASTWG). 

Objective: The mission of the NOAA Fisheries Strategic Initiative on Automated image analysis 
is to develop guidelines, set priorities, and fund projects to develop broad-scale, standardized, 
and efficient automated tools for the analysis of optical data for use in stock assessment. The 
goal of the AIASI is to create an end-to-end open source software toolkit allowing for the 
automated analysis of optical data streams to provide fishery-independent abundance estimates 
for use in stock assessment. 

Approach: The suggested approach is to convene an international working group composed of 
agency, academic, and private sector representatives with the following set of tasks: 

1) Identify existing technology and software to meet the stated objectives; 
2) Identify research projects or beta technologies that can be easily developed, modified, or 

transitioned to meet the stated objectives; 
3) Identify data gaps that impede development of software for automated image analysis; 
4) Identify and rank the principal limitations and deficiencies in the area of automated image 

analysis as it related to NOAA Fisheries stocks; 
5) Identify and rank research tracks for the development of automated image analysis solution 

to meet the stated objectives. Describe promising new technologies to improve awareness 
in the assessment and survey programs. 

6) Fund high-ranking research projects to develop technology to meet the stated objectives; 
7) Fund and organize workshops to bring together members of the computer vision, marine 

science, and stock assessment communities to develop technologies and research tracks to 
meet the stated objectives. 

8) Consolidate research and development products and develop or catalyze development of 
an end-to-end open source software toolkit (application) allowing for the automated 
analysis of optical data streams to provide fishery-independent species-specific, size-
structured abundance estimates for use in stock assessment 
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Timing: The AIASI panel shall meet at least twice a year for a three to five year term. At least 
one of these meeting should be face-to-face. Panel reports should be sent to OST in late February 
of each year, and these results can be distributed among the Science Board, stock assessment 
senior advisor (SASA), and ASTWG in March. 

Participation: Each regional Science Director shall ensure the participation of an expert in stock 
assessment, survey, or sampling technologies. Additional panel members will come from 
academia and private industry. When feasible, the SASA, OST Director and /or national program 
managers will attend panel meetings to help provide national context. 

Product: An end-to-end open source software toolkit allowing for the automated analysis of 
optical data streams to provide fishery-independent species-specific, size-structured abundance 
estimates for use in stock assessment. 

Usage: The developed software will be used by: 

1) NOAA Fisheries Regional Science Centers for the routine analysis of optical data streams 
to produce species-specific, size-structured abundance estimates for key assessment 
targets. 

2) Regional, State, and Academic Partners the routine analysis of optical data streams to meet 
regional and local management objectives.  

3) Academic and private industry partners as they continue to develop and refine automated 
solutions for analysis of optical data streams. 
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Appendix 2—Scope and Objectives 

Automated Image Analysis Strategic Initiative 
Scope and Objectives 

Mission Statement: The NOAA Fisheries Automated Image Analysis Strategic Initiative team 
will develop guidelines, set priorities, and fund research to develop broad-scale, standardized 
automated analysis of still and video imagery for use in stock assessment. 

Process 
● Adopt a bottom-up and top-down approach, considering existing projects that can be 

scaled to the NOAA Fisheries level as well as new projects to consolidate existing work 
or create umbrella initiatives. 
○ Conduct fact-finding both within and outside NOAA Fisheries to discover what 

automated image analysis projects currently exist or are in progress. 
○ Determine if any of the above are helpful for SI goals 

● Some portions of the image analysis workflow lend themselves well to automation. 
Others do not. The group should identify those portions of the workflow where NOAA 
Fisheries may make the most progress within the 3-5 year timeframe and budget 
provided for the Initiative. 

● Set process, priorities and goals resulting in recommendations for rapid, automated 
analysis of NOAA Fisheries’ still and video imagery to improve stock assessment, 
ecosystem based management, and scientific advice. Meetings will likely feature invited 
presentations outlining the current state of the art in automated image processing (still 
and video imagery) as it relates to NOAA Fisheries objectives, including: 

■ Enumeration (within defined sampling frame) 
■ Size determination 
■ Species identification 

● NOAA Fisheries members from each Science Center should continue the fact-finding 
exercise to determine what image-based data sets currently exist and what progress has 
been made in automating the analysis of existing data sets. 

● The chair and NOAA Fisheries members should consolidate input from each Science 
Center on current and future image-based data streams into general data types or classes 
○ Examples of image data classes 

■ Still imagery of targets on static background (e.g. seals on ice, scallops 
on seabed) 

■ Video imagery of targets on stationary background (e.g. CamTrawl, 
Mamigo: halibut on conveyor) 

■ Video imagery of targets on moving background (e.g. stereo-video of 
fish from ROV/AUV) 

○ each class should be evaluated based on 
■ NOAA Fisheries priority 
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■ probability of success in automation 
■ time and cost to completion 

● Identify existing internal and external automated image analysis products 
○ determine if existing products can be expanded to meet broad NOAA Fisheries 

needs. 
○ develop user interfaces and data ingestion and export portals to transition 

algorithms and R&D products to full-scale technician-usable software products 
● Make recommendations to NOAA Fisheries Office of Science and Technology and 

Senior Advisor for Stock Assessment regarding the most efficient and practicable 
pathways for automated analysis of NOAA Fisheries image-based data sets.  
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Appendix 3—Roadmap 

A Roadmap for Development of Software Systems  
for Automated Analysis of Marine Optical Data 

The greatest impediment to producing accurate, precise, and credible stock assessments is the 
lack of adequate input data (Mace et al. 2001). Increasingly, NOAA Fisheries and other agencies 
are employing camera-based methods for more precise, accurate, efficient and timely scientific 
surveys of key stocks and their associated habitat. However, the volume of optical data produced 
quickly exceeds the capabilities of human analysis. Automated analysis solutions are needed to 
extract species-specific, size-structured abundance measures from optical data streams in an 
accurate and timely fashion (Williams et al. 2012). 

To affect such development, the NOAA Fisheries Office of Science and Technology (OST) has 
created a Strategic Initiative on Automated Image Analysis (AIASI) in 2013. The AIASI mission 
is to develop guidelines, set priorities, and fund projects to develop broad-scale, standardized, 
and efficient automated tools for the analysis of optical data for use in stock assessment. In 
addition to supporting the continued development and improvement of existing automated 
processing algorithms across NOAA Fisheries Science Centers, a primary goal of the AIASI is to 
make use of existing open-source resources (processing libraries, toolsets, extensible image 
processing applications, etc.) developed through existing academic partnerships and by 
commercial interests to create an end-to-end, open source, automated image processing software 
system (AIPS) allowing the marine researcher to access, evaluate, and employ a variety of 
automated processing tools for the analysis of optical data streams for use in stock assessment 
(Figure 3-1). 

 

Figure 3-1. Theoretical diagram of a NOAA Fisheries Automated Image Processing 
Software System (AIPS) for automated analysis of underwater optical data. Optical data 
is ingested by AIPS (at left) and flows through several possible preprocessing modules 
before being fed to several possible detection, tracking, and classification modules. A 
graphical user interface (GUI) supports interaction with the various software modules 
and data extraction. (Diagram provided courtesy of Kitware, Inc.) 
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The initial software system will incorporate a variety of tools or software modules (both existing 
and to be developed) providing operational capabilities to ingest a variety of raw optical data 
streams, pre-process the optical data, and extract meaningful quantitative and categorical data on 
targets of interest. Categorical data will include discrete clusters or taxonomic information while 
quantitative data will include abundance and size. Incorporating disparate processing modules 
within an overall software framework or system will allow modules to be used synergistically, 
allowing for more robust processing and additional functionality and will allow existing modules 
to serve as building blocks for future development. 

Open-source software will allow future development and extensibility and incorporation of 
additional software modules, providing AIPS with additional capabilities. AIPS and all related 
software modules, user manuals and training materials will be able available for public download 
from NOAA servers. NOAA Fisheries will also create a web portal for submission of new 
software modules as well as training/testing data, evaluation metrics, and processing results. 

In addition to developing AIPS, the AIASI will continue to collaborate with the research 
community to support important stand-alone automated processing research and development for 
key image classes that may not fit within the general AIPS system. The AIASI will also support 
workshops at key fisheries and computer vision conferences complete with image analysis 
challenges and training on automated image processing solutions. The latter will serve to 
catalyze excitement and further development of processing techniques within the fisheries and 
computer vision communities external to and following the end of the AIASI.  

Approach: The approach taken by NOAA Fisheries was to convene an international working 
group composed of agency, academic, and private sector representatives with the following set 
of tasks: 

1) Identify existing technology and software necessary to meet the stated goal; 
2) Identify research projects or beta technologies that can be easily developed, modified, or 

transitioned to meet the stated goal; 
3) Identify data gaps that impede development of software for automated image analysis; 
4) Identify and rank the principal limitations and deficiencies in the area of automated 

image analysis as it related to NOAA Fisheries stocks; 
5) Identify and rank research tracks for the development of automated image analysis 

solution to meet the stated goal; 
6) Fund and organize workshops to bring together members of the computer vision, marine 

science, and stock assessment communities to develop technologies and research tracks 
to meet the stated goal; 

7) Fund projects to develop technology to meet the stated goal. Development will be geared 
to development of: 

a. An Automated Image Processing Software system (AIPS) comprising: 
b. Sub-modules and stand-alone software products responsible for: 

i. Image Preprocessing 
ii. Target Detection 

1. Unsupervised Clustering 
2. Supervised Clustering 

iii. Visualization 
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1. Video summarization 
2. Unsupervised Clustering 
3. Search by example 

iv. Target Measurement 
v. Target Tracking 
vi. Target Enumeration 
vii. Target Classification 

1. Unsupervised Clustering 
2. Taxonomic Identification 

Roadmap: 

● Year 1 (2013) 
○ Convene AIASI working group 
○ Sponsor 2014 National Academy of Sciences Workshop on Robust Methods for 

the Analysis of Images and Videos for Fisheries Stock Assessment 
http://sites.nationalacademies.org/DEPS/BMSA/DEPS_087303 

● Year 2 (2014): $725,000 

○ Fund development of software modules: 
■ fish/scallop segmentation 
■ fish/scallop detection 
■ fish tracking 
■ fish classification 
■ benthic habitat classification 

○ Sponsor Workshop on Computer Vision for Analysis of Underwater Imagery at 
the International Conference of Pattern Recognition 
http://cvaui.oceannetworks.ca 

● Year 3 (2015): $650,000 

○ Fund initial development of NOAA Fisheries Automated Image Processing 
Software System (VIAME) 

■ incorporate existing modules and those in development, 
■ user interface 

○ Fund development of software algorithms/modules: 
■ image preprocessing 
■ fish/scallop segmentation 
■ fish/scallop detection 
■ fish tracking 
■ fish classification 

http://sites.nationalacademies.org/DEPS/BMSA/DEPS_087303
http://cvaui.oceannetworks.ca/
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■ benthic habitat classification 
○ Setup web server for download of beta software modules and AIPS beta 

■ marineresearchpartners.com 
○ Fund database translation/infrastructure to operationalize CoralNet-based 

automated processing of benthic habitat data for coral reef surveys at the Pacific 
Islands Fisheries Science Center 

○ Leverage existing tools for image annotation 
○ Release for evaluation, testing, and operationalization: 

■ Automated processing of CamTrawl imagery for Pollock surveys at the 
Alaska Fisheries Science Center 

○ Sponsor Workshop on Automated Analysis of Video Data for Wildlife 
Surveillance at the IEEE Winter Conference on Applications of Computer Vision 
2015 
http://marineresearchpartners.com/avdws2015/Home.html 

● Year 4 (2016): $760,000 $680,000 

 

○ Continue development of NOAA Fisheries VIAME 
■ incorporate existing alpha-level modules and those in development, 
■ Alpha user interface 
■ search by example 
■ data storage 
■ Alpha level stereo image processing 

http://marineresearchpartners.com/avdws2015/Home.html
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● Input of paired image streams 
● synching 
● calibration/distortion-correction/rectification 

■ Performance metrics and scoring 
■ Release for evaluation, testing, and operationalization 

○ Support development of software modules or pipelines for: 
■ image preprocessing 
■ unsupervised clustering / anomaly detection / video summarization 
■ fish/scallop segmentation 
■ fish/scallop detection 
■ fish/scallop enumeration 
■ fish/scallop measurement 

● length, area, 3D volume 
■ fish tracking 
■ fish/scallop classification 
■ benthic habitat classification 

○ Collaborative development hackathon (August or Sept) 
○ Finalize CoralNet-based automated processing of benthic habitat data for coral 

reef surveys at the Pacific Islands Fisheries Science Center 
○ Assemble annotated image datasets for open challenge 

■ Marine environment (scallops, fish, seals, whales, dolphins, otters, 
others?) 

■ Several thousand individuals annotated per species for training and testing 
○ Sponsor Workshop on Automated Analysis of Video Data for Wildlife 

Surveillance at the IEEE Winter Conference on Applications of Computer Vision 
2016 http://marineresearchpartners.com/avdws2016/Home.html 

○ Apply for tutorial and hackathon on VIAME. Working tutorial to train 
developers. 

■ At WACV 2017 
■ At ICCV 2017, for broader community. 

● Year 5 (2017): $680,000 

○ Release for evaluation, testing, and operationalization:: 
■ NOAA Fisheries VIAME 

● User interface 
● image preprocessing 
● unsupervised clustering 

http://marineresearchpartners.com/avdws2016/Home.html
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● search by example 
● fish/scallop segmentation 
● fish/scallop detection 
● fish tracking 
● fish classification 
● data extraction 

■ Integrate MBARI VARS (Video Annotation and Reference System) 
http://www.mbari.org/products/research-software/video-annotation-and-
reference-system-vars/ and AVED (Automated Visual Event Detection) 
into the VIAME Open Source Framework for Underwater Image 
Processing. 

■ Automated processing of stereo-video data for reef fish at the Southeast 
Fisheries Science Center 

■ Automated processing of stereo-video data for Deep7 bottomfish at the 
Pacific Islands Fisheries Science Center 

○ Develop VIAME user manual and documentation 
○ Conduct training of NOAA Fisheries personnel on use of VIAME and avenues for 

continued development. 
○ Workshops 

■ Sponsor Workshop on Automated Analysis of Video Data for Wildlife 
Surveillance at the IEEE Winter Conference on Applications of Computer 
Vision 20163 Sponsor CVPR VIAME Tutorial and Workshop on 
Automated Analysis of Video Data for Wildlife Surveillance at the IEEE 
Winter Conference on Applications of Computer Vision (June 2017)   

                                                 

3 http://marineresearchpartners.com/avdws2016/Home.html 

http://marineresearchpartners.com/avdws2016/Home.html
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Appendix 4—List of Acronyms 

AERD Antarctic Ecosystem Research Division 

AI Artificial Intelligence 

AIASI Automated Image Analysis Strategic Initiative 

AKFSC Alaska Fisheries Science Center 

AGU American Geophysical Union 

ASLO American Society of Limnology and Oceanography 

ASTWG Advanced Sampling Technology Working Group 

AUV Autonomous Underwater Vehicle 

BFISH Bottomfish Fishery-Independent Survey in Hawaii 

CI Cooperative Institute 

CNN Convolutional Neural Network 

CPCe Coral Point Count with Excel Extensions 

CRADA Cooperative Research and Development Agreement 

CREP Coral Reef Ecosystem Program 

DARPA Defense Advanced Research Projects Agency 

DOE Department of Energy 

ERD Environmental Research Division 

ESD Ecosystem Science Division 

EM Electronic Monitoring 

FED Fisheries Ecology Division 

FIS Fisheries Information Systems 

FLASK Fish Labeling and Segmentation Toolkit 

FRD Fisheries Resources Division 

GB Gigabyte 

GUI Graphical User Interface 

HDF5 Hierarchical Data Format version 5 

IARPA Intelligence Advanced Research Projects Activity 

IEEE Institute of Electrical and Electronics Engineers 
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AERD Antarctic Ecosystem Research Division 

ITS Information Technology Services 

IQR Iterative Query and Refinement 

JSON JavaScript Object Notation 

MBARI Monterey Bay Aquarium Research Institute 

MMTD Marine Mammal and Turtle Division 

MOUSS Modular Optical Underwater Survey System 

NEFSC Northeast Fisheries Science Center 

NMFS National Marine Fisheries Service 

NOAA National Oceanic and Atmospheric Administration 

NRC National Research Council 

NWFSC Northwest Fisheries Science Center 

OST Office of Science and Technology 

PIFSC Pacific Islands Fisheries Science Center 

RAMP Reef Assessment and Monitoring Program 

ROC Receiver Operating Characteristic 

ROI Region of Interest 

SEFSC Southeast Fisheries Science Center 

SI Strategic Initiative 

SRI Stanford Research Institute 

SVM Support Vector Machine 

SWFSC Southwest Fisheries Science Center 

TB Terabyte 

TOS The Oceanography Society 

UHSI Untrawlable Habitat Strategic Initiative 

VIAME Video and Image Analytics for a Marine Environment 

WACV Winter Conference on Applications of Computer Vision 

YOLO You Only Look Once 
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