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Abstract 

Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. 

However, the time at which externally-forced signals of anthropogenic climate change (ACC) 

emerge against background natural variability (Time of Emergence, ToE) has been challenging 

to quantify, making future heat wave projections uncertain. Here, we combine observations and 

model simulations under present and future forcing to assess how internal variability and ACC 

modulate US heat waves. We show that ACC dominates heat wave occurrence over the Western 

and Great Lakes regions, with ToE occurring as early as in 2020s 2030s, respectively. In contrast, 

internal variability governs heat waves in the Northern and Southern Great Plains, where ToE 

occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in 

circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and 

adaptation efforts are needed in the Great Lakes and western US regions. 

1. Introduction 

According to the US natural hazard statistics for 2015, extreme heat has been the leading 

weather-related cause of death in the US for the past 30 years. A few examples of deadly heat 

waves worldwide include the 1980 heat wave over the Midwest and Southern Plains1,2 (1,700 

fatalities), the 1995 event in Chicago, Illinois3 (1021 fatalities), the 2003 European heat wave4 

(52,452 fatalities), the 2010 Russian event5-6 (55,736 fatalities), and the 2011 event over the 

Great Plains7 (206 fatalities). Several studies have identified that the effects of anthropogenic 

climate change (ACC) go beyond simple changes in the mean climate and include changes in the 

frequency and intensity of extremes8,9,10 and noted that the number of heat waves and their 

severity have increased in recent decades11. In addition, there will likely be an increased 

exposure to heat extremes due to population growth12. Despite these findings, the impact of ACC 
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on extreme weather such as heat waves is still not well understood13-14. This is especially true for 

the summer season due to reduced synoptic variability over land15-16, where a consensus has not 

been reached regarding the mechanisms linking extreme events to ACC17-18-19. This study reports 

on the regional dependence and occurrence of heat waves over the US with a focus on future 

projections and physical mechanisms that may accelerate or slow down the rate of heat extreme 

occurrence under ACC. 

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 

evaluated when the signal of ACC will emerge against the background natural variability20 (i.e., 

time of emergence or ToE) and found that for surface temperature, the ToE is regional dependent 

and occurs earlier for the warm season as well as for larger spatial and temporal scales. In 

contrast, most assessments of regional changes on heat waves associated with ACC are purely 

based on statistics and the physical mechanisms controlling the ToE for these extreme events 

have not yet been fully understood. For example, the tails of the surface temperature distributions 

appear to be sensitive to regional effects and may exhibit non-Gaussian behavior, which may 

vary regionally, suggesting a need to verify the accuracy of climate models in simulating the 

distribution tails21. Heat waves are linked to specific weather patterns that involve, for example, 

atmospheric circulation, precipitation deficits, soil moisture content, etc. Atmospheric high-

amplitude planetary circulation patterns, such as lingering blocking patterns are also associated 

with extreme heat wave events22. 

To arrive at a more reliable projection of heat waves, it is important to describe these 

extreme events in a physical or phenomenological perspective. To do this, we focus on 

characterizing heat waves by clustering their spatial distribution and temporal structures. This 

method allows obtaining the most dominant spatial patters of extremes whereas more traditional 
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methods, such as Empirical Orthogonal Functions cannot guarantee the detection of individual 

dynamical modes due to the non-Gaussian distribution of the extremes23. Analyzing ensembles 

of model results in a purely empirical fashion will suffice for projection and attribution studies 

but we have to account for the fact that these extremes are present without climate change and 

natural variability will be a key component in modulating these extremes even under the most 

pessimistic climate change scenario. Therefore, identification of natural variability, how they 

may evolve, and their implication on heat waves is essential in assessing the risks of heat related 

mortality given that natural variability is the main source of uncertainty in future projections. 

The rareness of extreme events, the short observational record, and the relative noisiness 

of mid-latitude atmospheric variability all contribute to making the study of heat waves difficult. 

To address this challenge, we use the European Center for Mid-Range Weather Forecast 

(ECMWF) 20th Century Reanalysis24 (ERA-20C), multiple realizations of the Community Earth 

System Model (CESM1) Large Ensemble (LE) simulation25 couple general circulation model, 

and the Couple Model Intercomparison Project26 (CMIP5) to examine heat waves in the US, 

their modulation by internal climate variability versus external forcing, and their non-stationary 

statistics in a climate change scenario. See supplementary Table 1 for details on models used. 

Here, we hypothesize that while internal variability currently dominates the occurrence of 

heat waves in the US, ACC will gradually assume greater importance as we progress through the 

21st Century. However, the attribution of heat extremes due to ACC will vary by location. We 

quantify the time frame for when ACC will dominate the occurrence of heat waves in the 21st 

Century (i.e., ToE).  
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2. Typical heat wave clusters over the United States 

A hierarchical clustering algorithm (see methodology section) is applied to daily mean 

surface temperature from the ERA-20C for the period of 1900-2010. There are eight major 

regional heat wave clusters identified by the hierarchical algorithm (Fig. 1sm supplementary 

material). These clusters contain temperature anomalies well above 5°C, affecting large 

population areas. By definition, clustering of heat waves allows to separate each extreme event 

from other extremes that are synoptically independent and to investigate these clusters into 

physically coherent large-scale atmospheric patterns. 

Here, we focus on the four heat wave clusters that affect the largest portion of the US 

population; namely, Western, Northern Plains, Southern Plains, and Great Lakes clusters 

(Table 1). The spatial structure of these four clusters is shown in Fig. 1. The cluster analysis was 

also repeated for the 21st Century (Supplementary Fig. 2) using the CMIP5 models to test the 

robustness of these clusters under ACC and also for each of the CMIP5 model used 

(Supplementary Fig. 3-6). There is a positive trend in the daily mean summer temperature over 

each cluster region for the 21st Century, consistent with the RCP8.5 scenario (Supplementary 

Fig. 7). There is also an increase in the ratio of warm-to-cold extreme temperature events as 

shown in Table 1, column 7 (8), for the 20th (21st) Century. Note that these ratio changes are 

regionally dependent, with warm extremes becoming significantly more likely for the Great 

Lakes and Western cluster regions as compared to the Great Plains cluster regions shown in 

Table 1 (column 9). These changes in the asymmetry of extreme temperature, as well as their 

regional dependence, may have great implications for future projections of heat waves. It is, 

therefore, necessary to account not only for changes in the mean but also for changes in the 
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higher statistical moments (e.g., variance, skewness, and kurtosis) when considering the 

likelihood of heat wave events27. 

3. Natural variability and its influence on projection uncertainty 

The recent apparent pause in warming of the climate system between approximately 1998 

and 2014 has led to significant causal debate with respect to natural variability versus changes in 

external forcing28-30, or even whether this pause is an artifact of observational biases31. 

Nevertheless, natural variability plays a key role in masking ACC at regional scales, influencing 

the occurrence of extreme events and exacerbating the effects of anthropogenic forcing. It is, 

therefore, necessary to identify the mechanisms that affect the internal variability of heat waves, 

which is important for future mitigation and planning efforts. 

Here, we use the ensemble mean from the CMIP5 and CESM1-LE models as an estimate 

of the external forcing influence (signal), whereas the ensemble spread quantifies the internal 

component associated with a particular model ensemble member (noise). It is important to note 

that the contribution of internal variability to ensemble spread depends on the climate variable, 

season, and location32. The number of heat wave days due to external forcing increases over the 

US for near-future projections (i.e., 2010-2100) when compared to previous periods for all heat 

wave clusters (Supplementary Fig. 10). The signal-to-noise ratio (SNR) of heat waves days for 

the 21st Century (i.e., 2020-2100) is significantly smaller for the Great Plains regions (Figs. 1d 

and 1f) compared to the Great Lakes and Western regions (Figs. 1b and 1h), indicating that 

future projection of heat waves over the Great Plains is more uncertain due to large natural 

variability there. 

Note that the SNR shown in Fig. 1 is related to the ToE, which is dependent on the 

uncertainty in the climate response to external forcing and to the amplitude of simulated internal 
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variability33. Future projections show that external forcing will play a more dominant role, 

especially over the eastern and western thirds of the US; however, the Great Plains region still 

shows a relatively large influence from internal variability. This is consistent with the concept 

that at regional scales, internal variability is as important as ACC forcing, at least for the next 

half century32,34. 

4. Heat wave response to ACC 

Future projections of heat waves are affected not only by changes in the mean 

temperature but also by changes in the extremes as well. It is, therefore, critical to quantify 

whether and to what extent non-stationary statistics affect these future projections. To address 

these issues, a stochastic generated skewed27 (SGS) probability density function (PDF) of 

summertime 2m air temperature is quantified for each heat wave cluster depicted in Fig. 1 for the 

ERA-20C reanalysis, the CESM1-20C and CESM1-21C large ensemble simulations (see 

Methods). The summers include days from June 1st to August 31st (i.e., a 92-day summer). Daily 

mean temperature and a 95th percentile threshold is used in the definition of heat waves (see 

Methods). Fig. 2 shows the SGS for each heat wave region. The CESM1-20C model reproduces 

the temperature distribution, including the negative skewness, of the ERA-20C reanalysis within 

all possibilities due to random error and uncertainty due to internal variability (Supplementary 

Fig. 8), providing confidence in the model. ACC has no significant effect on the asymmetry of 

the SGS distribution for the Northern (Fig. 2a) and Southern (Fig. 2d) Plains regions. In contrast, 

the SGS distribution becomes significantly more positively skewed for the heat wave clusters 

over the Great Lakes (Fig. 2b) and Western (Fig. 2c) regions, suggesting an increase in warm 

extremes. That is, the frequency of warm extremes is larger for the 21st Century and significantly 
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different (green shading) with respect to the 20th Century for the Western and Great Lakes 

clusters. 

The contrasting response of temperature anomalies over these heat wave regions is 

further investigated by analyzing 1000 realizations of a Markov model for the 20th and 21st 

Century CESM1 simulations (see Methods). The increase in the number of warm extremes over 

the Western and Great Lakes regions (i.e., the ratio of 21°C to 20°C warm extremes of 2.1 and 

2.0 respectively, see Table 1) are mostly due to a non-linear (asymmetric) response to changes in 

the mean and influenced by anthropogenic forcing. In contrast, the modest increase in warm 

extremes over the two Great Plains regions (i.e., the ratio of 21°C to 20°C warm extremes of 1.6, 

see Table 1) is dominated by enhanced variability rather than asymmetric changes 

(Supplementary Fig. 9). These results demonstrate the need for caution in assessing and 

attributing heat waves due to changes in the mean climate related to ACC forcing as internal 

variability is large and also impacted by ACC, more notably over the Great Plains. 

5. Extreme event attribution, internal variability, and ACC 

Previous sections indicate the regional dependence of the relative role of internal 

variability and ACC on the modulation of heat extremes. This motivates the following question: 

if and/or when ACC become significant with respect to heat extremes? To assess this, we 

quantify the probability of necessary causality (PN) for all heat extreme events in the 21st 

Century projection (see Methods). The PN of each extreme event is drawn from the generalized 

Pareto (GP) distribution of summer temperature for each heat wave cluster (Fig. 3). Note that the 

GP distribution for the 21st Century is significantly distinct from that of the 20th Century for the 

Western and Great Lakes heat wave clusters, and the uncertainty due to random error is greatly 

reduced in the 21st Century. In contrast, the 20th and 21st Century GP distributions for the Great 
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Plains heat waves (Fig. 3a and 3d) are not statistically well separated for high-threshold extremes 

(e.g., T > 3.5 standard deviation). 

Figure 4 shows the distribution of PN values for the 21st Century projection of heat 

extremes over each cluster. In general, PN is projected to increase in the future, consistent with 

the RCP8.5 scenario. More importantly, each cluster has a distinctive evolution of PN. For 

instance, ACC will be a necessary condition for at least half of the extreme events in a) the 

Northern Plains after the year 2056±2, b) the Great Lakes after 2037±1, c) the Western region 

after 2028±1, and d) the Southern Plains not until 2074±4. These results show that heat extreme 

attribution to ACC is more certain for the Western and Great Lakes regions. It also demonstrates 

that internal variability will be the dominant component of Great Plains heat extreme 

occurrences well past the half-century mark. In fact, it is not until the late 21st Century that 

increased heat waves due to ACC under the RCP8.5 scenario dominate internal variability over 

the Great Plains. This region also shows a smaller forced-to-internal ratio in the 50–year surface 

temperature trend35. 

The attribution or necessary causation analysis shows that in the present climate, the 

fraction of heat extremes for which ACC plays a dominant role (i.e., PN > 0.5) is still small for 

all regions. However, the influence of ACC is projected to increase significantly, and PN > 0.1 is 

already emerging (yellow region in Fig. 4). For the Western region (Fig. 4c), only 27±2% of the 

heat extremes in the 21st Century are projected to be entirely due to internal variability, while 

23±2% are projected to be predominantly caused by ACC. This is in contrast with heat extremes 

over the Southern Plains (Fig. 4d), where 62±4% of extreme heat events are projected to be due 

to internal variability and only 8±4% due to ACC, with a mix of both influences accounting for 

the remaining 30%. 
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6. Sources of internal variability and uncertainty 

Identifying the physical mechanisms that influence the internal variability of heat waves are 

necessary to improve projections, leading to more oriented mitigation, and adaptation efforts. 

The atmospheric conditions associated with each heat wave cluster shows a stationary 

anticyclone pattern located over the extreme warm temperature anomaly (Supplementary 

Fig. 11). While all four clusters present negative precipitation anomaly patterns, only the two 

Great Plains clusters depict coherent and large amplitude drier conditions over the actual heat 

wave region. 

There are two potential mechanisms by which changes in the mean climate can modulate the 

occurrence of extreme temperature events and heat waves. i. Changes in atmospheric circulation 

as a result of the so-called Arctic amplification36-37. ii. Future changes in soil moisture, 

influencing surface temperature through the land-atmosphere feedback38-39. For instance, 

atmospheric transient eddies (storminess) are strongly negative correlated with surface 

temperature over the western and northeastern US (Fig. 5a), suggesting that less storminess is 

linked to warmer surface temperatures. In addition, storm activity over these same regions are 

projected to decrease significantly for the 21st Century (Fig. 5b) due to meridionally asymmetric 

warming40. In contrast, the Great Plains is in a transitional hydrological regime in which soil 

moisture is a limiting constrain on evapotranspiration and latent heating, influencing climate 

variability through coupling and feedbacks with the atmosphere41,42. Here, more precipitation 

leads to more soil moisture, decreasing surface air temperature. Also, due to the strong coupling 

and feedbacks between air temperature and soil moisture, enhanced variability in precipitation 

and soil moisture will lead to enhanced variability in surface temperature through latent heating, 

adding uncertainty in future projections of heat extremes. 
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The question of why the Great Plains events appear to be less sensitive to ACC than those 

from the Western and Great Lakes clusters is addressed in Fig. 5. The June-July-August (JJA) 

climatological near surface (925hPa) wind is shown in Fig. 5c for the 20th Century CMIP5 

ensemble mean depicting a strong southerly flow from the Gulf of Mexico towards the Great 

Plains knowns as the Great Plains Low Level Jet (GPLLJ). The GPLLJ is responsible for about 

one third of the total moisture transport into the Great Plains, affecting precipitation43-46. The 

strength of the GPLLJ is positive correlated to moisture transport in the Great Plains 

(supplementary Figure 12), leading to more precipitation in the Great Plains. In these regions, 

precipitation is strongly coupled to soil moisture41, therefore changes in precipitation associated 

with the GPLLJ should impact soil moisture and thus surface temperature. 

There is currently a positive trend in precipitation over the Great Plains for the spring and 

summer47,48, caused by the strengthening of the GPLLJ49. The GPLLJ is also projected to 

increase in the CMIP5 models (Fig. 5e) as previously found in another study50, caused by 

differential heating between land and adjacent ocean51. We also found a strong negative 

correlation between projected changes in the GPLLJ amplitude and projected changes in the 

number of heat wave days among CMIP5 models (supplementary Figure 13). This suggests that 

an enhanced GPLLJ can lead to less heat extremes. On the other hand, the presence of a heat 

wave in the Great Plains can weaken the GPLLJ due to circulation anomaly as shown in Fig. 5d, 

but this is beyond the scope of this study. The variability of the GPLLJ is also projected to 

increase (Fig. 5f), suggesting enhanced uncertainty in future projections of soil moisture and thus 

surface temperature. Also, an increase in the GPLLJ amplitude should enhance the land-

atmosphere feedback as this is a region where soil moisture is a limiting factor for latent heat 

flux. 
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In all, the enhanced GPLLJ and moisture transport due to ACC serves to attenuate the 

anomalous negative (northerly) wind often present during heat wave events which depletes soil 

moisture. The strong land-atmosphere feedback over the Great Plains along with the projected 

enhanced variability of the GPLLJ suggests that future projection of heat extremes in the Great 

Plains is more uncertain and masked by large internal variability (supplementary Fig. 14). It can 

be said that an enhanced GPLLJ could help alleviate some of the effects of temperature increase 

due to ACC. This is not the case for the Western and Great Lakes heat wave clusters, where the 

projected significant reduction of atmospheric transient eddies ensures a robust increase in warm 

temperature extremes on top of the mean climate shift as shown by the relatively earlier ToE in 

those regions. Therefore, attributions of heat extremes to ACC in these regions is more certain, 

as shown by the attribution analysis (Fig. 4). These results hint at the need for caution in 

attributing heat extremes to changes in the mean given that the relationship of mean climate 

shifts and their modulation on the higher statistical moments are non-linear and regional in 

nature. Our study emphasizes that the consequences of increased heat wave amplitude and 

frequency in the Great Lakes and Western US could be further exacerbated by the large 

population and rapid population increase in these regions, highlighting the regions where 

mitigation and adaptation efforts are most required. 
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Methods 

Models and observational datasets 

The ERA-20C reanalysis is used as an estimate of historical heat wave occurrence over 

the US and to assess the fidelity of the CESM1-LE and the CMIP5 models in reproducing the 

spatial patterns of heat waves. A multi-century pre-industrial run from CESM1-LE is used to 

quantify heat wave statistics in the absence of anthropogenic forcing. CESM1-LE and CMIP5 

model simulations under 20th Century and Representative Carbon Path future scenario (RCP8.5) 

are analyzed for heat waves under external forcing. The CESM1-LE simulation provides a large 

ensemble size from a single model; consequently, the ensemble spread is solely due to internal 

climate variability25, whereas the CMIP5 simulations provide a multi-model ensemble approach 

aimed at reducing model errors by ensemble averaging. We analyzed a 1000-year pre-industrial 

simulation (CESM1-PI) with constant 1850 forcing as the basis for the internal variability of heat 

waves, a 30-member ensemble simulation (CESM1-LE) for the period of 1920-2100, and 

multiple CMIP5 models for the period of 1920-2100. Each model simulation has a distinct 

climate trajectory due to differences in the atmospheric initial conditions. All models have the 

same specified external forcing, with historical forcing from 1920-2005 and Representative 

Carbon Path 8.5 forcing52-53 from 2006 to 2100 following CMIP5 design protocol. 

Heat wave cluster 

The definition of heat wave proposed here is based on clustering of the daily mean 

temperature that covers each summer from 1 June to 30 August54. For a temperature extreme to 

qualify as a heat wave, it must satisfy the following three constraints: 

a) Threshold anomaly: For each day and grid point, a temperature anomaly with respect to the 

daily mean climatology is defined. The daily mean climatology is smoothed with a 20-day 
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running average. The 20-day smoothing of the daily climatology is performed to account for 

the synoptic variability of typical extreme heat anomalies. Extremes are defined as anomalies 

larger than the 95th percentile threshold. 

b) Spatial smoothing: A spatial filter is applied to the threshold anomalies to eliminate the 

influence of small-scale extremes (i.e., hot grid points). Each grid point is used as the center 

of a square of size L. A sliding scan is performed, and only those points for which the 

fraction of threshold anomalies exceeds some ratio α are retained. It should be noted that the 

number of grid points (i.e., stations) within the L2 region depends on the resolution of the 

temperature data. L was chosen so that the sliding scan has a horizontal resolution of about 

4° in latitude and longitude. We tested the sensitivity of this parameter ranging from 2° < L < 

6° without much change in the distribution of the clusters nor in the dissimilarity index. 

c) Temporal smoothing: The criteria for a) and b) must be met for a minimum of 3 consecutive 

days to exclude short-duration events, which are uncharacteristic of synoptic and planetary 

scale heat waves. Propagating events are accounted for by merging events with overlapping 

areas of more than 40% during the 3-day window. 

Events that satisfied the above three constraints were considered to be heat wave events. 

These events were clustered using a hierarchical clustering algorithm54-56, which was previously 

applied to European heat waves54. The clustering algorithm comprises the following three steps: 

d) For each event map, temperature anomalies that did not satisfy the previous three constraints 

are set to zero, and those that did satisfy the three constraints are retained. In the case of heat 

waves, all anomalies are positive by definition. 
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e) All maps belonging to a specific event are merged into a single event. That is, a single heat 

wave event includes several daily temperature anomaly maps that are averaged into a single 

heat wave. Therefore, each heat wave event is an independent cluster.  

f) The agglomerative hierarchical clustering algorithm is applied to the clusters defined in step 

(e). The algorithm quantifies the inter-cluster distance between two clusters M and N using 

equation (1). The two closest clusters are merged into a single new cluster. This procedure is 

repeated until a stop criterion is met, which sets the final number of clusters. 
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Here, r(M,N) is the spatial correlation of clusters M and N over all grid points I and J. The inter-

cluster distance is taken as the average distance between all members of clusters M and N. The 

dissimilarity index (1) provided the optimum number of clusters, which was found to be 8 

clusters. 

Stochastic Generated Skewed PDF 

For each heat wave cluster, we assess changes in the PDF of summer temperature 

extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution27. The 

SGS of a variable X is defined in equation (2), where E, g, b, and N are parameters obtained from 

the statistical moments of X. 
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A Markov model27 for the variable Xi is defined in equation (3) using the same parameters as 

the SGS distribution. Note that the model is damped and forced by cumulative additive (𝑏𝑏𝜂𝜂1 +

𝑔𝑔𝜂𝜂2) and multiplicative (𝐸𝐸𝑋𝑋𝑖𝑖)𝜂𝜂2 noise, where 𝜂𝜂1and 𝜂𝜂2  are random Gaussian variables with a 

zero mean and unit variance. Equation (3) is integrated forward using a fourth order Runge-Kutta 

method, with a time step (dt = 1 hour) and decorrelation time scale (𝜆𝜆 = 4 days) to produce 81 

summers of 92-day length. This process is repeated 1000 times for a total of 1000 time series of 

7452-day length, which is the same length of the 1920-2000 and 2020-2100 summer periods for 

the 20th and 21st centuries used here. 

 

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 − ��1 + 𝐸𝐸2
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This approach allows us to quantify the non-Gaussian aspect of the meteorological fields 

(e.g., surface temperature for our purpose). The modeling of 2 m temperatures using the SGS 

approach brings several main benefits. First, it provides a means to quantify the influence of 

climate shifts under Gaussian and non-Gaussian assumptions. Second, it enables us to investigate 

how changes in climate influence the statistical moments of summer temperature and its PDF. 

Lastly, the parameters of the SGS distribution can be used to define the shape and scale 

parameters of the extreme value generalized Pareto (GP) distribution27. The Markov model is 

also used to assess confidence interval for the GP distribution due to random errors.  
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Probability of necessary causation (PN) 

Here, PN is the fraction of extreme events attributed to ACC, defined as: 

 
𝑃𝑃𝑁𝑁 = 𝑚𝑚𝑚𝑚𝑒𝑒 �1 − 𝑃𝑃0

𝑃𝑃1
 , 0� (4) 

 

where 𝑃𝑃0 is the probability of an event occurring in the counter-factual world (i.e., without ACC) 

and 𝑃𝑃1 is the probability of that same event occurring in the factual world (i.e., including ACC). 

𝑃𝑃𝑃𝑃 ranges from zero to one and indicates whether ACC is a necessary condition for the extreme 

event to occur. That is, the extreme event would not occur in the absence of ACC. The 

probabilities 𝑃𝑃0 and 𝑃𝑃1 are obtained from a GP distribution of the pre-industrial and 21st Century 

summer temperatures, respectively. 

Given that extreme events are by definition rare, 𝑃𝑃𝑃𝑃 is quantified using all heat extremes 

in all 30 ensembles of the 21st Century run. Then, for each decade, all 𝑃𝑃𝑃𝑃 values are binned into 

three groups; PN≤0.1 (ACC is not a necessary condition for most heat extremes), 0.1<PN≤0.5, 

and PN> 0.5 (ACC is a necessary condition for more than half of the temperature extremes). For 

example, a distribution of 𝑃𝑃𝑃𝑃 spanning the summers of 2010-2019 and all 30 ensembles for a 

total of 300 summers is quantified. This is repeated for all decades, which allows for a 

representative sample size of heat extremes. The results are presented in Fig. 4 as a probability 

plot of 𝑃𝑃𝑃𝑃 values for each decade and bin. This allows us to make assessments of heat extreme 

attribution to ACC into the future. 
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Transient eddies (storminess) definition 

Transient eddies are defined as the square of the departure from the monthly mean of daily 

mean geopotential height at 500hPa. 

Data availability. The data that support the findings of this study are available from the 

corresponding author upon request. 
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Tables and figures captions 

Table 1. Statistics of summer 2m air temperature extremes for the 20th Century (20C) and 

21st Century (21C) projections. Return periods are shown for the 20C, 21C, 20C plus mean 

changes (i.e., shape preserving distribution with no variance or higher moment changes), and 

21C with no mean shift PDF (i.e., return period due solely to variance and higher moment 
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changes). Uncertainty intervals denoted by a plus/minus sign correspond to the 99% confidence 

interval based on all 1000 realizations of a Markov model. The eight-digit number under each 

cluster name indicates the population count affected by the cluster.  

Figure 1. Geographic distribution of heat waves. a) 20th Century 2m temperature anomaly and 

b) 21st Century PDF of the signal-to-noise ratio (SNR) of heat wave events for the Great Lakes 

cluster. Similarly, c) and d) for the Northern Plains, e) and f) Southern Plains, and g) and h) 

Western heat wave clusters from the ensemble mean of CMIP5 models. The SNR PDF is 

obtained by randomly selecting eight models (ensembles) 1000 times from the CMIP5 (CESM1-

LE) simulations. The mean SNR is shown in black and 95% confidence interval in red (blue) 

from the CMIP5 (CESM-LE). The 20th Century SNR is shown by green diamond.  

Figure 2. Stochastic generated skewed (SGS) PDF of summertime 2m temperature 

anomalies, a) Northern Plains, b) Great Lakes, c) Western, and d) Southern Plains regions. The 

ERA-20C reanalysis for the 1920-2000 period is shown by the black line, the CESM1-20C 

(1920-2000) is shown as blue line, and the CESM1-21C (2020-2100) is depicted by the red line. 

The spread depicted by lighter colors represents the 99% confidence interval using all 1000 

realizations of the Markov model, providing uncertainty due to random error. The green shading 

indicates statistically-significant differences between the 20C and 21C PDF at a 99% confidence 

level.  

Figure 3. Generalized Pareto (GP) distribution for the daily mean JJA standardized 

temperature anomalies for the 20th (blue) and 21st Century (red) curve, a) Northern Plains, 

b) Great Lakes, c) Western, and d) Southern Plains regions. The standard anomaly is derived by 

dividing the daily anomaly by the respective daily standard deviation. A standard anomaly is 
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chosen for an easier comparison among regions (panels). Vertical bars indicate the 99% range of 

uncertainty based on all 1000 realizations of the Markov model.  

Figure 4. Probability of necessary causation (PN) of heat waves, a) Northern Plains, b) Great 

Lakes, c) Western, and d) Southern Plains regions. PN values are binned into: PN ≤0.1 (blue 

region, e.g., ACC is not a necessary condition for heat waves), 0.1<PN≤0.5 (yellow, ACC is 

somewhat important) and PN>0.5 (red, ACC is a necessary condition for heat waves). The 

intersection of the dashed lines denotes when ACC becomes a major contributor to heat extremes 

(e.g., a measure of the time of emergence). The percentage values indicate the fraction of heat 

extremes attributed to each category. The plus/minus value and the gray shading indicates 95% 

confidence interval by randomly selecting 20 ensemble members 500 times.  

Figure 5. Great Plains Low Level Jet and heat waves. a) Regression of JJA transient eddies 

and 2m temperature [hPa2/°C]. b) Projected changes of JJA transient eddies [hPa2]. c) CMIP5 

ensemble mean JJA 925hPa wind (vector) and meridional wind (color) from the historical 

period. d) Same as c) but the composite during Northern and Southern Great Plains heat waves 

from the historical period. e) Same as c) but 21st minus 20th Century JJA 925hPa winds. f) 

Variance ratio of 21st to 20th Century JJA 925hPa meridional wind. Stipples in a-d) and f) 

indicate 95% level based on a Student-T test and F-test respectively.  
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Table 1. Changes in the mean, return period, and ratio of extreme warm and cold events 
of magnitude greater than 3σ (standard deviations) for the summer 2-m air temperature of 
the four cluster regions for 20th Century (20°C) and 21st Century (21°C) projections. 
Return periods are shown for the 20°C, 21°C, 20°C plus mean changes (i.e., shape 
preserving distribution with no variance or higher moment changes), and 21°C with no 
mean shift PDF (i.e., return period due solely to variance and higher moment changes). 
Uncertainty intervals denoted by a plus/minus sign correspond to the 99% confidence 
interval based on all 1000 realizations of a Markov model. The eight-digit number under 
each cluster name indicates the population count affected by the cluster. 

  Return Period (years) of events > 3σ Ratios of events > 3σ 

Cluster 

(Population) 

Mean  

20°C 
(21°C) 

 

20°C 
PDF 

21°C 
PDF 

20°C 
PDF plus 

mean 
shift 

21°C 
PDF with 
no mean 

shift 

Ratio of 
20°C 

warm to 
20°C 
cold 

Ratio of 
21°C 

warm to 
21°C 
cold 

Ratio 
21°C 

warm to 
20°C 
warm 

West 

(63,160,900) 

23.2±0.7 

(27.5±0.8) 
𝟑𝟑𝟑𝟑𝟑𝟑 ± 𝟑𝟑 𝟏𝟏𝟑𝟑 ± 𝟏𝟏𝟏𝟏 𝟑𝟑𝟔𝟔 ± 𝟑𝟑 𝟑𝟑𝟑𝟑 ± 𝟑𝟑 𝟔𝟔.𝟑𝟑

± 𝟔𝟔.𝟏𝟏 
𝟑𝟑.𝟏𝟏
± 𝟔𝟔.𝟑𝟑 

𝟐𝟐.𝟏𝟏
± 𝟔𝟔.𝟏𝟏 

Northern Plains 

(46,843,000) 

21.7±0.4 

(26.3±0.7) 
𝟏𝟏𝟏𝟏𝟔𝟔 ± 𝟑𝟑 𝟏𝟏𝟑𝟑 ± 𝟏𝟏𝟏𝟏 𝟓𝟓𝟓𝟓 ± 𝟑𝟑 𝟑𝟑𝟓𝟓 ± 𝟑𝟑 𝟔𝟔.𝟑𝟑

± 𝟔𝟔.𝟏𝟏 
𝟏𝟏.𝟑𝟑
± 𝟔𝟔.𝟐𝟐 

𝟏𝟏.𝟑𝟑
± 𝟔𝟔.𝟏𝟏 

Southern Plains 

(37,900,200) 

23.4±0.4 

(27.4±0.6) 
𝟏𝟏𝟔𝟔𝟏𝟏 ± 𝟑𝟑 𝟐𝟐𝟏𝟏 ± 𝟏𝟏𝟐𝟐 𝟑𝟑𝟔𝟔 ± 𝟑𝟑 𝟑𝟑𝟑𝟑 ± 𝟑𝟑 𝟔𝟔.𝟑𝟑

± 𝟔𝟔.𝟏𝟏 
𝟏𝟏.𝟑𝟑
± 𝟔𝟔.𝟐𝟐 

𝟏𝟏.𝟑𝟑
± 𝟔𝟔.𝟏𝟏 

Great Lakes 

(78,935,400) 

16.5±0.4 

(20.6±0.6) 
𝟑𝟑𝟑𝟑𝟏𝟏 ± 𝟑𝟑 𝟐𝟐𝟔𝟔 ± 𝟏𝟏𝟑𝟑 𝟑𝟑𝟏𝟏 ± 𝟑𝟑 𝟑𝟑𝟔𝟔 ± 𝟑𝟑 𝟔𝟔.𝟑𝟑

± 𝟔𝟔.𝟏𝟏 
𝟏𝟏𝟔𝟔.𝟐𝟐
± 𝟏𝟏.𝟐𝟐 

𝟐𝟐.𝟔𝟔
± 𝟔𝟔.𝟏𝟏 
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Figure 1. 20th Century 2-m air temperature anomaly associated with; a) Great Lakes, c) Northern 
Plains, e) Southern Plains, and g) Western heat wave cluster from the ensemble mean of the 
CMIP5 models. The 21st Century PDF of the signal-to-noise ratio (SNR) of heat wave events 
over the; b) Great Lakes, d) Northern Plains, f) Southern Plains, and h) Western cluster region. 
The signal (noise) is defined as the ensemble mean (spread) of the number of heat wave events.  
To obtain the PDF of SNR, eight models (ensemble members) from the CMIP5 (CESM1-LE) 
simulations are randomly selected and the SNR is computed separately for the CMIP5 and the 
CESM1-LE. This is repeated a 1000 time. The mean SNR is shown in black and the 95% 
confidence interval is depicted in red from the CMIP5, which includes internal variability and 
model error, and blue from the CESM-LE, which includes internal variability alone. The 20th 
Century SNR is shown by the green diamond.  
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Figure 2. Stochastic generated skewed (SGS) probability density function (PDF) of summertime 
2-m air temperatures for the a) Northern Plains, b) Great Lakes, c) Western, and d) Southern 
Plains regions. The ERA-20C reanalysis for the 1920-2000 period is shown as a black contour, 
the CESM1-20C (1920-2000) simulation is shown as a blue contour, and the CESM1-21C 
(2020-2100) simulation is depicted as a red contour. The spread depicted by the lighter color for 
each curve represents the 99% confidence interval based on all 1000 realizations of a Markov 
model. This spread provides for uncertainty due to random error. The light-blue shading 
indicates statistically-significant differences between the 20°C and 21°C PDF at a 99% 
confidence level. All temperature anomalies were normalized by their standard deviation.  
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Figure 3. Generalized Pareto (GP) distribution for the daily mean JJA standardized temperature 
for the a) Northern Plains, b) Great Lakes, c) Western, and d) Southern Plains regions from the 
CESM1-LE. The standard anomaly is derived by dividing the daily anomaly by the respective 
daily standard deviation. A standard anomaly is chosen for an easier comparison among regions 
(panels). Vertical bars indicate the 99% range of uncertainty based on all 1000 realizations of the 
Markov model.  
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Figure 4. Evolution of the probability of necessary causation (PN) of heat wave events into the 
21st Century for the a) Northern Plains, b) Great Lakes, c) Western, and d) Southern Plains 
regions. PN values less than 0.1 (blue) indicate anthropogenic climate change (ACC) is not a 
necessary condition for most heat extremes (e.g., internal variability dominates ACC effects). PN 
values greater than 0.5 (red) suggest ACC is a necessary condition for more than half of the 
temperature extremes (e.g., ACC dominates). The black circle at the intersection of the dashed 
lines denotes when ACC becomes a major contributor to heat extremes (e.g., a measure of the 
time of emergence). The percentage values indicate the fraction of heat extremes attributed to 
each category. The plus/minus value and the gray shading indicates 95% confidence interval by 
randomly selecting 20 ensemble members 500 times and repeating the analysis.  
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Figure 5. a) Regression of atmospheric transient eddies (storms) and 2-m air temperature for 
June-July-August (JJA) in units of hPa2/°C. b) Projected changes (e.g., 21st minus 20th Century) 
of JJA atmospheric transient eddies [hPa2]. Transient eddies or storminess is defined as the 
square of the departure from the monthly mean of daily mean geopotential height at 500hPa. c) 
CMIP5 ensemble mean 925hPa wind (vector) and meridional wind component (color) during 
June-July-August (JJA) from the historical period (i.e., 1920-2005). d) Same as c) but showing 
the composite during both Northern and Southern Great Plains heat waves from the historical 
period. e) Same as c) but for the projected mean circulation changes (e.g., 21st minus 20th 
Century) in JJA 925hPa winds. f) Variance ratio of 21st to 20th Century JJA 925hPa meridional 
wind. Stipples in panels a), b), c) and d) indicate 95% confidence level based on a Student-T test. 
Stipples in panel f) indicate 95% confidence level based on an F-test. Regions where surface 
pressure is less than 925hPa are masked out. 
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