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Abstract
Climate projections for the 21st Century suggest an increase in the occurrence of heat waves.
However, the time at which externally-forced signals of anthropogenic climate change (ACC)
emerge against background natural variability (Time of Emergence, ToE) has been challenging
to quantify, making future heat wave projections uncertain. Here, we combine observations and
model simulations under present and future forcing to assess how internal variability and ACC
modulate US heat waves. We show that ACC dominates heat wave occurrence over the Western
and Great Lakes regions, with ToE occurring as early as in 2020s 2030s, respectively. In contrast,
internal variability governs heat waves in the Northern and Southern Great Plains, where ToE
occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in
circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and

adaptation efforts are needed in the Great Lakes and western US regions.

1. Introduction

According to the US natural hazard statistics for 2015, extreme heat has been the leading
weather-related cause of death in the US for the past 30 years. A few examples of deadly heat
waves worldwide include the 1980 heat wave over the Midwest and Southern Plains* (1,700
fatalities), the 1995 event in Chicago, Ilinois® (1021 fatalities), the 2003 European heat wave"
(52,452 fatalities), the 2010 Russian event>® (55,736 fatalities), and the 2011 event over the
Great Plains’ (206 fatalities). Several studies have identified that the effects of anthropogenic
climate change (ACC) go beyond simple changes in the mean climate and include changes in the

8919 and noted that the number of heat waves and their

frequency and intensity of extremes
severity have increased in recent decades''. In addition, there will likely be an increased

exposure to heat extremes due to population growth'?. Despite these findings, the impact of ACC



on extreme weather such as heat waves is still not well understood'*"*. This is especially true for
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the summer season due to reduced synoptic variability over lan , where a consensus has not

been reached regarding the mechanisms linking extreme events to ACC''#"

. This study reports
on the regional dependence and occurrence of heat waves over the US with a focus on future

projections and physical mechanisms that may accelerate or slow down the rate of heat extreme

occurrence under ACC.

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC)
evaluated when the signal of ACC will emerge against the background natural variability®® (i.c.,
time of emergence or ToE) and found that for surface temperature, the ToE is regional dependent
and occurs earlier for the warm season as well as for larger spatial and temporal scales. In
contrast, most assessments of regional changes on heat waves associated with ACC are purely
based on statistics and the physical mechanisms controlling the ToE for these extreme events
have not yet been fully understood. For example, the tails of the surface temperature distributions
appear to be sensitive to regional effects and may exhibit non-Gaussian behavior, which may
vary regionally, suggesting a need to verify the accuracy of climate models in simulating the
distribution tails*'. Heat waves are linked to specific weather patterns that involve, for example,
atmospheric circulation, precipitation deficits, soil moisture content, etc. Atmospheric high-
amplitude planetary circulation patterns, such as lingering blocking patterns are also associated

with extreme heat wave events?2.

To arrive at a more reliable projection of heat waves, it is important to describe these
extreme events in a physical or phenomenological perspective. To do this, we focus on
characterizing heat waves by clustering their spatial distribution and temporal structures. This

method allows obtaining the most dominant spatial patters of extremes whereas more traditional



methods, such as Empirical Orthogonal Functions cannot guarantee the detection of individual
dynamical modes due to the non-Gaussian distribution of the extremes™. Analyzing ensembles
of model results in a purely empirical fashion will suffice for projection and attribution studies
but we have to account for the fact that these extremes are present without climate change and
natural variability will be a key component in modulating these extremes even under the most
pessimistic climate change scenario. Therefore, identification of natural variability, how they
may evolve, and their implication on heat waves is essential in assessing the risks of heat related

mortality given that natural variability is the main source of uncertainty in future projections.

The rareness of extreme events, the short observational record, and the relative noisiness
of mid-latitude atmospheric variability all contribute to making the study of heat waves difficult.
To address this challenge, we use the European Center for Mid-Range Weather Forecast
(ECMWF) 20th Century Reanalysis24 (ERA-20C), multiple realizations of the Community Earth
System Model (CESM1) Large Ensemble (LE) simulation® couple general circulation model,
and the Couple Model Intercomparison Project26 (CMIP5) to examine heat waves in the US,
their modulation by internal climate variability versus external forcing, and their non-stationary

statistics in a climate change scenario. See supplementary Table 1 for details on models used.

Here, we hypothesize that while internal variability currently dominates the occurrence of
heat waves in the US, ACC will gradually assume greater importance as we progress through the
21* Century. However, the attribution of heat extremes due to ACC will vary by location. We
quantify the time frame for when ACC will dominate the occurrence of heat waves in the 21

Century (i.e., ToE).



2. Typical heat wave clusters over the United States

A hierarchical clustering algorithm (see methodology section) is applied to daily mean
surface temperature from the ERA-20C for the period of 1900-2010. There are eight major
regional heat wave clusters identified by the hierarchical algorithm (Fig. 1sm supplementary
material). These clusters contain temperature anomalies well above 5°C, affecting large
population areas. By definition, clustering of heat waves allows to separate each extreme event
from other extremes that are synoptically independent and to investigate these clusters into

physically coherent large-scale atmospheric patterns.

Here, we focus on the four heat wave clusters that affect the largest portion of the US
population; namely, Western, Northern Plains, Southern Plains, and Great Lakes clusters
(Table 1). The spatial structure of these four clusters is shown in Fig. 1. The cluster analysis was
also repeated for the 21* Century (Supplementary Fig. 2) using the CMIP5 models to test the
robustness of these clusters under ACC and also for each of the CMIP5 model used
(Supplementary Fig. 3-6). There is a positive trend in the daily mean summer temperature over
each cluster region for the 21* Century, consistent with the RCP8.5 scenario (Supplementary
Fig. 7). There is also an increase in the ratio of warm-to-cold extreme temperature events as
shown in Table 1, column 7 (8), for the 20™ (21%) Century. Note that these ratio changes are
regionally dependent, with warm extremes becoming significantly more likely for the Great
Lakes and Western cluster regions as compared to the Great Plains cluster regions shown in
Table 1 (column 9). These changes in the asymmetry of extreme temperature, as well as their
regional dependence, may have great implications for future projections of heat waves. It is,

therefore, necessary to account not only for changes in the mean but also for changes in the



higher statistical moments (e.g., variance, skewness, and kurtosis) when considering the

likelihood of heat wave events>’.

3. Natural variability and its influence on projection uncertainty
The recent apparent pause in warming of the climate system between approximately 1998
and 2014 has led to significant causal debate with respect to natural variability versus changes in

28-30 . . . . .
, or even whether this pause is an artifact of observational biases’'.

external forcing
Nevertheless, natural variability plays a key role in masking ACC at regional scales, influencing
the occurrence of extreme events and exacerbating the effects of anthropogenic forcing. It is,

therefore, necessary to identify the mechanisms that affect the internal variability of heat waves,

which is important for future mitigation and planning efforts.

Here, we use the ensemble mean from the CMIP5 and CESM1-LE models as an estimate
of the external forcing influence (signal), whereas the ensemble spread quantifies the internal
component associated with a particular model ensemble member (noise). It is important to note
that the contribution of internal variability to ensemble spread depends on the climate variable,
season, and location®”. The number of heat wave days due to external forcing increases over the
US for near-future projections (i.e., 2010-2100) when compared to previous periods for all heat
wave clusters (Supplementary Fig. 10). The signal-to-noise ratio (SNR) of heat waves days for
the 21* Century (i.e., 2020-2100) is significantly smaller for the Great Plains regions (Figs. 1d
and 1f) compared to the Great Lakes and Western regions (Figs. 1b and 1h), indicating that
future projection of heat waves over the Great Plains is more uncertain due to large natural

variability there.

Note that the SNR shown in Fig. 1 is related to the ToE, which is dependent on the

uncertainty in the climate response to external forcing and to the amplitude of simulated internal



variability’®. Future projections show that external forcing will play a more dominant role,
especially over the eastern and western thirds of the US; however, the Great Plains region still
shows a relatively large influence from internal variability. This is consistent with the concept
that at regional scales, internal variability is as important as ACC forcing, at least for the next

half century32’34.

4. Heat wave response to ACC

Future projections of heat waves are affected not only by changes in the mean
temperature but also by changes in the extremes as well. It is, therefore, critical to quantify
whether and to what extent non-stationary statistics affect these future projections. To address
these issues, a stochastic generated skewed”’ (SGS) probability density function (PDF) of
summertime 2m air temperature is quantified for each heat wave cluster depicted in Fig. 1 for the
ERA-20C reanalysis, the CESM1-20C and CESMI1-21C large ensemble simulations (see
Methods). The summers include days from June 1* to August 31* (i.e., a 92-day summer). Daily
mean temperature and a 95" percentile threshold is used in the definition of heat waves (see
Methods). Fig. 2 shows the SGS for each heat wave region. The CESM1-20C model reproduces
the temperature distribution, including the negative skewness, of the ERA-20C reanalysis within
all possibilities due to random error and uncertainty due to internal variability (Supplementary
Fig. 8), providing confidence in the model. ACC has no significant effect on the asymmetry of
the SGS distribution for the Northern (Fig. 2a) and Southern (Fig. 2d) Plains regions. In contrast,
the SGS distribution becomes significantly more positively skewed for the heat wave clusters
over the Great Lakes (Fig. 2b) and Western (Fig. 2¢) regions, suggesting an increase in warm

extremes. That is, the frequency of warm extremes is larger for the 21* Century and significantly



different (green shading) with respect to the 20™ Century for the Western and Great Lakes

clusters.

The contrasting response of temperature anomalies over these heat wave regions is
further investigated by analyzing 1000 realizations of a Markov model for the 20™ and 21*
Century CESM1 simulations (see Methods). The increase in the number of warm extremes over
the Western and Great Lakes regions (i.e., the ratio of 21°C to 20°C warm extremes of 2.1 and
2.0 respectively, see Table 1) are mostly due to a non-linear (asymmetric) response to changes in
the mean and influenced by anthropogenic forcing. In contrast, the modest increase in warm
extremes over the two Great Plains regions (i.e., the ratio of 21°C to 20°C warm extremes of 1.6,
see Table 1) is dominated by enhanced variability rather than asymmetric changes
(Supplementary Fig. 9). These results demonstrate the need for caution in assessing and
attributing heat waves due to changes in the mean climate related to ACC forcing as internal

variability is large and also impacted by ACC, more notably over the Great Plains.

5. Extreme event attribution, internal variability, and ACC

Previous sections indicate the regional dependence of the relative role of internal
variability and ACC on the modulation of heat extremes. This motivates the following question:
if and/or when ACC become significant with respect to heat extremes? To assess this, we
quantify the probability of necessary causality (PN) for all heat extreme events in the 21
Century projection (see Methods). The PN of each extreme event is drawn from the generalized
Pareto (GP) distribution of summer temperature for each heat wave cluster (Fig. 3). Note that the
GP distribution for the 21* Century is significantly distinct from that of the 20™ Century for the
Western and Great Lakes heat wave clusters, and the uncertainty due to random error is greatly

reduced in the 21* Century. In contrast, the 20™ and 21* Century GP distributions for the Great



Plains heat waves (Fig. 3a and 3d) are not statistically well separated for high-threshold extremes

(e.g., T > 3.5 standard deviation).

Figure 4 shows the distribution of PN values for the 21* Century projection of heat
extremes over each cluster. In general, PN is projected to increase in the future, consistent with
the RCP8.5 scenario. More importantly, each cluster has a distinctive evolution of PN. For
instance, ACC will be a necessary condition for at least half of the extreme events in a) the
Northern Plains after the year 205612, b) the Great Lakes after 203741, c) the Western region
after 2028+1, and d) the Southern Plains not until 2074+4. These results show that heat extreme
attribution to ACC is more certain for the Western and Great Lakes regions. It also demonstrates
that internal variability will be the dominant component of Great Plains heat extreme
occurrences well past the half-century mark. In fact, it is not until the late 21* Century that
increased heat waves due to ACC under the RCP8.5 scenario dominate internal variability over
the Great Plains. This region also shows a smaller forced-to-internal ratio in the 50—year surface

temperature trend””.

The attribution or necessary causation analysis shows that in the present climate, the
fraction of heat extremes for which ACC plays a dominant role (i.e., PN > 0.5) is still small for
all regions. However, the influence of ACC is projected to increase significantly, and PN > 0.1 is
already emerging (yellow region in Fig. 4). For the Western region (Fig. 4c), only 27+2% of the
heat extremes in the 21* Century are projected to be entirely due to internal variability, while
2342% are projected to be predominantly caused by ACC. This is in contrast with heat extremes
over the Southern Plains (Fig. 4d), where 62+4% of extreme heat events are projected to be due
to internal variability and only 8+4% due to ACC, with a mix of both influences accounting for

the remaining 30%.



6. Sources of internal variability and uncertainty

Identifying the physical mechanisms that influence the internal variability of heat waves are
necessary to improve projections, leading to more oriented mitigation, and adaptation efforts.
The atmospheric conditions associated with each heat wave cluster shows a stationary
anticyclone pattern located over the extreme warm temperature anomaly (Supplementary
Fig. 11). While all four clusters present negative precipitation anomaly patterns, only the two
Great Plains clusters depict coherent and large amplitude drier conditions over the actual heat

wave region.

There are two potential mechanisms by which changes in the mean climate can modulate the
occurrence of extreme temperature events and heat waves. i. Changes in atmospheric circulation
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as a result of the so-called Arctic amplification ii. Future changes in soil moisture,

K%, For instance,

influencing surface temperature through the land-atmosphere feedbac
atmospheric transient eddies (storminess) are strongly negative correlated with surface
temperature over the western and northeastern US (Fig. 5a), suggesting that less storminess is
linked to warmer surface temperatures. In addition, storm activity over these same regions are
projected to decrease significantly for the 21* Century (Fig. 5b) due to meridionally asymmetric
warming™’. In contrast, the Great Plains is in a transitional hydrological regime in which soil
moisture is a limiting constrain on evapotranspiration and latent heating, influencing climate

variability through coupling and feedbacks with the atmosphere*'**

. Here, more precipitation
leads to more soil moisture, decreasing surface air temperature. Also, due to the strong coupling
and feedbacks between air temperature and soil moisture, enhanced variability in precipitation

and soil moisture will lead to enhanced variability in surface temperature through latent heating,

adding uncertainty in future projections of heat extremes.



The question of why the Great Plains events appear to be less sensitive to ACC than those
from the Western and Great Lakes clusters is addressed in Fig. 5. The June-July-August (JJA)
climatological near surface (925hPa) wind is shown in Fig. 5c for the 20" Century CMIP5
ensemble mean depicting a strong southerly flow from the Gulf of Mexico towards the Great
Plains knowns as the Great Plains Low Level Jet (GPLLJ). The GPLLJ is responsible for about
one third of the total moisture transport into the Great Plains, affecting precipitation®*®. The
strength of the GPLLJ is positive correlated to moisture transport in the Great Plains
(supplementary Figure 12), leading to more precipitation in the Great Plains. In these regions,
precipitation is strongly coupled to soil moisture*', therefore changes in precipitation associated
with the GPLLJ should impact soil moisture and thus surface temperature.

There is currently a positive trend in precipitation over the Great Plains for the spring and
summer’**, caused by the strengthening of the GPLLJ¥. The GPLLJ is also projected to
increase in the CMIP5 models (Fig. 5¢) as previously found in another study’’, caused by
differential heating between land and adjacent ocean’’. We also found a strong negative
correlation between projected changes in the GPLLJ amplitude and projected changes in the
number of heat wave days among CMIP5 models (supplementary Figure 13). This suggests that
an enhanced GPLLJ can lead to less heat extremes. On the other hand, the presence of a heat
wave in the Great Plains can weaken the GPLLJ due to circulation anomaly as shown in Fig. 5d,
but this is beyond the scope of this study. The variability of the GPLLJ is also projected to
increase (Fig. 5f), suggesting enhanced uncertainty in future projections of soil moisture and thus
surface temperature. Also, an increase in the GPLLJ amplitude should enhance the land-
atmosphere feedback as this is a region where soil moisture is a limiting factor for latent heat

flux.

10



In all, the enhanced GPLLJ and moisture transport due to ACC serves to attenuate the
anomalous negative (northerly) wind often present during heat wave events which depletes soil
moisture. The strong land-atmosphere feedback over the Great Plains along with the projected
enhanced variability of the GPLLJ suggests that future projection of heat extremes in the Great
Plains is more uncertain and masked by large internal variability (supplementary Fig. 14). It can
be said that an enhanced GPLLJ could help alleviate some of the effects of temperature increase
due to ACC. This is not the case for the Western and Great Lakes heat wave clusters, where the
projected significant reduction of atmospheric transient eddies ensures a robust increase in warm
temperature extremes on top of the mean climate shift as shown by the relatively earlier ToE in
those regions. Therefore, attributions of heat extremes to ACC in these regions is more certain,
as shown by the attribution analysis (Fig. 4). These results hint at the need for caution in
attributing heat extremes to changes in the mean given that the relationship of mean climate
shifts and their modulation on the higher statistical moments are non-linear and regional in
nature. Our study emphasizes that the consequences of increased heat wave amplitude and
frequency in the Great Lakes and Western US could be further exacerbated by the large
population and rapid population increase in these regions, highlighting the regions where

mitigation and adaptation efforts are most required.
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Methods

Models and observational datasets

The ERA-20C reanalysis is used as an estimate of historical heat wave occurrence over
the US and to assess the fidelity of the CESM1-LE and the CMIP5 models in reproducing the
spatial patterns of heat waves. A multi-century pre-industrial run from CESM1-LE is used to
quantify heat wave statistics in the absence of anthropogenic forcing. CESMI-LE and CMIP5
model simulations under 20™ Century and Representative Carbon Path future scenario (RCP8.5)
are analyzed for heat waves under external forcing. The CESM1-LE simulation provides a large
ensemble size from a single model; consequently, the ensemble spread is solely due to internal
climate variability”, whereas the CMIP5 simulations provide a multi-model ensemble approach
aimed at reducing model errors by ensemble averaging. We analyzed a 1000-year pre-industrial
simulation (CESM1-PI) with constant 1850 forcing as the basis for the internal variability of heat
waves, a 30-member ensemble simulation (CESMI1-LE) for the period of 1920-2100, and
multiple CMIP5 models for the period of 1920-2100. Each model simulation has a distinct
climate trajectory due to differences in the atmospheric initial conditions. All models have the
same specified external forcing, with historical forcing from 1920-2005 and Representative

Carbon Path 8.5 forcing™™>* from 2006 to 2100 following CMIP5 design protocol.

Heat wave cluster

The definition of heat wave proposed here is based on clustering of the daily mean
temperature that covers each summer from 1 June to 30 August54. For a temperature extreme to
qualify as a heat wave, it must satisfy the following three constraints:

a) Threshold anomaly: For each day and grid point, a temperature anomaly with respect to the

daily mean climatology is defined. The daily mean climatology is smoothed with a 20-day
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b)

These events were clustered using a hierarchical clustering algorithm

running average. The 20-day smoothing of the daily climatology is performed to account for
the synoptic variability of typical extreme heat anomalies. Extremes are defined as anomalies
larger than the 95" percentile threshold.

Spatial smoothing: A spatial filter is applied to the threshold anomalies to eliminate the

influence of small-scale extremes (i.e., hot grid points). Each grid point is used as the center
of a square of size L. A sliding scan is performed, and only those points for which the
fraction of threshold anomalies exceeds some ratio o are retained. It should be noted that the
number of grid points (i.e., stations) within the L? region depends on the resolution of the
temperature data. L was chosen so that the sliding scan has a horizontal resolution of about
4° in latitude and longitude. We tested the sensitivity of this parameter ranging from 2° <L <
6° without much change in the distribution of the clusters nor in the dissimilarity index.

Temporal smoothing: The criteria for a) and b) must be met for a minimum of 3 consecutive

days to exclude short-duration events, which are uncharacteristic of synoptic and planetary
scale heat waves. Propagating events are accounted for by merging events with overlapping
areas of more than 40% during the 3-day window.

Events that satisfied the above three constraints were considered to be heat wave events.

54-56 1 - -
, which was previously

applied to European heat waves™*. The clustering algorithm comprises the following three steps:

d)

For each event map, temperature anomalies that did not satisfy the previous three constraints
are set to zero, and those that did satisfy the three constraints are retained. In the case of heat

waves, all anomalies are positive by definition.
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e) All maps belonging to a specific event are merged into a single event. That is, a single heat
wave event includes several daily temperature anomaly maps that are averaged into a single
heat wave. Therefore, each heat wave event is an independent cluster.

f) The agglomerative hierarchical clustering algorithm is applied to the clusters defined in step
(e). The algorithm quantifies the inter-cluster distance between two clusters M and N using
equation (1). The two closest clusters are merged into a single new cluster. This procedure is
repeated until a stop criterion is met, which sets the final number of clusters.

I J
Yi=12j=1 Mj;Ni;

d(M,N)=1-—

- T =1-7(M,N(1) (1)
[Zhea 2oy M P2l 2 NE

Here, (M,N) is the spatial correlation of clusters M and N over all grid points / and J. The inter-
cluster distance is taken as the average distance between all members of clusters M and N. The
dissimilarity index (1) provided the optimum number of clusters, which was found to be 8

clusters.

Stochastic Generated Skewed PDF

For each heat wave cluster, we assess changes in the PDF of summer temperature
extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution®’. The
SGS of a variable X is defined in equation (2), where E, g, b, and N are parameters obtained from

the statistical moments of X.

[(EX + g)2+b2]_[1+(15_12)]exp [;—gb tan~! (EX+g)] (2)

SGS(X) = >

1
N
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A Markov model*’ for the variable X;is defined in equation (3) using the same parameters as
the SGS distribution. Note that the model is damped and forced by cumulative additive (bn; +
gn,) and multiplicative (EX;)n, noise, where n,and 7, are random Gaussian variables with a
zero mean and unit variance. Equation (3) is integrated forward using a fourth order Runge-Kutta
method, with a time step (df = 1 hour) and decorrelation time scale (4 = 4 days) to produce 81
summers of 92-day length. This process is repeated 1000 times for a total of 1000 time series of
7452-day length, which is the same length of the 1920-2000 and 2020-2100 summer periods for

the 20" and 21% centuries used here.

2
Xien = X — [(1+5) X, + 22| Adt + [bny + (BX; + g)n,]VAdE 3)

This approach allows us to quantify the non-Gaussian aspect of the meteorological fields
(e.g., surface temperature for our purpose). The modeling of 2 m temperatures using the SGS
approach brings several main benefits. First, it provides a means to quantify the influence of
climate shifts under Gaussian and non-Gaussian assumptions. Second, it enables us to investigate
how changes in climate influence the statistical moments of summer temperature and its PDF.
Lastly, the parameters of the SGS distribution can be used to define the shape and scale
parameters of the extreme value generalized Pareto (GP) distribution?’. The Markov model is

also used to assess confidence interval for the GP distribution due to random errors.
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Probability of necessary causation (PN)

Here, PN is the fraction of extreme events attributed to ACC, defined as:

PN=max{1—i—:,0} “4)
where Py is the probability of an event occurring in the counter-factual world (i.e., without ACC)
and P; is the probability of that same event occurring in the factual world (i.e., including ACC).
PN ranges from zero to one and indicates whether ACC is a necessary condition for the extreme
event to occur. That is, the extreme event would not occur in the absence of ACC. The
probabilities P, and P; are obtained from a GP distribution of the pre-industrial and 21* Century

summer temperatures, respectively.

Given that extreme events are by definition rare, PN is quantified using all heat extremes
in all 30 ensembles of the 21* Century run. Then, for each decade, all PN values are binned into
three groups; PN<0.1 (ACC is not a necessary condition for most heat extremes), 0.1 <PN<0.5,
and PN> 0.5 (ACC is a necessary condition for more than half of the temperature extremes). For
example, a distribution of PN spanning the summers of 2010-2019 and all 30 ensembles for a
total of 300 summers is quantified. This is repeated for all decades, which allows for a
representative sample size of heat extremes. The results are presented in Fig. 4 as a probability
plot of PN values for each decade and bin. This allows us to make assessments of heat extreme

attribution to ACC into the future.
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Transient eddies (storminess) definition

Transient eddies are defined as the square of the departure from the monthly mean of daily

mean geopotential height at 500hPa.

Data availability. The data that support the findings of this study are available from the

corresponding author upon request.
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Tables and figures captions

Table 1. Statistics of summer 2m air temperature extremes for the 20™ Century (20C) and

21* Century (21C) projections. Return periods are shown for the 20C, 21C, 20C plus mean

changes (i.e., shape preserving distribution with no variance or higher moment changes), and

21C with no mean shift PDF (i.e., return period due solely to variance and higher moment
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changes). Uncertainty intervals denoted by a plus/minus sign correspond to the 99% confidence
interval based on all 1000 realizations of a Markov model. The eight-digit number under each
cluster name indicates the population count affected by the cluster.

Figure 1. Geographic distribution of heat waves. a) 20" Century 2m temperature anomaly and
b) 21* Century PDF of the signal-to-noise ratio (SNR) of heat wave events for the Great Lakes
cluster. Similarly, c) and d) for the Northern Plains, ) and f) Southern Plains, and g) and h)
Western heat wave clusters from the ensemble mean of CMIP5 models. The SNR PDF is
obtained by randomly selecting eight models (ensembles) 1000 times from the CMIP5 (CESM1-
LE) simulations. The mean SNR is shown in black and 95% confidence interval in red (blue)

from the CMIP5 (CESM-LE). The 20™ Century SNR is shown by green diamond.

Figure 2. Stochastic generated skewed (SGS) PDF of summertime 2m temperature
anomalies, a) Northern Plains, b) Great Lakes, c) Western, and d) Southern Plains regions. The
ERA-20C reanalysis for the 1920-2000 period is shown by the black line, the CESM1-20C
(1920-2000) is shown as blue line, and the CESM1-21C (2020-2100) is depicted by the red line.
The spread depicted by lighter colors represents the 99% confidence interval using all 1000
realizations of the Markov model, providing uncertainty due to random error. The green shading
indicates statistically-significant differences between the 20C and 21C PDF at a 99% confidence

level.

Figure 3. Generalized Pareto (GP) distribution for the daily mean JJA standardized
temperature anomalies for the 20™ (blue) and 21 Century (red) curve, a) Northern Plains,
b) Great Lakes, c) Western, and d) Southern Plains regions. The standard anomaly is derived by

dividing the daily anomaly by the respective daily standard deviation. A standard anomaly is
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chosen for an easier comparison among regions (panels). Vertical bars indicate the 99% range of

uncertainty based on all 1000 realizations of the Markov model.

Figure 4. Probability of necessary causation (PN) of heat waves, a) Northern Plains, b) Great
Lakes, ¢) Western, and d) Southern Plains regions. PN values are binned into: PN <0.1 (blue
region, e.g., ACC is not a necessary condition for heat waves), 0.1<PN<0.5 (yellow, ACC is
somewhat important) and PN>0.5 (red, ACC is a necessary condition for heat waves). The
intersection of the dashed lines denotes when ACC becomes a major contributor to heat extremes
(e.g., a measure of the time of emergence). The percentage values indicate the fraction of heat
extremes attributed to each category. The plus/minus value and the gray shading indicates 95%

confidence interval by randomly selecting 20 ensemble members 500 times.

Figure 5. Great Plains Low Level Jet and heat waves. a) Regression of JJA transient eddies
and 2m temperature [hPa®/°C]. b) Projected changes of JJA transient eddies [hPa’]. ¢) CMIP5
ensemble mean JJA 925hPa wind (vector) and meridional wind (color) from the historical
period. d) Same as c¢) but the composite during Northern and Southern Great Plains heat waves
from the historical period. e¢) Same as c) but 21% minus 20™ Century JJA 925hPa winds. f)
Variance ratio of 21 to 20™ Century JJA 925hPa meridional wind. Stipples in a-d) and f)

indicate 95% level based on a Student-T test and F-test respectively.
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Table 1. Changes in the mean, return period, and ratio of extreme warm and cold events
of magnitude greater than 3o (standard deviations) for the summer 2-m air temperature of
the four cluster regions for 20™ Century (20°C) and 21% Century (21°C) projections.
Return periods are shown for the 20°C, 21°C, 20°C plus mean changes (i.e., shape
preserving distribution with no variance or higher moment changes), and 21°C with no
mean shift PDF (i.e., return period due solely to variance and higher moment changes).
Uncertainty intervals denoted by a plus/minus sign correspond to the 99% confidence
interval based on all 1000 realizations of a Markov model. The eight-digit number under
each cluster name indicates the population count affected by the cluster.

Return Period (years) of events > 3o Ratios of events > 3o
Mean 20°C 21°C R;gfc"f R;tllfc"f 1;?2‘8

Cluster 20°C 21°C PDF plus  PDF with warm £ arm & arm &
Populati 20°C PDF PDF mean no mean 20°C0 W21°CO W20°CO
(Population) 21°C) shift shift

cold cold warm

West 23.2+0.7 376 +3 17+ 14 60 +7 67+6 28 ) ig . 3_(1) )
(63,160,900) (27.5£0.8) - - -

Northern Plains 21.7+0.4 410+3 17+ 14 55+ 7 65+ 6 :)_8 ) _1}_3 ) _1|_g .
(46,843,000) (26.3£0.7) - -

Southern Plains 23.4+04 404+3 21412 68+6 73+6 :)_Z . _1|_3 ) _1|_g .
(37,900,200) (27.4+0.6) - - -
Great Lakes 16.5+0.4 364+3 20+13 61+7 70+6 +.g . _1|_0i22 +.g .
(78,935,400) | (20.6+0.6) = - =
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Figure 1. 20" Century 2-m air temperature anomaly associated with; a) Great Lakes, ¢) Northern
Plains, e) Southern Plains, and g) Western heat wave cluster from the ensemble mean of the
CMIP5 models. The 21* Century PDF of the signal-to-noise ratio (SNR) of heat wave events
over the; b) Great Lakes, d) Northern Plains, f) Southern Plains, and h) Western cluster region.
The signal (noise) is defined as the ensemble mean (spread) of the number of heat wave events.
To obtain the PDF of SNR, eight models (ensemble members) from the CMIP5 (CESM1-LE)
simulations are randomly selected and the SNR is computed separately for the CMIPS5 and the
CESMI1-LE. This is repeated a 1000 time. The mean SNR is shown in black and the 95%
confidence interval is depicted in red from the CMIP5, which includes internal variability and
model error, and blue from the CESM-LE, which includes internal variability alone. The 20
Century SNR is shown by the green diamond.
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Figure 2. Stochastic generated skewed (SGS) probability density function (PDF) of summertime
2-m air temperatures for the a) Northern Plains, b) Great Lakes, ¢) Western, and d) Southern
Plains regions. The ERA-20C reanalysis for the 1920-2000 period is shown as a black contour,
the CESM1-20C (1920-2000) simulation is shown as a blue contour, and the CESM1-21C
(2020-2100) simulation is depicted as a red contour. The spread depicted by the lighter color for
each curve represents the 99% confidence interval based on all 1000 realizations of a Markov
model. This spread provides for uncertainty due to random error. The light-blue shading
indicates statistically-significant differences between the 20°C and 21°C PDF at a 99%
confidence level. All temperature anomalies were normalized by their standard deviation.
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Figure 3. Generalized Pareto (GP) distribution for the daily mean JJA standardized temperature
for the a) Northern Plains, b) Great Lakes, ¢) Western, and d) Southern Plains regions from the
CESMI-LE. The standard anomaly is derived by dividing the daily anomaly by the respective
daily standard deviation. A standard anomaly is chosen for an easier comparison among regions
(panels). Vertical bars indicate the 99% range of uncertainty based on all 1000 realizations of the
Markov model.
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Figure 4. Evolution of the probability of necessary causation (PN) of heat wave events into the
21% Century for the a) Northern Plains, b) Great Lakes, ¢) Western, and d) Southern Plains
regions. PN values less than 0.1 (blue) indicate anthropogenic climate change (ACC) is not a
necessary condition for most heat extremes (e.g., internal variability dominates ACC effects). PN
values greater than 0.5 (red) suggest ACC is a necessary condition for more than half of the
temperature extremes (e.g., ACC dominates). The black circle at the intersection of the dashed
lines denotes when ACC becomes a major contributor to heat extremes (e.g., a measure of the
time of emergence). The percentage values indicate the fraction of heat extremes attributed to
each category. The plus/minus value and the gray shading indicates 95% confidence interval by
randomly selecting 20 ensemble members 500 times and repeating the analysis.
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Figure 5. a) Regression of atmospheric transient eddies (storms) and 2-m air temperature for
June-July-August (JJA) in units of hPa*/°C. b) Projected changes (e.g., 21% minus 20" Century)
of JJA atmospheric transient eddies [hPa’]. Transient eddies or storminess is defined as the
square of the departure from the monthly mean of daily mean geopotential height at 500hPa. c)
CMIPS ensemble mean 925hPa wind (vector) and meridional wind component (color) during
June-July-August (JJA) from the historical period (i.e., 1920-2005). d) Same as ¢) but showing
the composite during both Northern and Southern Great Plains heat waves from the historical
period. e) Same as c) but for the projected mean circulation changes (e.g., 21* minus 20"
Century) in JJA 925hPa winds. f) Variance ratio of 21% to 20™ Century JJA 925hPa meridional
wind. Stipples in panels a), b), ¢) and d) indicate 95% confidence level based on a Student-T test.
Stipples in panel f) indicate 95% confidence level based on an F-test. Regions where surface
pressure is less than 925hPa are masked out.
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