
Progress in Forecast Skill at Three Leading Global Operational NWP Centers
during 2015–17 as Seen in Summary Assessment Metrics (SAMs)

ROSS N. HOFFMAN,a,b V. KRISHNA KUMAR,c,d SID-AHMED BOUKABARA,d KAYO IDE,e

FANGLIN YANG,f AND ROBERT ATLAS
a

aNOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida
bCooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

cRiverside Technology Inc., College Park, Maryland
dNOAA/NESDIS/STAR, College Park, Maryland

eUniversity of Maryland, College Park, College Park, Maryland
fNOAA/NCEP/Environmental Modeling Center, College Park, Maryland

(Manuscript received 13 July 2018, in final form 17 September 2018)

ABSTRACT

The summary assessment metric (SAM) method is applied to an array of primary assessment metrics

(PAMs) for the deterministic forecasts of three leading numerical weather prediction (NWP) centers for

the years 2015–17. The PAMs include anomaly correlation, RMSE, and absolute mean error (i.e., the

absolute value of bias) for different forecast times, vertical levels, geographic domains, and variables.

SAMs indicate that in terms of forecast skill ECMWF is better than NCEP, which is better than but ap-

proximately the same as UKMO. The use of SAMs allows a number of interesting features of the evolution

of forecast skill to be observed. All three centers improve over the 3-yr period. NCEP short-term forecast

skill substantially increases during the period. Quantitatively, the effect of the 11 May 2016 NCEP upgrade

to the four-dimensional ensemble variational data assimilation (4DEnVar) system is a 7.37% increase in

the probability of improved skill relative to a randomly chosen forecast metric from 2015 to 2017. This is the

largest SAM impact during the study period. However, the observed impacts are within the context of

slowly improving forecast skill for operational global NWP as compared to earlier years. Clearly, the

systems lagging ECMWF can improve, and there is evidence from SAMs in addition to the 4DEnVar

example that improvements in forecast and data assimilation systems are still leading to forecast skill

improvements.

1. Introduction

Since the start of numerical weather prediction

(NWP), a few key statistics have been used to sum-

marize the skill of operational forecasts. With early

models, such as the equivalent barotropic model,

which have essentially one level and one variable, a

single RMSE1 statistic at a few forecast times was

sufficient. So-called headline scores like the 120-h

500-hPa Northern Hemisphere extratropics (NHX) ge-

opotential height anomaly correlation (AC) continue

this custom and tend to dominate discussions of forecast

skill.We call such an individual unnormalized skill score a

primary assessment metric (PAM).

Figure 1, from theWMOLeadCentre forDeterministic

NWP Verification (LCDNV) website (http://apps.ecmwf.

int/wmolcdnv/scores/time_series/500_z), shows the evolu-

tion of the closely related 120-h 500-hPa NHX geo-

potential height RMSE PAM over the last two decades.

It is clear in Fig. 1 that this particular PAM is improving,

but improvements are increasingly difficult to achieve,

and currently are nil or nearly so for many of themodels.

This may be because the NWP methods have advanced

over the years, and practical predictability is approach-

ing the intrinsic predictability limit (see Lorenz 1982).

However, even as some centers show no apparent

improvements in skill for this PAM, it is clear that

ECMWF continues to improve and thus there is hope

for improvements for the other centers. Similar results

are seen for other PAMs over this 20-yr time period.
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The first goal of the present study is to document the

evolution of forecast skill for three of the leading fore-

cast centers—ECMWF, NCEP, and UKMO—over the

last 3 years (2015–17). The major upgrades at these

centers during this period are listed in Table 1. Daily

1–7-day forecasts initialized at 0000 UTC were verified

against the analysis (the 0-day forecast if you will). Each

center was verified against itself. A large array of sta-

tistical quantities was then available for analysis. The

second goal of this study is to present a technique called

the summary assessment metric (SAM) method to

combine and examine this array of statistics.

Over time, forecast centers have increased the com-

plexity of their atmospheric models, advanced data as-

similation methods and strategies, developed and

implemented ensemble forecasting techniques, and

coupled their atmospheric models to models of other

earth system components. Consequently, a large num-

ber of PAMs are available for assessing the impact of

a change in the global observation system, a change in

the use of the observations, or a change in a model.

This has led to increasingly complex scorecards that

attempt to normalize and display a large number of

the PAMs in order to provide a comprehensive sum-

mary as an aid to implementation decision-making.

For example, scorecards supporting the implementation

of ECMWF IFS Cycle 45r1 are given in Figs. 1 and 2 of

Buizza et al. (2018). For normalization of the PAMs,

ECMWF calculates a paired Student’s t statistic in which

autocorrelations are accounted for by modeling the time

series of paired differences as AR(1)2 processes (Geer

2016). We call such individual normalized skill scores

normalized assessment metrics (NAMs).

Naturally, numerous ways to combine a scorecard or

some other collection of NAMs have been proposed.

We use the term summary assessment metric to denote

such a combination of NAMs. For example, the UKMO

NWP index (Rawlins et al. 2007; see their appendix) and

the USAF General Operations (GO) index (Newman

et al. 2013; Shao et al. 2016) are SAMs that are defined in

terms of a weighted sum of NAMs. In these cases the

PAMs are all RMSEs and each is divided by a tabulated

reference RMSE in producing the corresponding NAM.

The choice of weights and the reference RMSEs allow

these SAMs to be tailored for individual customers.

Boukabara et al. (2016) introduced the overall forecast

score (OFS) as a SAM based on a simple formulation of

using the minimum and maximum value of a reference

sample of PAMs to scale each PAM value to be within

FIG. 1. The evolution of the annually averaged 120-h 500-hPa NHX geopotential height RMSE over the last

two decades for the centers indicated in the legend. (Source: http://apps.ecmwf.int/wmolcdnv/scores/time_series/

500_z.)

2 Here, AR(p) indicates autoregressive, order p.
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the interval from zero (worst value) to one (best value).

An advantage of the minmax approach is that it allows

combining any number and type of quantitative PAMs.

At first, the focus was on a single global OFS to encap-

sulate the entire scorecard into one number, but it soon

became clear that subsetting the NAMs into a series

of SAMs could provide useful diagnostic information.

Subsequently, Hoffman et al. (2017a) introduced the

empirical cumulative density function (ECDF) transform

to map each PAM value to the unit interval. Computa-

tionally, this requires ranking the PAMs within the

reference sample. Recently, Boukabara et al. (2018)

compared minmax to ECDF SAMs within the context of

an intercomparison of observing system simulation ex-

periments (OSSEs) and observing system experiments

(OSEs) and found similar results using either normali-

zation. In the present study, a minor reformulation of the

ECDF approach and a rescaling of the minmax NAMs is

shown to lead to SAMs that are very similar, even though

the two normalizations are very different. In many results

presented below, results for both the ECDF and rescaled-

minmax SAMs are plotted together.

The organization of this paper follows the flow of how

SAMs are calculated. This calculation involves three

transformations: 1) difference the NWP forecasts and

analyses, and calculate the PAMs; 2) normalize the

PAMs to create NAMs; and 3) combine the NAMs

into SAMs. Figure 2 shows the flow of this process from

input grids to PAMs to NAMs to SAMs, as well as the

other required datasets—the verification grids and the

reference samples of PAMs. (This figure is generic, ex-

cept, as mentioned above, some normalizations, such as

the transformation to a z or t statistic or normalization

by tabulated values, do not require reference samples.)

The first transformation, the calculation of PAMs from

model grids, will be described in section 2. Then, section 3

describes the array of PAMs used in our investigation.

The second transformation—normalization—is de-

scribed in section 4 with an emphasis on the choice of

reference sample and normalization technique. Examples

TABLE 1. Major upgrades reported by the three centers during the study period (2015–17). The index i is plotted in a number of the figures

at the date of the upgrade. The upgrades are identifiedhere only by versionnumber and/or keywords. (All acronyms are defined in section e of

the appendix.) The column labeled D (%) is the change in SAM in Fig. 12 due to the upgrade. For details refer to the sources cited.

Center i Date Upgrade D Source

ECMWF 1 0000 UTC 12 May 2015 IFS Cycle 41r1 2.10 https://www.ecmwf.int/en/forecasts/

documentation-and-support/changes-

ecmwf-model

2 0000 UTC 8 Mar 2016 IFS Cycle 41r2 (O1280) 1.31 Same as above

3 0000 UTC 22 Nov 2016 IFS Cycle 43r1 2.58 Same as above

4 0000 UTC 17 Jul 2017 IFS Cycle 43r3 5.22 Same as above

NCEP 1 0000 UTC 14 Jan 2015 TIN14–46 (T1534) 24.12 http://www.nws.noaa.gov/om/notification/

tin14-46gfs_cca.htm

2 0000 UTC 11 May 2016 TIN16–11 (4DEnVar) 7.37 http://www.nws.noaa.gov/os/notification/

tin16-11gfs_gdasaaa.htm

3 0000 UTC 19 Jul 2017 SCN17–67 (NEMSIO) 0.81 http://www.nws.noaa.gov/os/notification/

scn17-67gfsupgrade.htm

UKMO 1 0000 UTC 21 Nov 2016 PS38 (satellite obs) 4.75 https://www.metoffice.gov.uk/research/

news/2016/latest-met-office-global-

model-improvements

2 0000 UTC 7 Sep 2017 PS39 (10-km resolution) 2.82 https://www.metoffice.gov.uk/research/

news/2017/increased-resolution-of-

global-forecast-models

FIG. 2. Flowchart describing the process of transforming forecast grids to PAMs to NAMs to SAMs.
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based on the 120-h 500-hPa NHX vector wind RMSE are

given in sections 3 and 4. The third transformation in-

volves simple averaging of NAMs over varying subsets to

create SAMs. Numerous examples of SAMs are pre-

sented and discussed in section 5. Section 6 summarizes

and discusses our approach and findings. Technical de-

tails are presented in the appendix. In the first section of

the appendix, the definitions of the ECDF and minmax

normalizations are reviewed. In the second section of

the appendix, the rescaled-minmax normalization is de-

scribed. The third section of the appendix gives a detailed

description of how the rank function is used to calculate

ECDF NAMs. In the appendix’s fourth section, the ef-

fective sample size reduction factors, which are used to

estimate the SAM uncertainties, are described and

calculated.

2. Preliminary data processing

Data used in this study are in verification statistics

database (VSDB) format. The VSDB format is used in

the NCEP EMC Global NWP model verification pack-

age, both for grid-to-grid and grid-to-point comparisons

(Zhou et al. 2015; Shafran et al. 2015), and may be used

as input to MetViewer (Shafran et al. 2015). Here, we

describe those aspects of the VSDB that are related to

the grid-to-grid comparisons used in this study.

Operational analysis and forecast grids are exchanged

with a number of centers byEMC inGRIB format. If the

grids are not already at 2.58 3 2.58 resolution, then they

are bilinearly interpolated to this resolution. VSDB files

are created by comparing forecasts from each center to

the analysis from that center valid at the forecast time.

The VSDB files contain the geographic domain means3

of the quantities needed to compute the desired statistics

for different forecast times, vertical levels, domains,

variables, and verification times. These quantities are

the means of x, x2, xy, etc., where x and y are fields de-

fined over the domain. The domains used in this study

are detailed in Table 2.

The standard WMO verification formulas are conve-

niently defined by Janousek (2018). Note the following:

d Themeans are treated as expectations in the statistical

formula. Thus, there is no adjustment for degrees of

freedom lost in estimating standard deviations and

correlations.4

d For grid-to-grid comparisons each grid point is

weighted by the cosine of latitude.
d For the vector wind statistics, ordinary multiplications

are replaced with dot products in the definitions of the

statistical quantities.
d In the calculation of AC, the domain mean anomaly is

removed.

EMC exceptions to this standard are that no latitude

weighting is used and that the domain mean anomaly is

not removed in the AC calculation. These exceptions

were made for simplicity before theWMO standard was

established.

The VSDB AC scores are calculated using anomalies

from the 30-yr (1959–88) climatology of the NCEP–

NCAR reanalysis (http://www.emc.ncep.noaa.gov/gmb/

STATS_vsdb/). The climatology grids are defined for

each day of the year at the four synoptic times: 0000,

0600, 1200, and 1800 UTC. As with the analysis and

forecast grids, the original reanalysis 18 3 18 grids are
bilinearly interpolated onto 2.58 3 2.58 grids. Then, the
grids for each synoptic time and calendar day are aver-

aged over the 30 years. For the upper-air fields used in

this study, this climatology is available only at 1000, 700,

500, and 250hPa for geopotential height and only at 850,

500, and 250 hPa for temperature and wind (compo-

nents). The 29 February climatology is taken to be the

average of the 28 February and 1 March climatology.

The AC is calculated as a simple correlation of the

forecast and analysis anomalies (i.e., after the climatol-

ogy for each grid point and variable for the verification

day has been subtracted from the forecast and verifica-

tion). Note that these AC results do not include cen-

tering to remove domain mean anomaly errors.

3. Primary assessment metrics

After collecting selected VSDB domain averages and

computing the desired statistics, we arrange the results

into an array of PAMs with the following dimensions

and coordinates listed here in ‘‘dimension::coordinate

values’’ format:

TABLE 2. The domains used in this study. For each domain, the

first and last longitude (l1, lL) and latitude (f1,fM), the number of

longitudes L, the number of latitudes M, and the number of grid

points (LM) are listed. Note that 208N is included in both tropics

and NHX domains.

Domain l1 f1 lL fM L M LM

Global 2.58 290.08 360.08 90.08 144 73 10 512

NHX 2.58 20.08 360.0 80.08 144 25 3600

Tropics 2.5 220.08 360.08 20.08 144 17 2448

SHX 2.58 280.08 360.08 220.08 144 25 3600

3 These domainmeans are sometimes referred to as partial sums,

but they are really sums divided by the number of grid points in

the domain.
4 It is nontrivial to estimate the degrees of freedom in fields of

geophysical variables such as these (Bretherton et al. 1999).
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1) forecast time::24, 48, 72, 96, 120, 144, 168 h;

2) level::250, 500, 700, 850, 1000hPa;

3) domain::NHX, SHX, tropics (see Table 2);

4) variable::height Z, temperature T, wind V;

5) statistic::AC, RMSE, AME (i.e., the absolute value

of bias);

6) verification time::every 24h at 0000 UTC during

2015–17 for a total of 1096 days; and

7) center::ECMWF, NCEP, UKMO.

Since the PAMs are calculated with respect to the corre-

sponding center’s analysis, we do not include the 0-h fore-

cast time. We use AME since it is necessary to take the

absolute value of the bias before normalizing it. The avail-

able PAMs for bothRMSEandAMEaremostly complete,

including all possible combinations of coordinates. How-

ever, some of the possible AC PAMs are not calculated, in

keeping with standard NCEP practice. As a result, ACs are

missing for 850-hPa height, and for 700- and 1000-hPa

temperature and wind. For some purposes it is convenient

to reshape the verification time dimension, for example into

day, month, and year dimensions.

As an example of a PAM, consider Fig. 3, which dis-

plays the evolution of 120-h 500-hPa NHX vector wind

RMSE over the study period (2015–17) for the three

centers filtered with amonthly (centered 31 day)moving

average [MA(31)5] and with an annual (centered

365 day) moving average [MA(365)]. In plots of metrics,

like this plot, a thin black horizontal line indicates the

overall mean value and the gray band about this mean

value corresponds to the 95% confidence interval of a

Student’s t test for the null hypothesis that all themetrics

plotted, in this case the MA(365) values, are random

draws from the same distribution. Correlations are ac-

counted for by reducing the sample size n to an effective

sample size n*5ng, where the reduction factor g is

determined as explained in the appendix, section d. In

Fig. 3 the reduction factor for the MA(31) PAMs is

g5 0:6644, so that there are effectively 20 degrees of

freedom in a 30-day sample. Since the two g values are

essentially equal, the MA(31) 95% uncertainty band

(not drawn in the figure) is almost 3.5 (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
365/31

p
) times

the width of the MA(365) uncertainty band plotted.

As seen in Fig. 3, typical values for the 120-h 500-hPa

NHXvectorwindRMSEare roughly 9ms21, but there is a

very distinctive annual cycle with amplitude of almost

62ms21. An annual cycle is less pronounced or not ap-

parent at all for other PAMs. In the present example,

during the Northern Hemisphere winter, vector winds are

stronger than during other seasons and errors are larger. In

part, the same displacement error of a synoptic system will

lead to larger errors when the field amplitudes are larger,

as is the case for the winter NHX vector wind. Relative

errors (e.g., errors as a percent) would not be expected to

vary this much seasonally. It is clear in Fig. 3 that for this

PAM, ECMWF is more skillful than NCEP, which is ap-

proximately as skillful as UKMO, with an increase in

RMSE of about 0.5ms21 from ECMWF to NCEP and

UKMO. However, improvements in this PAM are barely

apparent during the study period and then only after an-

nual averaging. It is questionable whether these improve-

ments rise to the level of statistical significance. On the one

hand, the reductions in RMSE for each center are smaller

than thewidth of the uncertainty band.However, there is a

clear linear decrease in RMSE for all three centers during

FIG. 3. The evolution of 120-h 500-hPa NHX vector wind RMSE. Over the study period

(2015–17) this metric—ECMWF, mint; NCEP, lavender; and UKMO, ochre—has been

filtered with a centered 31-day (light lines) and a 365-day (heavy lines) moving average

[referred to as MA(31) and MA(365) in the text]. A 95% uncertainty band is plotted for the

365-day filter under the null hypothesis that there is no difference between centers for this

metric. Here, g5 0:6644 for the 31-day filter and 0.6611 for the 365-day filter.

5 Here, MA(q) indicates the moving average with span (or order) q.
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the first half of the period. This trend continues for

ECMWF for the entire period but flattens out for NCEP

andUKMO. In sum, Fig. 3 illustrates (i) an annual cycle in

skill and (ii) different levels of skill for different centers, as

well as (iii) demonstrating only very small improvements

in skill during 2015–17.While the first point is true for only

some PAMs, the second and third points are true for

most PAMs.

4. Normalized assessment metric methodology

SAMs depend on the normalization method, the refer-

ence sample used in the normalization, and the subsets

of NAMs averaged. In the results discussed here the

normalization is either the ECDF normalization or

the rescaled-minmax normalization (sections a and b in

the appendix). For most of the results one of two reference

sample definitions is used. The first—the All reference

sample—includes all centers and all verification times

during 2015–17. The second—the ByCenter reference

sample—includes all verification times for each center. The

subsets of NAMs averaged vary in the figures of SAMs.

The details for four normalization methods are de-

scribed in the appendix. In summary, the ECDF nor-

malization uses the empirical CDF of the reference

sample tomap each PAM to the probability of randomly

choosing a PAM of equal or lower forecast skill.6

FIG. 4. Histograms of NAMs for the NWP centers for the All reference sample for (a) ECDF, (b) minmax, and

(c) rescaled-minmax normalizations. Bin size is 0.05. Slight deviations from a perfectly flat histogram for the ECDF

normalization are due to ties.

6 Since ECDF NAMs are probabilities and ECDF SAMs are

averages of probabilities, wemay express them in terms of fractions

or percentages.
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Thus, the best PAM is assigned a NAM value of 1 and

the worst a value of 0. The other normalizations apply a

linear transformation to the PAMs of the form

NAM5 aPAM1 b , (1)

where a and b are chosen separately for each reference

sample. For the minmax normalization the linear

transformation maps the best PAM in the reference

sample to 1 and the worst PAM in the reference sample

to 0, just as in the ECDF case. For the rescaled-minmax

normalizations, the linear transformation creates iden-

tically distributed NAMs with a mean of 1/2 and vari-

ance of 1/12—the same mean and variance as for the

ECDF NAMs. A plain normalization is used in section

d of the appendix, which is similar to the rescaled-

minmax normalization, except that the plain NAMs

have a mean of 0 and a variance of 1.

Note that the ECDF and minmax normalizations are

quite different, but the rescaled-minmax normalization

includes a linear transformation of the minmax NAMs

so that the rescaled-minmaxNAMs have the samemean

(1/2) and variance (1/12) as the ECDF NAMs. As a re-

sult, for these two normalizations, if the NAMs are

identically, independently distributed, then, according

to the central limit theorem, the SAMs will have a

normal distribution with a mean of 1/2 and variance of

1/(12n), where n is the number of NAMs (i.e., the size of

the subset) that are averaged. Since the NAMs are not

uncorrelated, we replace n with an effective number of

NAMs n*5 ng, where g is a factor that in an approxi-

mate way accounts for the limited degrees of freedom

for the dimensions averaged over. (See section d in the

appendix.) The calculation of g follows the approach of

Bretherton et al. (1999). The value of g is given in the

figure captions and depends on what dimensions are

FIG. 5. ECDF transfer functions from PAMs to NAMs for the 500-hPa NHX vector wind

RMSE for (a) 24–168-h forecasts and for (b) the 120-h forecast alone for three different

reference samples: All, ByCenter, and ByMonth. Different line types, weights, and colors are

used to indicate the different ECDFs, as indicated in the legend. See text for more details.
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averaged. By design the ECDF NAMs are identically

distributed with a uniform distribution on the unit

interval. The distribution of PAMs or linear trans-

formation of PAMs [Eq. (1)] is in general arbitrary, but

for cases examined, distributions of RMSE and (1-AC)

are well approximated by lognormal distributions and

distributions of AME are well approximated by positive

halves of normal distributions. Example distributions of

NAMs for three normalizations are plotted in Fig. 4.

To explain the concept of the reference sampleR, we

first consider a single PAMvalue x, for example, the 120-h

500-hPa geopotential NHX NCEP forecast AC valid

8 August 2016. Here, the PAM type is the 120-h 500-hPa

geopotential NHX forecast AC. Reference samples are

then all PAMs of this type, for a selection (or all) of the

verification times and a selection (or all) of the centers.

The corresponding NAM value y will be determined by

the relationship of x to R. When using the ByCenter

reference sample, there is a different reference sample for

each center, and any impacts seen are variations in the

skill of that center relative only to itself during the study

period. In the present example, we would chooseR to be

the set of 120-h 500-hPa geopotential NHX NCEP fore-

cast ACs valid at all verification times. When using the

All reference sample there is a single reference sample

for all centers, and any impacts seen are variations in the

skill of that center relative to itself and all other centers

during the study period. In the present example, we

would choose R to be the set of 120-h 500-hPa geo-

potential NHX forecast ACs valid at all verification times

for all centers. The All and ByCenter reference samples

are used in all of what follows with two exceptions. First,

Figs. 5 and 6 include the ByMonth reference sample. For

example, the January ByMonth reference sample in-

cludes all Januaries and all centers. Second, section d of

the appendix makes use of special definitions of the

FIG. 6. The evolution of 120-h 500-hPaNHX vector windRMSENAMs for three

different reference samples: (a) All, (b) ByCenter, and (c) ByMonth. Otherwise, as

in Fig. 3.
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reference samples that include only a single month and a

single center (Monthly), or a single month and all centers

(MonthlyAll).

Figure 5 shows examples of ECDF transfer functions

(see section c of the appendix for details) from PAMs to

NAMs, all for the case of the 500-hPa NHX vector wind

RMSE. In Fig. 5a the colors indicate forecasts of

24–168h. The thick lines for the All reference sample

clearly show how the distribution of error increases in

magnitude and spread with forecast length. (Note the

use of a logarithmic x axis.) As examples, Fig. 5a also

shows the ECDF for the ECMWF ByCenter reference

sample and for the January ByMonth reference sample.

These examples were chosen for clarity since ECMWF

errors are the smallest among the centers and January

errors are the largest among the months. Fig. 5b focuses

on the 120-h forecast and shows the variationwith center

and month for the ByCenter and ByMonth reference

samples. (The magenta lines from Fig. 5a are repeated

in Fig. 5b but with different line styles.) In Fig. 5b,

the ordering of the pdf distributions by center (the

ByCenter ECDFs) shows that for this PAMECMWF,
NCEP ; UKMO (and the reverse sense of the in-

equality holds for forecast skill). Similarly, the ordering

of the ByMonth ECDFs shows the annual cycle of wind

speed in the NHX is reflected in the wind errors, with

January having the largest errors and July and August

having the smallest errors.

Figure 6 illustrates how different reference samples

affect the resulting NAMs by converting the 120-h

500-hPa NHX vector wind RMSE PAMs of Fig. 3 into

NAMs using ECDF transfer functions for the three

different reference samples depicted in Fig. 5. The pat-

terns for All (Fig. 6a) and ByCenter (Fig. 6b) are very

similar, but in Fig. 6a, where ECMWF is compared to

all centers, the NAMs for ECMWF are larger since

ECMWF is more skillful and the range of the ECMWF

monthly averaged NAMs is compressed upward since

the other centers contribute many lower skilled fore-

casts to this reference sample. In both Figs. 6a and 6b it is

difficult to discern a trend in skill for the monthly av-

erage NAMs. In terms of annual averages, there are

slight improving trends, more so during the first half of

the period, in both Figs. 6a and 6b. In Fig. 6c the seasonal

signal is removed by comparing PAMs only to other

PAMs of the same calendar month. Note that removing

the annual cycle in this way emphasizes the ECMWF

forecast superiority for this PAM. The concordance

of the three monthly curves in Fig. 6b is striking.

The variations on weekly to seasonal time scales in

Fig. 6b match up quite well from center to center. Thus,

normalizing each center separately results in nearly

identical behavior in response to changing atmospheric

conditions.

5. Summary assessment metric results

Figure 7 shows the global SAM by center during the

study period. Here, all available NAMs for each center

have been summed and the All reference sample is used

to compare the centers. The global SAMs indicate that

ECMWF.NCEP*;UKMO in terms of forecast skill.

Under the null hypothesis that there is no difference

between centers, all the SAM values would be 1/2.

Therefore, we refer to the difference relative to 1/2 as

the SAM impact. A value of 3/4 would indicate a strong

positive impact (improvement in forecast skill relative

to the reference sample), and a value of 1/4 would

indicate a strong negative impact. Given the very large

number of NAMs that contribute to these SAMs, the

uncertainty of the estimates (error bars at the ends of the

color bars and gray horizontal band around 1/2) are very

small even though we have accounted for correlations

in estimating the effective sample size. In Fig. 7 the

FIG. 7. The global SAMby center during the study period (2015–

17). In this and all plots of SAMs, a 95%uncertainty band is plotted

around 1/2 under the null hypothesis that there is no difference

between centers for this metric. In addition, in this and subsequent

plots of this type, the estimated uncertainty at the 95% level is

indicated by small error bars at the ends of the color bars, which are

anchored at the expected value (1/2), and both the ECDF (colors)

and rescaled-minmax normalization (black outline) are shown. In

this and immediately following figures, the SAMs are for the All

reference sample. Here, g5 0:1084.
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reduction factor for the number of degrees of freedom is

g5 0:1084. (Please refer to section d of the appendix.)

Note that Fig. 7 shows results both for the ECDF nor-

malization (color bars) and the rescaled-minmax nor-

malization (black outlines). Here and in other figures

the differences between the results using these two

normalizations are in some cases statistically significant

(i.e., larger than the uncertainties) but are in most cases

very small, for example, compared to differences due to

other factors.

Figure 8a plots the variation of SAM by year for each

center. All three centers are improving and at approxi-

mately the same rate. Figure 8b plots the variation of

SAM with respect to forecast time by center. Overall,

SAM impacts decrease with forecast time. This is con-

sistent with the expectation that at long enough forecast

times all SAMs will be close to 1/2 since each model

forecast should be a random draw from the climato-

logical distribution. Comparing NCEP and UKMO in

this plot, we see that initially NCEP skill relative to the

other centers decreases with forecast time, while

UKMO skill increases, and the two are roughly equiv-

alent beyond 48h. Note that in Fig. 8b there are differ-

ences in error evolution with forecast time due to both

differences in initial state errors and due to differences

in NWP model errors. Similar comparisons in our OSE

and OSSE studies (Boukabara et al. 2016, 2018;

Hoffman et al. 2017a) have amore distinctive look since,

as a single model is used, the NWP model errors are the

‘‘same.’’ In such comparisons SAM impacts quickly

decay with forecast time. That is, there are large dif-

ferences in SAMs between impact experiments at the

initial time andmuch smaller differences at long forecast

times. This is seen in Fig. 8b for UKMO and beyond 48h

for ECMWF, but not for NCEP, suggesting that model

errors or inconsistencies between the analysis andmodel

are dominating the NCEP results.

Figure 9 is similar to Fig. 8, but shows how SAMs vary

for each center as a function of level, domain, variable,

and statistic. By level (Fig. 9a), there are greater dif-

ferences between centers at lower levels. By domain

(Fig. 9b), NCEP, and to a lesser degree UKMO, are

relatively good in the tropics. By variable (Fig. 9c),

UKMO is good at geopotential height but not at tem-

perature. Conversely, NCEP is good at temperature but

not at geopotential height. By statistic (Fig. 9d), note

that ECMWF does not perform as well for AME in a

relative sense as it does for AC and RMSE.

Similar to Fig. 8b, we further partition the NAMs into

SAMs that depend on domain (Fig. 10a) or year

(Fig. 10b). Typically, plots of this sort do not show in-

teractions; that is, we expect Fig. 10a to be a product of

Figs. 8b and 9b. This is true for NCEP: the impacts for

the domains in Fig. 10a are similar in shape to the im-

pacts in Fig. 8b, but the magnitude of these impacts

varies with the impact by domain seen in Fig. 9b.

FIG. 8. Variation of SAMby center and by (a) year and (b) forecast time. Otherwise, as in Fig. 7. [Reference sample

is All; g5 0:1085 in (a), and g5 0:2290 in (b).]
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For ECMWF and NCEP, the impacts in the tropics have

different evolutions with the result that the SAM impacts

for the tropics for ECMWFandNCEP cross close to 48h.

In Fig. 10b, all three centers improve year by year. In a

relative sense, NCEP in 2016 is much better than in 2015.

The improvements in NCEP performance in the tropics

and after 2015 are presumably due to the May 2016

4DEnVar implementation (upgrade NCEP-2 in Table 1).

To eliminate the effect of one center on another, we

now turn to SAMs based on the ByCenter reference

FIG. 9. Variation of SAM by center and by (a) pressure level, (b) geographic domain, (c) variable, and

(d) statistic. Otherwise, as in Fig. 7. [Reference sample is All; g5 0:1972 in (a), g5 0:1090 in (b), g5 0:1348 in

(c), and g5 0:1375 in (d).]
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samples. Even though we plot all centers together, each

center is only compared to itself in the next several fig-

ures. Since the SAM impacts are smaller using the

ByCenter reference samples, the y axis has been changed

for these plots. Figure 11a shows the variation of SAMby

center from 2015 to 2017 and is analogous to Fig. 8a.

Again, it is clear that all three centers are improving

regularly from year to year. Figure 11b reiterates what

FIG. 10. Variation of SAM by center and forecast time and by (a) geographic domain and (b) year. Otherwise, as in

Fig. 7. [Reference sample is All; g5 0:2302 in (a), and g5 0:2292 in (b).]

FIG. 11. The variation of SAM (a) by center from 2015 to 2017 and (b) with forecast time for each year from 2015

to 2017. In this and immediately following figures, the SAMs are for the ByCenter reference samples. Otherwise, as

in Fig. 7. [Here, g5 0:1085 in (a) and g5 0:2292 in (b).]
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was demonstrated by Fig. 10b (i.e., that the NCEP in-

crease of skill is mostly due to short forecast times).

Figure 12 displays the day-to-day SAMs for each of

the three centers. All cases have large day-to-day vari-

ability as well as weekly and 30–90-day variability. This

variability partially masks the year-to-year trends seen

in Fig. 11a. The 30–90-day variations in SAM impact

look similar for each center. However, when the day-to-

day variability is added, the average of all the centers

(Fig. 13) shows a somewhat reduced-amplitude version

of the 30–90-day variations seen in Fig. 12. The major

upgrades for each center, marked by the circled num-

bers along the bottom of each panel do not seem to be

directly associated with increases in forecast skill as seen

in the SAM impacts, except for the following two cases.

First, considering the time series of SAM before and

after upgradeNCEP-2, it seems clear that the upgrade to

the 4DEnVar was associated with a step up in forecast

skill. The changes in SAM (3100; i.e., as probabilities in

percent) due to the upgrades are listed as D in Table 1.

For upgradeNCEP-2 (TIN16–11; 4DEnVar), the ‘‘SAM

impact’’ is D5 7:37%. In other words, the effect of

implementing the 4DEnVar is a 7.37% increase in the

probability of improved skill relative to a randomly

chosen forecast metric from 2015 to 2017. This is the

largest SAM impact during the study period. Second,

for the UKMO-1 upgrade (PS38; D5 4:75%), numerous

improvements to how satellite observations are used re-

sulted in a fairly clear increase in SAM. Next, note the

two upgrades associated with higher resolution. Upgrade

NCEP-1 (TIN14–46; D524:12%) from T574 to T1534

spectral resolution has an unexpected negative D. This is
probably due to sampling effects—the NCEP-1 im-

plementation date is only 14 days from the start of the

study period—and would likely be reversed if our sample

included 2014. Upgrade UKMO-2 (PS39; D5 2:82%)

from 17- to 10-km resolution does appear to be associated

with some improvement in skill. For ECMWF there are

upgrades every eight or so months, with the latest one to

IFS Cycle 43r3 associated with the greatest improvement

(upgrade ECMWF-4; D5 5:22%). While there is a defi-

nite improvement with time for ECMWF, it is hard to see

the connection to the actual upgrades.

Note that for upgrade UKMO-1 the improvements

seem to precede the date of the upgrade. This could be

caused by NCEP receiving the upgraded model results

during a parallel testing period before the official up-

grade. Or, more likely, as this upgrade became opera-

tional during the month of November, this is due to the

yearly improvement of forecast scores during the

Northern Hemisphere fall season.

To see the similarities and differences in the 30–90-day

variability in forecast skill more clearly, Figs. 14 and 15

average the results of Fig. 12 in the time dimension to

smooth out the day-to-day variability. Figure 14 plots

the MA(31) and MA(365) SAM results for each of the

three centers. To the eye, the ECMWF, NCEP, and

UKMOMA(31) SAMs are all tracking each other quite

well, except during the first half of 2016. This is consis-

tent with the statement that the atmospheric state is a

major determinate of variations of forecast skill. The

improvements in MA(365) SAM in Fig. 14 show

FIG. 12. The evolution of day-to-day SAM for each of the three

centers. The major upgrades, marked by the circled numbers along

the bottom of each panel, are detailed in Table 1. In a manner

similar to the other figures, the ECDFSAMs are plotted in color fill

and the rescaled-minmax ECDFs are plotted as a black line.

(Reference sample is ByCenter; g5 0:1642.)

FIG. 13. The evolution of day-to-day SAM averaged over the

three centers. Otherwise, as in Fig. 12. (Reference sample is

ByCenter; g5 0:1299.)
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improvements that are very statistically significant, with

increases in SAM an order of magnitude larger than the

95% uncertainty band. Figure 15 plots SAMby calendar

month averaged over the 3 years of the study period for

each center. The annual cycle is similar for each center,

especially during the July–November improvement in

forecast skill.

6. Concluding remarks

Often skill of a global NWP system is tracked in

terms of a few key primary assessment metrics such as

the 500-hPa geopotential anomaly correlation or the

250-hPa wind RMSE. A significant challenge in this

approach is that focusing on an individual PAM (i.e., a

particular statistic for a given forecast time, level, do-

main, and variable) may ignore other important aspects

of forecast skill. This is one reason to consider summary

assessment metrics when verifying (or validating and

tuning) NWP forecast and data assimilation systems. As

well as avoiding the problems of focusing on just a few

PAMs, the use of SAMs increases statistical significance

and enables one to explore various aspects of forecast

skill. Here, SAMs are averages of normalized assess-

ment metrics, and each NAM corresponds to a single

PAM. For example, the PAM for the 120-h 500-hPa

geopotential NHX NCEP forecast AC valid 8 August

2016 is converted to the corresponding NAM using a

normalization that is based on a reference sample of the

120-h 500-hPa geopotential NHX forecast AC PAMs

for all valid verification times. While a first-order

verification might consider ‘‘global’’ SAMs that com-

bine all NAMs for each center, subsequent validation

might consider SAMs for various subsets, typically along

different dimensions (e.g., for each year, each forecast

time, each month, or each calendar date). For example,

Fig. 12 uses SAMs to track the progress in NWP centers’

skill day by day during 2015–17. Each center is seen to

improve its SAM over the three years 2015–17. The

connection between specific upgrades to global NWP

systems and improvements in forecast metrics are now

difficult to detect because the improvements are small

compared to variations in atmospheric predictability.

Also, after a major upgrade, there can be a period of

minor fixes that improve performance, so we should not

FIG. 14. The evolution of day-to-day SAM. Otherwise, as in Fig. 3. (Reference sample is

ByCenter; g5 0:1091 for the 31-day filter and and 0.1085 for the 365-day filter.)

FIG. 15. The variation of SAM by center and by calendar month

averaged over the study period (2015–17). (Reference sample is

ByCenter; g5 0:1090.)
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anticipate a step function response to published up-

grades. Nevertheless, the use of SAMs improves the

signal-to-noise ratio and clear improvements in SAM

are related to the ECMWF July 2017 upgrade to IFS

Cycle 43r3, the NCEP May 2016 replacement of the

3DEnVar system with the 4DEnVar system, and the

UKMO November 2016 (PS38) introduction of im-

proved use of satellite observations.

In general, global NWP forecast skill for the PAMs

included in this study is improving at a rate much slower

than previously, and long periods are necessary to

demonstrate impacts even when using the SAM ap-

proach. In future work, it might be interesting to include

other centers and to add PAMs for relative humidity and

precipitation, forecast variables for which there is cur-

rently major room for improvement.
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APPENDIX

Methods

a. Summary assessment metric method

In prior research, we have calculated SAMs using

both ECDF and minmax normalizations. Originally, in

what we termed ‘‘overall’’ scores, a minmax normali-

zation was used (e.g., Boukabara et al. 2016). Later, we

proposed the alternative use of an ECDF normalization

and applied it to the OSEs of Boukabara et al. (2016)

(Hoffman et al. 2017a) and to the 2015 skill scores from

several global NWP centers (Hoffman et al. 2017b).

Now, we use both the ECDF normalization and a

rescaled-minmax normalization. These two normaliza-

tions are comparable and we find that they produce very

similar SAM results even though the normalizations

themselves are quite different. The reason for this is that

for either the ECDF or the rescaled-minmax normali-

zations, the NAM expected value and variance are 1/2

and 1/12. Then, assuming the NAMs are uncorrelated,

as a consequence of the central limit theorem, the SAMs

should have a normal distribution with mean 1/2 and

variance 1/(12n) under the null hypothesis (H0). Here,

n is the number of NAMs (size of the subset) that are

averaged. Since the NAMs are not uncorrelated, nmust

be replaced by an effective value as discussed below in

section d of this appendix.

Each SAM depends on the normalization method, the

reference sample used in the normalization, and the

subset V of NAMs averaged. Usually, we consider a

variety of subsets and hold the normalization and ref-

erence sample fixed. In this case, the transformation

from NAMs to SAMs (the summation symbol in Fig. 2)

is given by

SAM
V
5 n21�

i2V
NAM

i
, (A1)

where n is the number of NAMs in the subset. In all

cases the normalization is specific to each PAM type,

that is, to each individual forecast time, level, domain,

variable, and statistic (e.g., all the 120-h 500-hPa geo-

potential NHX forecast ACs). For each PAM type, the

reference sample R includes the PAMs for all verifica-

tion times either for all centers (the All reference sam-

ple) or for each center (the ByCenter reference sample).

For a PAM like AC, where increasing values are

better, the ECDF normalization is given by

NAM5
rank(PAM in R)2 1/2

size(R)
, (A2)

and the minmax normalization is given by

NAM5
PAM2min(R)

max(R)2min(R)
. (A3)

The minmax NAMs are in the range [0, 1], with 0 being

worst and 1 best. This also holds for ECDF NAMs, but

with a slightly reduced range as explained below in

section c of this appendix. For a PAM-like RMSE,

where increasing values are worse, Eqs. (A2) and (A3)

are applied to the negative of the PAMvalues. Details of

the ECDF formulation are given below.

b. Rescaling the minmax NAMs

Within the context of SAMs, the impact is the differ-

ence between the calculated SAM and its expected

value under the null hypothesis that there is no effect

due to subset. Thus, for n sufficiently large, which is the

case in all examples presented in this paper, ECDF SAM

values of 0.75 and 0.25 would represent very large pos-

itive and negative impacts, respectively, since under H0

the expected value is 0.5 and the variance scales with 1/n.

For minmax SAMs the expected value (and variance)

under H0 varies with subset. For example, the 2015

mean values of minmax SAMs for AC and RMSE

are 0.70 and 0.63. To avoid the resulting difficulties in
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interpretation of the minmax SAMs, we rescale the

minmax NAMs. The first goal of the rescaling is to make

all the NAMs similar in terms of having a shared mean

and variance. For this purpose the rescaled-minmax

NAMs, denoted NAM0, are defined by

NAM0 5
�
NAM2m

S

s
S

�
s
T
1m

T
, (A4)

where mS and sS are the estimated mean and standard

deviation, respectively, of the NAMs in the reference

sample, and mT and sT are the target mean and standard

deviation, respectively, of the NAM0 reference sample.

A second goal is to make the rescaled-minmax SAMs

directly comparable to the ECDF SAMs. Therefore,

mT 5 1/2 and s2
T 5 1/12, which are the expected values

for ECDF NAMs. There are a number of advantages to

rescaling the minmax NAMs and one disadvantage. The

advantages include the following.

d The ECDF and rescaled-minmax SAM impacts have

the same definition, and the baseline for the impact is

always 1/2.
d The ECDF and rescaled-minmax SAMs are very similar

and provide a useful indication that the sensitivity of

SAM results to the normalization method is fairly weak.
d The ECDF and rescaled-minmax SAMs are both

averages of random variables with the identical mean

and variance. Under the null hypothesis H0, both the

ECDF and rescaled-minmax SAMs have an expected

value of 1/2 and an expected variance of 1/(12n*),

where n* is the effective number of degrees of

freedom in the NAMs that are averaged. (See section

d of this appendix.) As n* increases, the distribution of

SAMs will approach a normal distribution.

The disadvantage is that the rescaled-minmax NAMs

are not restricted to the interval [0, 1] but are trans-

formed according to Eq. (A4) (Fig. 4). However the

rescaled-minmax SAMs are very similar to the ECDF

SAMs and are generally in the interval [1/4, 3/4].

c. Definition of NAMs from ECDF

The ECDF transfer function mapping PAMs to

NAMs is defined by a reference sample of n PAMvalues

xi, i5 1, . . . , n. For the purpose of this discussion, as-

sume that x, the vector of the xi, is sorted in ascending

order. The ECDF is a step function with steps of 1/n

at the xi locations. If there are k equal values in the

reference sample, then the step at this value is k/n.

Figure A1 illustrates this. In Fig. A1, NAM times n

(denoted s) is plotted versus PAM (denoted x). Except

for the reference sample, the value of s for any x is given

by the number of xi smaller than x. In particular, s5 0

(n) and NAM5 0 (1) for x smaller (larger) than all the

xi. At a reference sample value, xj11, where here, to al-

low for ties, the subscript j1 1 indicates that there are j

smaller values in R, the value of s is defined as the

midpoint of the riser, which is equal to j1 k/2, that is, the

number of xi , xj11 plus half the number of ties (in-

cluding the case of no ties where k5 1).

An efficient calculation of s, the vector of s values (i.e.,

the vector of NAMs times n), makes use of the ranking

or ordering of x. There are several possible methods

of assigning ranks for ties in x. The three methods shown

in Fig. A1 are the minimum rank �r, the maximum rank

r̂, and the average rank r methods. First, consider as-

signing ranks to the reference sample R. The value

of r(xj11) is the average of i5 j1 1, j1 2, . . . , j1 k or

j1 (11 k)/2. Therefore,

s(R)5 r(R)2 1/2. (A5)

When usingR to calculate s for an experiment sample E
different fromR, start by assigning the values of s(R) to

any values in E that match a value in R. For all other

values in E,

s(E)5 �r(E1R)2 �r(E) . (A6)

Consider x, a value in E that is not in R. Suppose that

�r(x)5 5 within E and 15 within E1R. Then, since x is

FIG. A1. ECDF example plotting s, the NAM value times n, vs x,

the PAM value, where n is the sample size. For this example, the ref-

erence sample xi is (1, 3, 3, 3, 4, 4)/10 and n5 6. For any x, s is the

number of xi smaller than x, except when x equals one of the xi. In this

latter case, s is the midpoint of the riser. Three methods of assigning

ranks in the case of ties are shown.
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larger than 4 elements in E and 14 in E1R, we know

that x is larger than 10 elements inR. Note that Eq. (A5)

uses the average rank while Eq. (A6) uses the

minimum rank.

In practice, Eq. (A6) can be applied to all of E, giving a
preliminary value of s, say j. Then, if R is in ascending

order, a particular element ofE is in the interval (xj, xj11].

Therefore, ties can be identified by testing if E equals

R(j11). Finally, for each tie, that element of j should be

replaced by the corresponding value of s(R).

Note that Eq. (A2) has been modified relative to the

definition given byHoffman et al. (2017a) in two ways to

guarantee that the average of the NAMs over the ref-

erence sample is exactly 1/2. First, in the numerator 1/2

instead of 1 is subtracted from the rank. Now, in the case

of no ties, the mean of the reference sample NAMsmust

be 1/2 since the reference sample NAMs are symmetric

about 1/2 with a range of [1/(2n), 12 1/(2n)]. Second, in

the case of ties the rank is now the average, not the

minimum. Now, ties do not affect the mean of the ref-

erence sample NAMs.

d. Effect of correlations on effective sample size for
estimating uncertainties

Uncertainty intervals for SAMs can be estimated

based on (i) the known statistics of the NAMs, (ii) the

number n of NAMs averaged, and (iii) the fact that for

large n, the SAM will have a normal distribution with a

mean and variance related to the mean and variance of

the NAMs. For the ECDF and rescaled-minmax nor-

malizations the NAMmean is 1/2, the NAM variance is

1/12, the SAM mean is 1/2, and the SAM variance is

1/(12n*). Here, n* is the effective sample size to account

for the correlations in the sample. We estimate n* as

n*5nP
i2D

g
i
5 ngD , (A7)

where D is the set of dimensions averaged, and gi is the

reduction factor for dimension i. In the main text of the

article, an unadorned g is written for gD, the total

reduction factor forD. Each gi is given by di/ni, where di

is the size of dimension i and ni is the number of degrees

of freedom in that dimension estimated following

Bretherton et al. (1999) using the ‘‘eigenvalue formula’’

[their Eq. (5)], which may be written as

n
i
5 d2

i =�
j,k

(C2
jk). (A8)

Here, Cjk is the jkth element of the correlation matrix C

for dimension i and the denominator of Eq. (A8) is the

square of the Frobenius norm of C.

In the present case C must be estimated after the

PAMs are detrended in time, have had the effect of the

NWP center removed, and are normalized. This is re-

quired to avoid the real signals from inducing strong

correlations that would artificially reduce the number of

degrees of freedom. For this purpose we calculate

NAMs using a special reference sample definition that

includes only a single month and a single center

(Monthly). The calculated n for this reference sample

agree quite well for the four normalization methods that

were applied, as seen in Table A1. The normalizations

are those described above plus a ‘‘plain’’ normalization

that applies the following simplification of Eq. (A4):

NAM5
PAM2m

S

s
S

, (A9)

where mS and sS are now the estimated mean and

standard deviation of the PAM reference sample. In all

three cases the combined reduction factor for all di-

mensions is approximately 0.09 and for all verification

time dimensions about 0.66. For all figures we use the gi

TABLE A1. The numbers of degrees of freedom estimated as described in the text for the four normalization methods defined by the

equations referenced in the column labeled NAM. In this table (and in subsequent tables), the last nine columns are the dimensions of the

PAM array used in this study. The first table row gives d, the sizes of the dimensions. In the dimension column headings: tf is the forecast

length; day, month, and year are the calendar date dimensions of the verification time; and the abbreviations stat., dom., and var. are used

for statistic, domain, and variable.

NAM Stat. tf Dom. Var. Level Day Month Year Center

d — 3.00 7.00 3.00 3.00 5.00 31.00 12.00 3.00 5.00

ECDF A2 2.37 3.31 2.98 2.41 2.75 20.60 11.94 3.00 2.37

Minmax A3 2.41 3.45 2.99 2.45 2.87 20.83 11.94 3.00 2.42

Rescaled A4 2.37 3.31 2.98 2.41 2.75 20.62 11.94 3.00 2.37

Plain A9 2.37 3.31 2.98 2.41 2.75 20.60 11.94 3.00 2.37

TABLE A2. The values of gi (%) derived from the plain

normalization method.

Stat. tf Dom. Var. Level Day Month Year Center

g 78.8 47.3 99.5 80.4 55.0 66.4 99.5 99.9 79.1
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corresponding to the plain n in Table A1. These values

are given in Table A2.

The reduction factors are essentially negligible (i.e.,

gi ; 1) for domain, month, and year as expected, due to

the nearly zero correlations for these dimensions. There is

only a small reduction (gi ; 0:8) for statistic, variable, and

center. Reductions are more substantial for forecast time

(gi 5 0:47), level (gi 5 0:55), and day (gi 5 0:66).

The use of the specialized Monthly reference sample is

critical in the calculation of the gi. That is because the effect

of NWP center and trends with time induce large correla-

tions that substantially reduce the ni and gi. Table A3

presents a sample of these calculations. Considering just the

verification time dimensions, these gi correspond to one

independent sample each 8, 15, and 6 days instead of one

independent sample each 1.5 days for the Monthly refer-

ence sample used. The heuristic of applying Eq. (A8) to the

‘‘residuals’’ of the ‘‘model’’ of the NAMs as a function of

NWP center and verification month is akin to the usual

practice in statistical model building of examining residuals

to see if there are trendsor correlations or nonuniformity. In

the present case the NAMs created with the specialized

reference sample (Monthly) are the residuals, and by con-

struction they have nearly uniform distributions. However,

there are remaining correlations, and these are accounted

for in the definition of n*.

e. Acronyms

Key acronyms used in the text are listed here. Com-

mon acronyms (e.g., UTC and RMSE) and proper

names (e.g., names of specific institutions such as NCEP

and names of systems and version identifiers such as IFS

and PS) are not expanded in the text.

3DEnVar Three-dimensional ensemble variational

data assimilation

4DEnVar Four-dimensional ensemble variational

data assimilation

AC Anomaly correlation

AME Absolute mean error

AR Autoregressive

CICS Cooperative Institute for Climate Studies

(College Park, Maryland)

CIMAS Cooperative Institute for Marine and

Atmospheric Studies (Miami, Florida)

ECDF Empirical cumulative density function

ECMWF EuropeanCentre forMedium-RangeWeather

Forecasts

EMC Environmental Modeling Center (NOAA/

NWS)

GO General Operations

GRIB Gridded binary

IFS Integrated Forecast System

LCDNV Lead Centre for Deterministic NWP

Verification

MA Moving average

NAM Normalized assessment metric

NCAR National Center for Atmospheric Research

NCEP National Centers for Environmental Prediction

(NOAA/NWS)

NEMSIO NOAA Environmental Modeling System

Input/Output (file format)

NHX Northern Hemisphere extratropics

NOAA National Oceanic and Atmospheric

Administration

NWP Numerical weather prediction

NWS National Weather Service

OFS Overall forecast skill (score)

OSE Observing system experiment

OSSE Observing system simulation experiment

PAM Primary assessment metric

pdf Probability density function

PS Parallel Suite (UKMO)

RMSD Root-mean-square difference

RMSE Root-mean-square error

SAM Summary assessment metric

SCN Service change notice (NWS)

SHX Southern Hemisphere extratropics

TIN Technical implementation notice (NWS)

UKMO Met Office

USAF U.S. Air Force

UTC Coordinated universal time

VSDB Verification Statistics Database

WMO World Meteorological Organization (Geneva,

Switzerland)
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