
2018 Benchmark Stock Assessment of 
Main Hawaiian Islands Kona Crab 

Maia R. Kapur 
Mark D. Fitchett 
Annie J. Yau 
Felipe Carvalho 

U.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 
National Marine Fisheries Service 
Pacific Islands Fisheries Science Center 
NOAA Technical Memorandum NMFS-PIFSC-77 
https://doi.org/10.25923/7wf2-f040 

February 2019

https://doi.org/10.25923/7wf2-f040




ii 

2018 Benchmark Stock Assessment of 
Main Hawaiian Islands Kona Crab 
Maia R. Kapur1,2 
Mark D. Fitchett2 
Annie J. Yau3 
Felipe Carvalho3 
1 Previous address: Joint Institute for Marine and Atmospheric Research 

University of Hawaii 
1000 Pope Road 
Honolulu, Hawaii 96822 

2 Previous address: Pacific Islands Fisheries Science Center 
National Marine Fisheries Service 
1845 Wasp Boulevard 
Honolulu, HI 96818 

3 Pacific Islands Fisheries Science Center 
National Marine Fisheries Service 
1845 Wasp Boulevard 
Honolulu, HI 96818 

NOAA Technical Memorandum NMFS-PIFSC-77 

February 2019 

U.S. Department of Commerce 
Wilbur L. Ross, Jr., Secretary 

National Oceanic and Atmospheric Administration 
RDML Tim Gallaudet, Ph.D., USN Ret., Acting NOAA Administrator 

National Marine Fisheries Service 
Chris Oliver, Assistant Administrator for Fisheries 



iii 

Recommended citation: 
Kapur MR, Fitchett MD, Yau AJ, Carvalho F. 2019. 2018 Benchmark Stock Assessment of 
Main Hawaiian Islands Kona Crab. NOAA Tech Memo. NMFS-PIFSC-77, 114 p. 
doi:10.25923/7wf2-f040 

Copies of this report are available from: 
Science Operations Division 
Pacific Islands Fisheries Science Center 
National Marine Fisheries Service 
National Oceanic and Atmospheric Administration 
1845 Wasp Boulevard, Building #176 
Honolulu, Hawaii 96818 

Or online at: 
https://www.pifsc.noaa.gov/library/ 

https://www.pifsc.noaa.gov/library/


iv 

Table of Contents 

Abstract ........................................................................................................................................... 1 

1. Introduction ................................................................................................................................. 1 

1.1 Biology and Life History ...................................................................................................... 1 

1.2 Fishery and Regulations ........................................................................................................ 3 

1.3 Previous Stock Assessment................................................................................................... 4 

2. Materials and Methods ................................................................................................................ 4 

2.1 Data ....................................................................................................................................... 4 

2.1.1 Data Sources .................................................................................................................. 4 

2.1.2 Annual Catch ................................................................................................................. 6 

2.1.3 Nominal CPUE .............................................................................................................. 7 

2.2 CPUE Standardization .......................................................................................................... 8 

2.2.1 Variables Used in CPUE Standardization...................................................................... 8 

2.2.2 CPUE Standardization Model Selection and Diagnostics ............................................. 9 

2.2.3 Standardized CPUE Calculation .................................................................................. 10 

2.3 Assessment Model .............................................................................................................. 10 

2.3.1 Just Another Bayesian Biomass Assessment (JABBA)............................................... 10 

2.3.2 Process and Observation Error..................................................................................... 11 

2.3.3 Prior Distributions ........................................................................................................ 13 

2.3.4 Convergence Diagnostics............................................................................................. 16 

2.3.5 Retrospective Analysis................................................................................................. 16 

2.3.6 Sensitivity Analyses ..................................................................................................... 16 

2.3.7 Catch Projections ......................................................................................................... 17 

3. Results ....................................................................................................................................... 18 

3.1 CPUE Model Results and Diagnostics ............................................................................... 18 

3.2 Assessment Model Results and Diagnostics ....................................................................... 18 

3.3 Stock Status of Kona Crab .................................................................................................. 19 

3.4 Results of Retrospective Analysis ...................................................................................... 20 

3.5 Results of Sensitivity Analyses ........................................................................................... 20 

3.6 Stock Projections 2020-2026 .............................................................................................. 21 

4. Discussion ................................................................................................................................. 22 

Acknowledgements ....................................................................................................................... 23 

Literature Cited ............................................................................................................................. 24 

Tables ............................................................................................................................................ 29 



v 

Figures........................................................................................................................................... 43 

Appendices .................................................................................................................................... 67 

Appendix I. R Code for Calculating Catch Scenarios .............................................................. 67 

Appendix II. R Code for CPUE Standardization ...................................................................... 69 

Nominal CPUE Calculation .................................................................................................. 69 

Standardization - Period 1 ..................................................................................................... 72 

Standardization - Period 2 ..................................................................................................... 75 

Prediction .............................................................................................................................. 77 

Appendix III. R Code for JABBA Prime File to Execute Model in JABBA ........................... 79 

Appendix IV. R Source Code for JABBA Model and Projections ........................................... 84 



vi 

List of Tables 

Table 1. Hawaii Kona crab total catch data used in base case, and catches used for sensitivity 
analyses. All catch columns are in pounds. Total catches are calculated from adjusted 
reported catches using Equation 2. ................................................................................... 29 

Table 2. Prior distributions and input assumptions used for the base-case Kona crab production 
model................................................................................................................................. 31 

Table 3. Sensitivity analyses run for Kona crab surplus production model. ................................ 32 
Table 4. CPUE standardization final models, showing log likelihood values and ΔAIC (AIC 

previous model – AIC proposed model) during model selection for the best-fit in the 
Period 1 (1958–2006) and Period 2 (2007–2016) time periods. ....................................... 33 

Table 5. Input data used in the base case surplus production model. CPUE is standardized CPUE.
........................................................................................................................................... 34 

Table 6. Posterior estimates of parameters and results from base case Kona crab production 
model. Median, lower 95% confidence interval (LCI), and upper 95% confidence interval 
are presented. .................................................................................................................... 36 

Table 7. Model-estimated exploitable biomass, relative biomass B/BMSY, probability of being 
overfished (B/BMSY < 0.7), harvest rate, relative harvest rate H/HMSY, and probability of 
overfishing (H/HMSY > 1.0), by year.................................................................................. 37 

Table 8. Results of sensitivity runs, showing proportional changes in posterior median values 
from base case. Priors for the base case are given in Table 3. .......................................... 39 

Table 9. Projection results showing various probabilities of overfishing (H/HMSY > 1) and 
corresponding future annual reported catches, biomass, harvest rate, and probability the 
stock is overfished (B/BMSY < 0.7) from 2020 to 2026. ..................................................... 40 

Table 10. Probability of overfishing (H/HMSY > 1) from 0.01 to 0.50 and corresponding projected 
reported catch (lb) by year. Catch values for a given probability of overfishing in a given 
year were applied in all previous projection years............................................................ 41 



vii 

List of Figures 

Figure 1. Boundary of the main Hawaiian Islands (blue shaded cells) as defined in (Yau, 2018). 
The portion circled in red is the Papahānaumokuākea Marine National Monument as of 
August 25, 2016 prior to subsequent expansion. Yellow shaded area is Penguin Banks, 
Area = 331. ....................................................................................................................... 43 

Figure 2. Scenarios of total catch for Hawaii Kona crabs by year, 1958–2016. Solid black line 
represents total catch from the base case (average ratio of UCR = 1.54). Dashed line 
represents adjusted reported catch (UCR = 0). Solid grey line represents total catch using 
an annual ratio (UCR varies by year from Langseth et al., 2018). Scenario of high UCR = 
5 not shown because of y-axis scaling. ............................................................................. 44 

Figure 3. Boxplot illustrating the average weight per record for the 45% of Kona crab records 
that report both a nonzero number and weight from 1958 to 2016. The horizontal lines 
inside each box represent the median, the lower and upper box edges are the 25th and 
75th percentiles respectively, and the whiskers extend to 1.5 times the interquartile 
ranges. Outliers have been omitted to maintain confidentiality. ...................................... 45 

Figure 4. Number of single-reporting days with Kona crab catch in which other species were 
caught (True) or not (False). Total number of single-reporting days is shown as the sum 
of both bars in each year. .................................................................................................. 46 

Figure 5. Illustration of Pella-Tomlinson (1969) generalized relative surplus production curves as 
a function of biomass relative to carrying capacity (K) for various shape (m) values. In 
this example, K = 1, and intrinsic growth rate (r) = 0.5. ................................................... 47 

Figure 6. Model diagnostics for the Period 1 (1958–2006) CPUE standardization model. 
Diagnostic plots include plots of quantile residuals against model predicted values (to 
assess heteroscedasticity), histogram of quantile residuals (to assess normality), and plots 
of quantile residuals against values of each predictor variable (to assess patterning in the 
predictor variables). .......................................................................................................... 48 

Figure 7. Model diagnostics for the Period 2 (2007–2016) CPUE standardization model. 
Diagnostic plots include plots of quantile residuals against model predicted values (to 
assess heteroscedasticity), histogram of quantile residuals (to assess normality), and plots 
of quantile residuals against values of each predictor variable (to assess patterning in the 
predictor variables). .......................................................................................................... 49 

Figure 8. Standardized (solid line, with gray shaded 95% confidence intervals) for Period 1 (top, 
1958–2006) and Period 2 (bottom, 2007–2016). .............................................................. 50 

Figure 9. Observed (standardized CPUE) and production model estimated CPUE series for 
Period 1 (1958–2006) and Period 2 (2007–2016)............................................................. 51 

Figure 10. Standardized residuals of observed (standardized) minus production model estimated 
CPUE for (top) Period 1 (1958–2006) and (bottom) Period 2 (2007–2016). ................... 52 

Figure 11. Prior (dark gray) and posterior (light gray) distributions for model parameters 
including carrying capacity (K), intrinsic growth rate (r), shape parameter (m), initial 
proportion of biomass to carrying capacity (psi, ψ), catchability in Period 1 (q.1, q1) and 
Period 2 (q.2, q2), process error variance (sigma2, ση2) for the base case Hawaii Kona 
crab assessment model. ..................................................................................................... 53 



viii 

Figure 12. Total observation error variance, 𝜎𝜎𝜎𝜎𝜎𝜎, 𝑖𝑖2, by year for Period 1 (1958–2006, top) and 
Period 2 (2007–2016, bottom), partitioned into the sum of 1) observation error from 
CPUE CV 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎,𝜎𝜎, 𝑖𝑖2R (light gray), and 2) estimable observation error 
𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝑖𝑖𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎, 𝑖𝑖2 (dark gray). ........................................................................................... 54 

Figure 13. Estimated ratio of harvest rate to harvest rate at maximum sustainable yield (H/HMSY, 
top) and estimated ratio of biomass to biomass at maximum sustainable yield (B/BMSY, 
bottom) for Hawaii Kona crabs from 1958 through 2016 (solid blue line). Solid grey area 
indicates 95% confidence intervals. Horizontal dashed lines indicates overfishing limit 
(H/HMSY > 1.0) and overfished limit (B/BMSY < 0.7). ........................................................ 55 

Figure 14. Kobe plot of the estimated stock status for Hawaii Kona crab from 1958 through 
2016. Square denotes start year (1958), circle denotes 40-year mark (1999), and triangle 
denotes end year (2016). Outer bounds of grey shading area indicate 95% confidence 
interval for final year 2016 with 0% chance of overfished (B/BMSY < 0.7) and 0% chance 
of overfishing. Overfishing occurs when H/HMSY > 1 if B > BMSY. Alternatively, 
overfishing occurs when H/HMSY > B/BMSY when B ≤ BMSY. Colored boxes indicate 
various stock statuses: red = overfished and overfishing, yellow = overfished but no 
overfishing, orange = not overfished and overfishing, and green = not overfished, no 
overfishing. ....................................................................................................................... 56 

Figure 15. Retrospective analysis for annual biomass (top) and annual harvest rate (bottom) with 
base case model ending in 2016 as reference (base case) and with retrospective peels 
from 2011–2015. ............................................................................................................... 57 

Figure 16. Results of sensitivity analyses for carrying capacity, K: Estimated annual biomass 
(top left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). ...... 58 

Figure 17. Results of sensitivity analyses for intrinsic growth, r: Estimated annual biomass (top 
left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). .............. 59 

Figure 18. Results of sensitivity analyses for shape parameter, m: Estimated annual biomass (top 
left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). .............. 60 

Figure 19. Results of sensitivity analyses for initial ratio of biomass to carrying capacity, ψ: 
Estimated annual biomass (top left), harvest rate (bottom left), B/BMSY (top right), and 
H/HMSY (bottom right). ...................................................................................................... 61 

Figure 20. Results of sensitivity analyses for process error, ση: Estimated annual biomass (top 
left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). .............. 62 

Figure 21. Results of sensitivity analyses for estimated observation error, 𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝑖𝑖𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎𝜎: 
Estimated annual biomass (top left), harvest rate (bottom left), B/BMSY (top right), and 
H/HMSY (bottom right). ...................................................................................................... 63 

Figure 22. Results of sensitivity analyses for various assumptions on unreported catch: Estimated 
annual biomass (top left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY 
(bottom right). ................................................................................................................... 64 

Figure 23. Projections of relative biomass, B/BMSY, for years 2020–2026 based on Kona crab 
base case model projected with various future total catch scenarios (10,000 to 160,000 lb, 
in 1000-lb increments), equivalent to reported future catches of 3,496 to 55,931 lb. 
Scenarios with low reported future catches are typically higher in B/BMSY over time; the 
top red trajectories are reported catches <10,000 lb; blue lines are for reported catches 
approximately 20,000 to 30,000 lb; green from 30,000 to 40,000 lb; yellow, orange to 
bottom red trajectories are >40,000 lb. Horizontal dashed line indicates the overfished 
limit of 0.7 BMSY. ............................................................................................................... 65 



ix 

Figure 24. Risk of Hawaii Kona crab stock becoming overfished (B/BMSY < 0.7) (top) and risk of 
overfishing (H/HMSY > 1.0) (bottom) for fishing years 2020 through 2026, presented as a 
function of projected reported catch. ................................................................................ 66 



1 

Abstract 

A stock assessment of the main Hawaiian Islands Kona crab fishery was conducted and finalized 
in 2019 using data from 1957 through 2016. This benchmark assessment improved upon filtering 
of data records by re-defining fishing effort as a single reported fishing day and exploring fisher 
effects (individual fisher effects and cumulative fishing experience) in catch-per-unit effort 
(CPUE) standardization. Additionally, this 2018 assessment addressed uncertainty previously 
unaccounted for, including unreported catch, incidental mortality of female crab catch following 
the prohibition of female crab harvest in 2006, and a Bayesian prior on the initial ratio of 
biomass to carrying capacity. The assessment used a state-space Bayesian surplus production 
model in a new user-friendly framework, Just Another Bayesian Biomass Assessment (JABBA). 
The model fit standardized CPUE data in a generalized Pella-Tomlinson surplus production 
model. Parameter distributions were estimated in a Bayesian framework, which estimates 
parameter posterior distributions starting from prior distributions and fitted to data. Annual 
harvest rates (H), harvest rate at maximum sustainable yield (HMSY), annual biomass (B), and 
biomass at maximum sustainable yield (BMSY) were estimated in JABBA, among other outputs. 
Results from this assessment conclude that in 2016, the Hawaii Kona crab fishery was not 
overfished (defined as B/BMSY < 0.7) with a 0.01% probability of the status being overfished in 
2016. In 2016, the stock was not experiencing overfishing (defined as H/HMSY >1), with 0% 
probability of overfishing occurring. The model converged and a retrospective analysis detected 
no strong retrospective pattern. Projections from 2020 to2026 quantified overfishing risks for 
various future catch levels, and concluded that a 50% risk of overfishing in 2026 corresponds to 
an annual reported catch of 33,989 lb.  

1. Introduction

The Kona crab, Ranina ranina (Linnaeus, 1767), is a brachyuran crustacean in the Raninidae 
family. The species is fairly cosmopolitan throughout the tropical and sub-tropical Indo-Pacific 
region. Kona crabs are commonly referred to as spanner crabs (Australia) and the species is also 
known as the red frog crab, frog crab, papa’i kua loa, and krab ziraf. The southeast Queensland 
spanner crab fishery is the largest known fishery for the species, landing in excess of 1500 metric 
tons in annual catch records since the mid-1990s (Dichmont and Brown, 2010). Directed 
fisheries for the species also exist in Western Australia, New South Wales (Australia), the 
Philippines, Japan, Thailand, Mauritius, Reunion, and the Seychelles archipelago (Boulle, 1995; 
Cook, 1987; Krajangdara and Watanabe, 2005; Tahil, 1983). This benchmark assessment 
implements fishery data and biological information collected in the Main Hawaiian Islands 
(defined in Yau (2018); Fig. 1), with the exception of life history information borrowed from 
Australia to estimate natural mortality (explained in Section 1.1 Biology and Life History).  

1.1 Biology and Life History 

This section describes basic Kona crab biology and life history. When available, information 
specific to Kona crabs in Hawaii are provided. The information presented in this section is an 
overview, and the only value directly used in the stock assessment from this section was the 
natural mortality rate to define overfished criteria. Some basic biology is used to inform a prior 
on intrinsic growth rate.  
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Kona crabs possess a rigid and broad carapace that ranges in color from a pale whitish-red hue to 
bright orange-red. The boldness of color may correspond with age and size (Fielding and Haley, 
1976). Small spines cover the carapace perimeter and saw-like spines cover the chelae, which 
grow and sharpen as the crab matures (Uchida and Uchiyama, 1986). Males and females are 
easily distinguishable by the size of the chelae (Minagawa, 1993) and more notably by the 
morphology of the abdomen (Fielding and Haley, 1976; Wiley, 2017). 

Hawaii Kona crab habitat consists of moderately coarse sandy substrate 2–200 meters in depth, 
within areas with little change in relief, with exposure to currents, and in proximity to reef 
environments (Cook, 1987; Thomas et al., 2013; Vansant, 1978). Adult crabs share habitat 
preferences with juveniles and spend the majority of their time buried in the sand, typically only 
emerging for feeding or for mating (Brown et al., 2001; Skinner and Hill, 1986). Onizuka (1972) 
noted that young and smaller Kona crabs are frequently observed in high numbers in shallower 
sandy areas such as Waimea Bay on the island of Oʻahu. A high abundance and larger sizes of 
Kona crabs have been observed off Penguin Bank, a large sandy and deeper expanse protruding 
off southwest Molokai towards Oahu (Brown, 1985; Fielding and Haley, 1976; Thomas et al., 
2013; Wiley, 2017). 

Egg-bearing female Kona crabs are observed from May through September and larger females 
are thought to be observable in shallower areas immediately before and after this time (Onizuka, 
1972), yet females seldom emerge from the sand during the egg-bearing period (Skinner and 
Hill, 1987). A closed season for Kona crab implemented by the state of Hawaii corresponds to 
spawning season, in which females are found to be egg bearing until the season ends (Fielding 
and Haley, 1976; Kennelly and Watkins, 1994).  

Hawaii fishery catches were comprised of 55% male and 45% female in earlier studies (Fielding 
and Haley, 1976; Onizuka, 1972) and recent observations in 2018 have found sex composition in 
catches of Kona crabs to be slightly different, 49% male and 51% female (Wiley and Pardee, 
2018). Male Kona crabs need to be large enough to move their female counterparts from the sand 
in order to successfully mate (Skinner and Hill, 1986). Males are mostly sexually mature by the 
time they reach 2.9 inches carapace length (Fielding, 1974; Fielding and Haley, 1976). Females 
are 87% sexually mature by the time they are 2.6 inches carapace length (Onizuka, 1972). 

Kona crabs in Australia are hypothesized to have ‘slow growth’ (Brown, I.W., S. Kirkwood, C. 
Gaddes, 1999), confirmed through mark-recapture to estimate von Bertalanffy growth equation 
parameters: mean maximum length (L∞) of 155.9 and 121.7 mm for males and females 
respectively; and Brody growth coefficient (k) of 0.29 and 0.24/yr for males and females 
respectively (Kirkwood et al., 2005). Chen and Kennelly (1999) used tagging data and found that 
these crabs grow stepwise and slowly with a von Bertalanffy Brody growth coefficient (k) of 
0.216 and 0.08/yr for males and females, respectively. In comparison, Hawaii Kona crabs are 
assumed to grow larger based on age and growth studies (Brown, I.W., S. Kirkwood, C. Gaddes, 
1999; Chen and Kennelly, 1999; Kirkwood et al., 2005) and have higher observed male growth 
rates in molt intervals (Onizuka, 1972). To reach a legal 4 inches (101.6 mm) rostral carapace 
length in Hawaii, it would take an average of 4.31 years for male crabs and 6.35 years for female 
crabs.  



3 

Kona crabs and their conspecifics in Australia are assumed to have a longevity of 10 to 16 years 
(Kirkwood et al., 2005) Natural mortality (natM) can be estimated using longevity, assuming a 
mortality rate under unfished conditions to reduce a population to 1%, such that natM = 
ln(0.01)/amax (Hoenig, 1983). O’Neill et al. (2010) estimated natM to be 0.277/yr using the 
Hoenig (1983) approach with amax = 17 years. Assuming a maximum age of 16 years from 
Kirkwood et al. (2005), natural mortality using the Hoenig approach would equal 0.29/yr. Then 
et al. (2015) recommend using maximum age but also offer an empirical estimation method 
using growth parameters such that natM = 4.118k0.73×L∞

-0.33. Using sex-averaged mean growth 
parameters (L∞ and k) from Kirkwood et al. (2005), natural mortality equals 0.31/yr when 
applying the Then et al. (2015) approach, which corroborates an estimate using longevity alone. 
For this stock assessment report, natM is assumed to be 0.30/yr. 

Onizuka (1972) estimated comprehensive length-weight relationships for Hawaii Kona crabs. 
Weight for males (W, in grams) using length (L, in millimeters) is estimated as 
W=0.000273×L2.9931. The female length-weight relationship is estimated as 
W=0.0001392×L2.8345.  

1.2 Fishery and Regulations 

Kona crabs have been commercially fished in Hawaii since near the beginning of the 20th century. 
This is a targeted fishery that deploys hoop nets (also called ‘tangle nets’ or ‘Kona crab nets,’) 
which are circular frames (usually metal, but can be wooden) usually 24 to 30 inches in diameter, 
with 1-cm to 1-inch mesh (twine, polyester, or even metal). The hoop nets are baited and 
deployed in tethered daisy chains and set over sandy bottom, usually free of structure or rocky, 
hard substrate. When baited hoop nets are deployed, some Kona crabs will emerge from the sand 
and often quickly find the bait. The spiny appendages tangle the crab in the net.  

The state of Hawaii has implemented several management regulations for the Kona crab fishery 
starting in 1938, when a minimum size of 4 inches rostral-carapace length went into effect for 
any crab sold or possessed in commercial fishing operations. Fishing of Kona crabs was also 
closed in summer months beginning June 1 through August 31 starting in 1938 to coincide with 
the spawning season. Spearing crabs and lobsters were prohibited beginning in 1958. In 1993, 
the Kona crab closed season was extended by starting earlier (May 1–August 31). In 1998, Kona 
crab gear was prohibited to be on a vessel in possession of bottomfish species gear. However, 
this regulation was repealed in 2010. In 2002, the 4-inch size limit provision was extended for 
any personal/non-commercial possession and consumption. Starting on September 1, 2006, the 
harvest of female Kona crabs was prohibited, and the fishery became male harvest only, with 
females still caught and released back into the water.  

Kona crabs are consumed in social gatherings, graduations, weddings, holidays, and are even 
gifted. Kona crabs generally need to be consumed within a day of capture and can spoil quickly. 
They are eaten cooked and raw. In recent years, reported catch of this species has declined 
(Figure 2). 
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1.3 Previous Stock Assessment 

The previous Kona crab stock assessment by Thomas et al. (2015) indicated that the Kona crab 
stock was experiencing overfishing and was overfished in 2007. The authors developed three 
time series of standardized catch-per-unit-effort (CPUE) indices for the stock. The first index 
was from 1948 to 1998 from the advent of data reporting in the Hawaii Kona crab fishery until 
the 1998 prohibition of possessing Kona crab gear with bottomfish gear. The second index 
ranged from 1998 to 2006 until the prohibition of female crab harvest, and the final series ranged 
from 2006 to 2009. In the assessment model, the earliest years of the first CPUE time series were 
not used and both catch and standardized CPUE time series began in 1970. The authors used A 
Surplus Production Incorporating Covariates (ASPIC; Prager, 1994) to deterministically estimate 
carrying capacity, intrinsic growth, biomass at maximum sustainable yield (MSY), fishing 
mortality at MSY, catchabilities, and other outputs. The ratio of initial year biomass to carrying 
capacity was fixed at 0.7 and a Schaefer production model was assumed. 

This 2019 benchmark stock assessment addresses some of the concerns noted by an independent 
reviewer (Hall, 2015) regarding the assessment by Thomas et al. (2015). Notable improvements 
include: 

1. Employment of a much longer time series of catch and CPUE.

2. Reconstruction of total catch by estimating incidental mortality from female discards
based on recent studies and accounting for unreported catch.

3. Development of CPUE indices that include extensive data filtering to define a unit of
fishing effort as single fishing day employing a specific gear, accounting for individual
fisher effects through time, and exploration of the significance of habitat characteristics.

4. Adoption of a state-space Bayesian framework to allow for the use of informative priors
in a Pella-Tomlinson production model using Just Another Bayesian Biomass
Assessment (JABBA, Winker et al., (2018)) and estimation of posterior distributions for
several parameters, including initial year ratio of biomass to carrying capacity, intrinsic
growth rate, carrying capacity, shape parameter, catchabilities, and process error and
observation error.

5. Sensitivity analyses on alternative parameter priors and catch scenarios, retrospective
analyses, and overfishing risks in future catch scenarios.

2. Materials and Methods

2.1 Data 

2.1.1 Data Sources 

Data used in this Kona crab benchmark stock assessment originates from the state of Hawaii 
Department of Land and Natural Resources, Division of Aquatic Resources (DAR). DAR began 
collecting and recording official information on commercial fishing catch and effort in 1948 in 
the Fisher Reporting System (FRS). The state of Hawaii defines fishing as “commercial” if one 
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fish/animal is sold. Commercial fishers must obtain a license and provide monthly reports on all 
fishing activity, regardless of what portion is ultimately sold. In this assessment and report, 
fishing year or simply year follows the state fiscal year such that fishing year 2016 refers to the 
period July 1, 2015 until June 30, 2016. Data used in this assessment were queried on June 30, 
2017, and so only include final FRS data through fishing year 2016 because 2017 data were not 
yet finalized. Fields in each FRS data record of interest include fisher license (commercial 
marine license, hereafter referred to as CML number), date, DAR area fished (Figure 1), fishing 
gear, species caught, total weight caught by species in pounds (lb), and number of individuals 
caught by species. Not all fields were always filled out in each record. Since October 2002, more 
specific effort details were added to the form, including the number of fishing sets, hours fished, 
and number of gears deployed. These effort details are not used in this stock assessment because 
they are not consistently filled out. 

Kona crabs are a targeted fishery when hoop nets are deployed. The hoop net gear was given a 
unique gear code in FRS records in 1954. Hoop nets were not a regularly reported fishing gear 
for Kona crabs until 1957, after which hoop net gear was consistently reported for Kona crab 
catch. As such, this stock assessment uses FRS records beginning in fishing year 1958 (starts 
July 1, 1957) to 2016 (ends June 30, 2016).  

From fishing years 1958-2016 in the main Hawaiian Islands, Kona crabs were reported caught in 
17 gear types in 12,237 FRS records, with 11,305 records indicating catch in Kona crab hoop 
nets (gear code 40), 442 records of catch in generic crab traps which can include deep sea traps 
(gear code 51), 209 records of catch in crab nets (gear code 26), and 160 records of catch in 
miscellaneous traps (gear code 11). There were a total of 12,446 FRS records that reported either 
Kona crabs caught or Kona crab hoop nets, which included catch records in 82 DAR fishing 
areas and landings in 72 unique port codes throughout the state of Hawaii from 1958 to 2016. 
Around 23% of records (2,916 of 12,446) were caught in Penguin Bank over time (Area 331, 
Figure 1). 

Commercially reported weight data for Kona crabs was investigated. Each DAR FRS record 
contains fields for total pounds caught and total number caught; if nonzero values are reported in 
both fields, then the average weight of Kona crabs caught in a record can be calculated. 
However, the number caught is not commonly reported. Of the 12,237 records that reported 
pounds caught of Kona crab from 1958 to 2016 in the main Hawaiian Islands, 16 records report a 
pound value of zero. Of the remaining 12,221 records that report pounds of Kona crab greater 
than zero, only 5,557 (45%) also reported a number caught that is greater than zero. The 
remaining 54% of records report a number of zero Kona crabs caught even though they report a 
nonzero value for pounds of Kona crab caught. There are 196 records that report one Kona crab 
caught; of these, 147 report catching one Kona crab that weighed one pound. These few records 
are the only records that provide individual Kona crab weights, but the weight resolution is large 
given that weight is reported in 1-lb increments.  

Given that the reporting incidence of Kona crab numbers caught is 45%, it is not known whether 
the resulting average weight calculations per record are representative of the fishery or not; 
therefore, average weight was not used for this assessment. For illustrative purposes, we 
calculate the average weight of Kona crabs for each of the 5,557 records that reported nonzero 



6 

pounds and nonzero numbers and present the average annual weights in Figure 3 as boxplots 
without outliers plotted. 

2.1.2 Annual Catch 

Reported catches are calculated by summing up the pounds caught from all FRS records 
reporting within the main Hawaiian Island fishing areas (Figure 1). Annual reported catches 
Creported,y for each fishing year y are summed from 1958 to 2016. Catches reported in FRS data 
for Kona crab gradually increased from early years to the peak of the fishery in 1972 with 
reported catches nearly reaching 70,000 lb (Figure 2). Reported catches have not exceeded 
40,000 lb since 1974, as the fishery had another peak of 36,714 lb reported in 1992. Reported 
catches declined in the last two decades to below 3,000 lb in 2015 and 2016, which are the last 
two years of data used in this benchmark stock assessment. Calculation of catch, nominal CPUE, 
and standardized CPUE were conducted using the R Statistical Computing Environment (R 
Foundation for Statistical Computing, Vienna, 2011). 

Annual reported catch Creported,y is converted to estimated annual total catch Cy using a two-step 
process: 1) calculating adjusted reported catch Cadj reported,y by adding discarded female mortality 
following the 2006 prohibition of possessing female Kona crabs, and 2) calculating total catch by 
adding unreported catch to adjusted reported catch.  

Recent studies in Hawaii have shown that post-release mortality of female crabs is 10.77% 
(Wiley, 2017; Wiley and Pardee, 2018). This contrasts an earlier study that found discard 
mortality of crabs in Australia to be much higher, 70–100%, when dactyl or limbs were damaged 
or lost (Kennelly et al., 1990). The same recent studies also showed that 51% of crabs caught in 
Hawaii are female (Wiley, 2017; Wiley and Pardee, 2018). 

Using the information from recent studies (Wiley, 2017; Wiley and Pardee, 2018), adjusted 
annual reported catch Cadj reported,y is calculated per year y to account for female discard mortality 
starting in fishing year 2007 from reported catch Creported,y such that: 

𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂.𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒂𝒂,𝒚𝒚 = 𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒂𝒂,𝒚𝒚 + �𝑪𝑪𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒂𝒂,𝒚𝒚 ×
𝟎𝟎.𝟓𝟓𝟓𝟓
𝟎𝟎.𝟒𝟒𝟒𝟒

× 𝟎𝟎.𝟓𝟓𝟎𝟎𝟏𝟏𝟏𝟏� 
Equation 1 

In addition to female discards, unreported catch was addressed for all years. Unreported catch in 
Hawaii fisheries may be substantial and are a source of uncertainty in stock assessments 
(Courtney and Brodziak, 2011; Hamm and Lum, 1992; Hospital and Beavers, 2014; Zeller et al., 
2008). We attempted to reconcile likely ratios of unreported catch to reported catches for Hawaii 
Deep-7 bottomfish by presenting scenarios of unreported catches based on empirical information 
from numerous studies. Most of the studies are based on intercept interviews and surveys of 
fishers or are based on recreational fishing catch and effort surveys from databases such as the 
Hawaii Marine Recreational Fishing Survey (HMRFS), also known as the Marine Recreational 
Information Program (MRIP). The aforementioned studies and surveys were targeted towards 
finfish with very little information on shellfish or crustacean catches. For example, a total of 12 
Kona crabs were recorded in the entire HMRFS/MRIP survey database (H. Ma, personal 
communication).  
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Brodziak, et al. (2014) and Langseth et al. (2018) used annual, species-specific unreported catch 
ratios in Deep-7 bottomfish stock assessments from 1948 to 2016. The mean annual ratio of 
unreported to reported catch for the Deep-7 complex from 1948 to 2016 was 1.54:1 (Langseth et 
al., 2018). We refer to this number as the average ratio (UCR = 1.54) and use this number to 
estimate total catch as described next.  

Total annual Kona crab catch (Cy) by year (y) is assumed to equal to adjusted reported catch by 
year (Cadj reported,y) plus unreported catch, which is adjusted reported catch by year scaled by the 
unreported catch ratio (UCR): 

𝑪𝑪𝒚𝒚 = 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂.𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒂𝒂,𝒚𝒚 + 𝑼𝑼𝑪𝑪𝑼𝑼 × 𝑪𝑪𝒂𝒂𝒂𝒂𝒂𝒂.𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒂𝒂,𝒚𝒚 Equation 2 

This average unreported catch ratio (UCR = 1.54) was used due to a lack of thorough studies or 
available information to specifically estimate non-commercial unreported catch of Kona crab (or 
non-commercial fishing effort targeting Kona crab. There are some similarities between 
bottomfish and Kona crab operations (requires a small boat that can go far enough out to reach 
deeper depths, and deploy and retrieve gear from those depths). The resulting total catch for the 
base case is presented in Table 1. Alternative unreported catch scenarios are investigated as 
described in Section 2.3.6 Sensitivity Analyses and Section 3.5 Results of Sensitivity Analyses.  

2.1.3 Nominal CPUE 

DAR FRS records were used to calculate nominal catch-per-unit-effort (CPUE) for 
standardization. Only records reporting from areas within the main Hawaiian Islands (Figure 1) 
are used. Only records that report catching Kona crab using hoop net gear (code = 40) are used 
for CPUE calculation. Of all reported Kona crab pounds caught, 93% were caught by hoop net 
gear from 1958 to 2016. 

Individual fishers were tracked through time using CML numbers (see Langseth et al., 2018). 
Before fishing year 1994, individuals were issued a different unique CML number every year. 
After 1994, individuals were issued the same CML number every year. In 2016, PIFSC scientists 
undertook an effort to link fishers back through time using names and as a result, individual 
fishers are tracked by CML number.  

A ‘single-reporting day’ was used as the effort unit (Yau, 2018). Single-reporting day is defined 
as a unique combination of CML number and date. This definition is used because the FRS data 
do not have unique trip identifiers. Given that Kona crab catch is difficult to keep fresh, it is 
likely that Kona crab trips took place within a single day. This was confirmed through 
examination of FRS records since 2002 when more detailed effort fields became available on the 
reporting form. In FRS records since 2002 that did report more detailed effort information, there 
were no reported Kona crab fishing activities that took place longer than a 24 hour-period, and 
no reported gear deployments past 24 hours. These detailed effort fields are rarely completed for 
Kona crab reports and when they are completed, it is often unclear if total gear was deployed in 
multiple sets or was a multiplicative product of the number of reported sets. For these reasons, 
single-reporting day was used as the effort unit for the entire time series. There were 11,015 
single-reporting days in which Kona crab was caught using hoop net gear in the main Hawaiian 
Islands from 1958 to 2016.  
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To calculate nominal CPUE in units of pounds per single-reporting day, the total pounds of Kona 
crab reported on a single-reporting day are summed up. Only 13 single-reporting days report 0 lb 
of Kona crab caught, and these single-reporting days were retained for nominal CPUE and 
CPUE standardization. 

Single-reporting days with Kona crab catch were analyzed to determine whether other species 
are caught on the same day (Figure 4). Of the 11,214 single-reporting days with Kona crab 
caught in hoop net gear since 1958, the top three most commonly caught other species on Kona 
crab single-reporting days were yellowfin tuna (Thunnes albacares, 789 single-reporting days) 
followed by uku (Aprion virescens, 742 single-reporting days), then ono/wahoo (Acanthocybium 
solandri, 685 single-reporting days). These single-reporting days may not be mutually exclusive. 

Bottomfish species were specifically analyzed because they exist at similar depths, have similar 
fishing vessel needs, and there was a regulation prohibiting the possession of Kona crab gear 
with bottomfishing gear on the same trip between 1998 and 2010. Of the 11,214 single-reporting 
days with Kona crab caught in hoop net gear since 1958, 742 reporting days also report catching 
uku (Aprion virescens), 317 also report catching opakapaka (Pristipomoides filamentosus), and 
110 also report catching onaga (Etelis coruscans). Again, these single-reporting days may not be 
mutually exclusive. The frequency of bottomfish species associated with single-reporting days 
that caught Kona crab was not substantially different before and after the 1998 regulation 
prohibiting the possession of Kona crab gear with bottomfishing gear on the same trip, nor was it 
substantially different after the repeal of that regulation.  

2.2 CPUE Standardization 

2.2.1 Variables Used in CPUE Standardization 

CPUE standardization was completed in an attempt to account for factors that affect CPUE other 
than changes in stock abundance. The following general categories of factors were considered 
for CPUE standardization, and described in more detail below: temporal, spatial, individual 
fisher effects, habitat, and oceanographic.  

Temporal factors explored for CPUE standardization include fishing year, month, and season. 
All temporal factors are treated as categorical variables for the standardization model. Seasons 
are based on the female reproductive cycle (Minagawa, 1993) as used in Thomas et al. (2015), 
defined as September to October, November to December, January to February, March to April, 
and May through August which corresponds with the closed season. These seasons may explain 
activity rates of Kona crabs (Skinner and Hill, 1986).  

Spatial factors explored include DAR grid area and island, both treated as categorical variables. 
For the purpose of using area as a factor for CPUE standardization, single-reporting days that 
report more than one area were assigned the area that yielded the highest pounds of Kona crab 
that day. Only 1% of single-reporting days reported more than one area. Islands are defined in 
Thomas et al. (2015) as Hawaii (Big) Island, Maui Nui (Molokai, Maui, Lanai, Kahoolawe), 
Oahu, and Kauai/Niihau. There were very few (0.32%) single-reporting days that reported from 
more than one island.  
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Individual fisher effects are explored using two different metrics: cumulative fisher experience, 
and CML number. Cumulative fisher experience for each single-reporting day by a given fisher 
is calculated as the cumulative number of other single-reporting days up to that date and tested in 
the CPUE standardization as a continuous variable in log-scale. CML numbers are categorical 
variables. For CML numbers, the names in 1976 were not available so records from 1976 could 
not be linked with the rest of the time series. For the purpose of CPUE standardization, fishers in 
1976 were assumed to be a single-pooled fisher following the rationale of Langseth et al. (2018) 
and were all assigned a single dummy CML number for the purpose of CPUE standardization. 
Additionally, CML numbers that report five or fewer total Kona crab single-reporting days in the 
entire time series were also pooled under one of four dummy CML numbers unique to the four 
island areas (affecting 1,250 of 11,015 single reporting days). As a result, a total of 376 unique 
CMLs were used in the CPUE standardization from 1958 to 2016.  

Habitat factors (Ault et al., 2018) explored include depth, slope, and bottom hardness of substrate 
in each fishing area. Oceanographic factors explored include the Pacific Decadal Oscillation 
(PDO) Index, and El Niño Southern Oscillation (ENSO) Index 3.4 on monthly time scales. These 
oceanographic indices were explored because of previously documented impacts such indices 
had on CPUE of Northwestern Hawaiian lobster fisheries (Polovina and Mitchum, 1992). All 
habitat factors and oceanographic factors are continuous variables.  

2.2.2 CPUE Standardization Model Selection and Diagnostics 

Kona crab CPUE series are standardized separately for ‘Period 1’ (1958–2006) and ‘Period 2’ 
(2007–2016) due to the recent prohibition of female catch beginning on September 1, 2006. 
There were 9,687 single-reporting days in Period 1 and 1,328 single-reporting days in Period 2. 

CPUE was standardized using generalized linear mixed models (GLMMs) with a Gaussian error 
structure using the lme4 package (Bates et al., 2017) in R (R Foundation for Statistical 
Computing, Vienna, 2011). GLMMs estimate parameters using maximum likelihood. The 
response variable for each model was the natural logarithm of CPUE from positive catches of 
Kona crab; recorded catch values of zero were retained as zero rather than log-transformed. The 
natural log of catch (in pounds) per single reporting day as a response variable passes the 
Shapiro-Wilk test for normality (p > 0.05) when randomly sampled by year and in all years 
pooled. This confirms an underlying assumption of the standardization model subsequently 
applied.  

All variables described in the previous Section 2.2.1 Variables Used in CPUE Standardization 
were explored as predictors for statistical inclusion in the standardization models for both time 
series. Interactive effects were considered between year and license, and year and area fished. 
All variables were modeled as fixed effects with the exception of CML number, which was 
modeled as a random effect.  

The model selection procedure consisted of a forward selection routine with the variable fishing 
year, and CML number as a random effect, always included because CPUE by year is the 
required output of the model. Each and every remaining predictor was added one at a time, and 
the added predictor was retained if the resulting model met a minimum criteria of 2% reduction 
of Akaike’s information criterion from the preceding model (Maunder and Punt, 2004). Model 
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selection was complete when this criterion was not met with the addition of any additional 
predictor variable.  

Model fit was assessed through visual comparison of Pearson residuals plotted against predicted 
values of the response variable and against values of the predictor variables. Residuals were 
examined visually for collinearity and normality.  

2.2.3 Standardized CPUE Calculation 

Estimated marginal means are popular for summarizing linear models of unbalanced data and 
were therefore used in our analysis, primarily accounting for area sampling imbalance over time. 
Estimated marginal means were calculated by year using the emmeans function in the package 
emmeans (Lenth et al., 2018) in R (R Foundation for Statistical Computing, Vienna, 2011) to 
generate standardized CPUE and residual variance for each year.  

Standardized CPUE by year is given by these CPUE predictions (Upred,y) back-transformed from 
the natural log scale and averaged using the bias correction technique of Brodziak and Walsh 
(2013). This correction is the sum of all linearized predictions (eUpred,y) for a given year added to 
one-half the residual variance; and this summation is then divided by the total number of 
observations in that year (ny) used in that year’s CPUE (Uy) standardization. 

𝑼𝑼𝒚𝒚� =
∑𝒓𝒓𝑼𝑼𝒓𝒓𝒓𝒓𝒓𝒓𝒂𝒂,𝒚𝒚+𝝈𝝈

𝟐𝟐

𝟐𝟐

𝒏𝒏𝒚𝒚Equation 3 

A coefficient of variation (CV) of CPUE for each year is calculated by dividing the standard 
error from a given year by the mean predicted CPUE value for the corresponding year. 

2.3 Assessment Model 

2.3.1 Just Another Bayesian Biomass Assessment (JABBA) 

This assessment implemented a modeling framework entitled Just Another Bayesian Biomass 
Assessment (JABBA), which is a tool for conducting state-space Bayesian surplus production 
models (Winker et al., 2018). It estimates both process error variance and observation error 
variance. JABBA uses R (R Foundation for Statistical Computing, Vienna, 2011) to set up the 
model and call up the software program JAGS (Just Another Gibbs Sampler, Plummer, (2003)) 
using the R package ‘rjags’ (Plummer, 2016). JABBA estimates Bayesian posterior distributions 
of model outputs by means of a Markov Chain Monte Carlo (MCMC) simulation.  

JABBA provides a generalized Bayesian state-space estimation framework for surplus 
production models (SPMs) by building on previous formulations by Pella and Tomlinson (1969), 
(Gilbert, 1992; Wang et al., 2014), and Fletcher (Fletcher, 1978; Thorson et al., 2012). Surplus 
production models are frequently implemented to estimate sustainable levels of harvest (biomass 
removals) at corresponding levels of stock biomass. Maximum sustainable yield (MSY) is the 
maximum level of catch that can be removed from a stock over time while maintaining biomass 
at BMSY, the biomass to produce MSY. JABBA formulates the surplus production function of the 
generalized three-parameter SPM by Pella and Tomlinson (1969, 'Pella-Tomlinson model'): 
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𝑺𝑺𝑷𝑷𝒓𝒓 =
𝒓𝒓

𝒎𝒎 − 𝟓𝟓
𝑩𝑩𝒓𝒓−𝟓𝟓 �𝟓𝟓 − �

𝑩𝑩𝒓𝒓−𝟓𝟓

𝑲𝑲
�
𝒎𝒎−𝟓𝟓

�, 
Equation 4 

where SP is surplus production in a given time t, r is the intrinsic rate of population growth (yr-1), 
K is the carrying capacity (lb), B is the biomass (lb), and m is a shape parameter that determines 
where maximum surplus production is attained.  

The shape parameter m can be arithmetically translated into a ratio of BMSY to carrying capacity 
(K) (Prager, 1994):

𝑩𝑩𝑴𝑴𝑺𝑺𝑴𝑴

𝑲𝑲
= 𝒎𝒎�− 𝟓𝟓

𝒎𝒎−𝟓𝟓�

Equation 5 

Given a known K and m, BMSY is solved: 

𝑩𝑩𝑴𝑴𝑺𝑺𝑴𝑴 = 𝑲𝑲𝒎𝒎�− 𝟓𝟓
𝒎𝒎−𝟓𝟓� Equation 6  

Pella-Tomlinson surplus production models under varying values of the shape parameter, m, are 
depicted in Figure 5. 

If the shape parameter m = 2, the model reduces to the Schaefer form, with the surplus 
production attaining maximum surplus production, or MSY at exactly a stock biomass level 
corresponding to K/2. If 0 < m < 2, MSY occurs when biomass values are smaller than K/2; when 
m > 2, MSY occurs when biomass values are greater than K/2. The Pella-Tomlinson model 
reduces to a Fox model if m approaches 1 resulting in MSY at ~0.37K, but there is no solution for 
the exact Fox model with m = 1.  

Per the Pella-Tomlinson formulation, the harvest rate at MSY (HMSY) is: 

𝑯𝑯𝑴𝑴𝑺𝑺𝑴𝑴 =
𝒓𝒓

𝒎𝒎 − 𝟓𝟓
�𝟓𝟓 −

𝟓𝟓
𝒎𝒎
� 

Equation 7 

where the harvest rate H is defined here as the ratio of: 

𝑯𝑯 =
𝑪𝑪
𝑩𝑩

, 
Equation 8 

where C denotes the total annual catch (lb). 

2.3.2 Process and Observation Error 

The surplus production model for Hawaii Kona crab was formulated as a Bayesian state-space 
production model using JABBA, as introduced above. It included explicit observation and 
process error terms that have been commonly used for fitting production models with relative 
abundance indices (Brodziak and Ishimura, 2012; McAllister et al., 2001; Meyer and Millar, 
1999a; Punt, 2003). The exploitable biomass time series comprised the unobserved state 
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variables. These annual biomasses were estimated by fitting model predictions to the observed 
relative abundance indices (standardized CPUE). In particular, total observation error likelihood 
measured the discrepancy between observed and predicted CPUE. Prior distributions for input 
parameters are used to represent the relative degree of knowledge about the probable values of 
model parameters. Assumptions of this model included that production follows a specified 
functional form, the assessment is applicable to exploitable individuals, all exploitable 
individuals were mature and equally vulnerable to fishing, and that biomass was proportional to 
standardized CPUE. 

JABBA is formulated on the Bayesian state-space estimation framework proposed by Meyer and 
Millar (Meyer and Millar, 1999b). The biomass B in year y is expressed as a proportion of K 
(i.e., Py = By /K) to improve the efficiency of the estimation algorithm. The initial biomass in the 
first year of the time series was scaled by introducing model parameter ψ to estimate the ratio of 
the biomass in the first year to K (Carvalho et al., 2014). The stochastic form of the process 
equation is given by: 

𝑷𝑷𝒚𝒚 = �
𝝍𝝍𝒓𝒓𝜼𝜼𝒚𝒚    𝒇𝒇𝒓𝒓𝒓𝒓 𝒚𝒚 = 𝟓𝟓

�𝑷𝑷𝒚𝒚−𝟓𝟓 +
𝒓𝒓

(𝒎𝒎− 𝟓𝟓)𝑷𝑷𝒚𝒚−𝟓𝟓�𝟓𝟓 − 𝑷𝑷𝒚𝒚−𝟓𝟓𝒎𝒎−𝟓𝟓� −
∑ 𝑪𝑪𝒊𝒊,𝒚𝒚−𝟓𝟓𝒊𝒊

𝑲𝑲
�𝒓𝒓𝜼𝜼𝒚𝒚   𝒇𝒇𝒓𝒓𝒓𝒓 𝒚𝒚 = 𝟐𝟐,𝟑𝟑…𝒏𝒏  

Equation 9 

where ηy is the annual process error deviation, with 𝜂𝜂𝑦𝑦 ~𝑁𝑁(0,𝜎𝜎2𝜂𝜂 ) and 𝜎𝜎2𝜂𝜂  is the process error 
variance. In our modelling framework, the prior on process error is set on the square root of the 
variance (𝜎𝜎𝜂𝜂) and is referred to herein as “process error”. Ci,y-1  is the catch in year y-1 by CPUE 
time series i, and n is the number of years in the model which corresponds to the number of years 
of catch and CPUE data. In the base-case JABBA model for Kona crab, process error was 
estimated jointly for the two CPUE time series (Period 1 and Period 2). 

The corresponding biomass for year y is: 

𝑩𝑩𝒚𝒚 = 𝑷𝑷𝒚𝒚𝑲𝑲 𝒇𝒇𝒓𝒓𝒓𝒓 𝒚𝒚 = 𝟓𝟓,𝟐𝟐…𝒏𝒏 Equation 10 

The observation equation is given by: 

𝑰𝑰𝒊𝒊,𝒚𝒚  =  𝒒𝒒𝒊𝒊𝑩𝑩𝒚𝒚𝒓𝒓𝝉𝝉𝒚𝒚,𝒊𝒊 𝒇𝒇𝒓𝒓𝒓𝒓 𝒚𝒚 = 𝟓𝟓,𝟐𝟐…𝒏𝒏 Equation 11 

where qi is the estimable catchability coefficient associated with the CPUE time series i, 𝜎𝜎𝑦𝑦,𝑖𝑖 is 
the observation error and 𝜎𝜎𝑦𝑦,𝑖𝑖 ~ 𝑁𝑁(0, R 𝜎𝜎2 2

𝜏𝜏𝑦𝑦,𝑖𝑖),where 𝜎𝜎𝜏𝜏𝑦𝑦,𝑖𝑖is the total observation error variance in 
year y for CPUE time series i. 

Observation error was estimated independently for each CPUE series. Each observation error 
variance is partitioned into two components: the total observation variance, 𝜎𝜎2𝜏𝜏𝑦𝑦,𝑖𝑖, typically ranges 
from 0.1 to 0.4 (Francis et al., 2003) and is comprised of 1) 𝜎𝜎2𝜏𝜏𝐶𝐶𝐶𝐶,𝑦𝑦,𝑖𝑖, which is inter-annual 
variability in observation error input as the CV of standardized CPUE, and 2) 𝜎𝜎2𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖, an 
estimated observation error. The two variance components are additive in their squared form 
(Francis et al., 2003), with the total observation variance for time series i and year y given by: 
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𝝈𝝈𝟐𝟐  =  𝝈𝝈𝟐𝟐 + 𝝈𝝈𝟐𝟐
Equation 12 𝝉𝝉𝒚𝒚,𝒊𝒊 𝝉𝝉𝑪𝑪𝑪𝑪,𝒚𝒚,𝒊𝒊 𝝉𝝉𝒓𝒓𝒆𝒆𝒓𝒓𝒊𝒊𝒎𝒎𝒂𝒂𝒓𝒓𝒓𝒓𝒂𝒂,𝒊𝒊

The full Bayesian state-space surplus production model model calculated over n years requires a 
joint probability distribution over all unobservable parameters θ ={K, r, ψ, m, 𝜎𝜎2𝜂𝜂 , qi, 𝜎𝜎2𝜏𝜏𝑦𝑦,𝑖𝑖} and 
the n process deviates relating to the vector of unobserved states η = {η1, η2, …ηn}, together 
with all observable data in the form of the relative abundance indices I for CPUE time series i, Ii 
={Ii,1, Ii,2 … Ii,n} (Meyer and Millar, 1999). According to Bayes’ theorem, it follows that the 
joint posterior distribution over all unobservable parameters, given the data and unknown states, 
can be formulated as: 

Equation 13

𝒓𝒓(𝜽𝜽|𝜼𝜼, 𝚰𝚰)  = 𝒓𝒓(𝑲𝑲)𝒓𝒓(𝒓𝒓)𝒓𝒓(𝝍𝝍)𝒓𝒓(𝒎𝒎)𝒓𝒓�𝝈𝝈𝜼𝜼𝟐𝟐�𝒓𝒓(𝒒𝒒𝒊𝒊)𝒓𝒓�𝝈𝝈𝝉𝝉𝒊𝒊
𝟐𝟐 �

×  𝒓𝒓�𝑷𝑷𝟓𝟓|𝛙𝛙,𝝈𝝈𝜼𝜼𝟐𝟐 ��𝒓𝒓�𝑷𝑷𝒚𝒚|𝑷𝑷𝒚𝒚,𝑲𝑲, 𝒓𝒓,𝒎𝒎,𝝍𝝍,𝝈𝝈𝜼𝜼𝟐𝟐 ��𝒓𝒓�𝑰𝑰𝒊𝒊,𝒚𝒚|𝑷𝑷𝒚𝒚,𝒒𝒒𝒊𝒊,𝜼𝜼𝒚𝒚,𝝈𝝈𝝉𝝉𝒚𝒚,𝒊𝒊
𝟐𝟐  �

𝒏𝒏

𝒚𝒚=𝟓𝟓

𝒏𝒏

𝒚𝒚=𝟓𝟓

 

2.3.3 Prior Distributions 

A Bayesian estimation approach was used to estimate production model parameters. Prior 
distributions were employed to represent existing knowledge about the likely values of model 
parameters. The carrying capacity parameter K, the intrinsic growth rate parameter r, the 
production shape parameter m, the initial proportion of biomass to carrying capacity parameter 
ψ , the catchability parameters qi, the process error 𝜎𝜎𝜂𝜂, and the estimable component of 
observation error 𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 , each had prior distributions. For process error and the estimable 
component of observation error, priors were placed explicitly on the unsquared form of the prior 
(e.g., the standard deviation). A summary of assumed priors is found in Table 2. The effect of 
the choice of prior assumptions on model results was assessed through sensitivity analyses as 
described in Section 2.3.6 Sensitivity Analyses.  

Prior for Intrinsic Growth Rate 
The prior distribution for intrinsic growth rate p(r) was a moderately informative lognormal 
distribution with mean (μr) and variance (𝜎𝜎𝑟𝑟2) parameters: 

 𝒓𝒓(𝒓𝒓) =  
𝟓𝟓

𝒓𝒓𝝈𝝈𝒓𝒓√𝟐𝟐𝝅𝝅
𝒓𝒓𝒆𝒆𝒓𝒓�−

(𝒍𝒍𝒏𝒏 𝒓𝒓 − 𝝁𝝁𝒓𝒓)𝟐𝟐

𝟐𝟐𝝈𝝈𝒓𝒓𝟐𝟐
� 

Equation 14 
The mean of the intrinsic growth rate parameter was set to be μr = 0.2735. This mean value was 
based on the recommendations of Musick (1999) which offered a likely 95% confidence interval 
of 0.16 to 0.5 for a moderately productive stock with life history characteristics commensurate to 
the Kona crab. The prior for r was set as a lognormal prior mean of μr = 0.2735 with a CV of 
30%, which produces a 95% confidence interval that approximates the suggested range on the 
lognormal scale.  
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Prior for Carrying Capacity 
The prior distribution for carrying capacity p(K) was developed using considerations from Millar 
and Meyer (2000) and Froese et al. (2016). The method uses the maximum catch and the 10th and 
90th quantiles of the r prior:  

𝑲𝑲𝒍𝒍𝒓𝒓𝒍𝒍 =  
𝒎𝒎𝒂𝒂𝒆𝒆(𝒄𝒄𝒂𝒂𝒓𝒓𝒄𝒄𝒄𝒄)

𝒓𝒓𝒄𝒄𝒊𝒊𝒉𝒉𝒄𝒄
𝑲𝑲𝒄𝒄𝒊𝒊𝒉𝒉𝒄𝒄 =  

𝟒𝟒 ×  𝒎𝒎𝒂𝒂𝒆𝒆(𝒄𝒄𝒂𝒂𝒓𝒓𝒄𝒄𝒄𝒄)
𝒓𝒓𝒍𝒍𝒓𝒓𝒍𝒍Equation 15 , 

where rlow = 0.184 and rhigh = 0.397, given the r prior described above. The maximum total catch 
in the base case is 176,342 lb in year 1972. This results in Klow = 444,044 lb and Khigh = 
3,832,028 lb. Inputting this range into JABBA automatically converts this range into a lognormal 
prior, with mean (𝜇𝜇𝐾𝐾) given by the log of the midpoint between Klow and Khigh and variance (𝜎𝜎𝐾𝐾2) 
given by: 

𝝈𝝈𝑲𝑲𝟐𝟐 = �𝐞𝐞𝐞𝐞𝐞𝐞 �
|𝝁𝝁𝑲𝑲 −  𝐥𝐥𝐥𝐥𝐥𝐥(𝑲𝑲𝒍𝒍𝒓𝒓𝒍𝒍)|

𝟐𝟐

𝟐𝟐

� − 𝟓𝟓 
Equation 16 

The prior for K then becomes: 

𝒓𝒓(𝑲𝑲) =  
𝟓𝟓

𝐊𝐊𝛔𝛔𝐊𝐊√𝟐𝟐𝟐𝟐
𝐞𝐞𝐞𝐞𝐞𝐞�−

(𝐥𝐥𝐥𝐥 𝐊𝐊− 𝛍𝛍𝐊𝐊)𝟐𝟐

𝟐𝟐𝛔𝛔𝐊𝐊𝟐𝟐
� 

Equation 17 

The resultant lognormal prior mean for mean 𝜇𝜇𝐾𝐾 =1,306,243 lb and CV = 53%.  

Prior for Production Shape Parameter 
The prior distribution for the production function shape parameter p(m) was a moderately 
informative lognormal distribution with mean (𝜇𝜇𝑚𝑚) and variance (𝜎𝜎𝑚𝑚2 ): 

𝒓𝒓(𝒎𝒎) =  
𝟓𝟓

𝒎𝒎𝝈𝝈𝒎𝒎√𝟐𝟐𝝅𝝅
𝒓𝒓𝒆𝒆𝒓𝒓�−

(𝒍𝒍𝒏𝒏 𝒎𝒎− 𝝁𝝁𝒎𝒎)𝟐𝟐

𝟐𝟐𝝈𝝈𝒎𝒎𝟐𝟐
� 

Equation 18 

The value of the lognormal mean was set to μm = 1.188 with a CV of 35%. This mean value for 
m corresponds to the value of m for a model where BMSY/K = 0.4. This value was chosen based 
on a meta-analyses from the RAM legacy database by Thorson et al. (2012) which concluded 
BMSY/K = 0.404 was a conservative generalized estimate for most fishes. Punt et al. (2013) stated 
for crab and lobster stocks that a BMSY/K range of 0.35 to 0.4 were often reliable estimates.  

Prior for Catchability 
The prior for Kona crab fishery catchability p(qi) in each of our two time periods i was an 
uninformative uniform distribution on the interval [10-30, 3]. This diffuse prior was chosen to 
allow the data and model structure to completely determine the distribution of fishery 
catchability estimates. 
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Priors for Error Variances 
In our modeling framework, the priors for error were placed on the standard error (square-root of 
the variance term), i.e., 𝜎𝜎𝜂𝜂 for process error, and 𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖 for observation error. When 
presenting results in figures, variances are presented.  

The inverse-gamma distribution is uniform in log scale (Gelman, 2006; Winker et al., 2018) and 
is a commonly used distribution for error variances. The prior for the process error p(𝜎𝜎𝜂𝜂) was 
chosen to be a moderately informative inverse-gamma distribution with rate parameter λ > 0 and 
shape parameter k > 0 for process error, 𝜎𝜎𝜂𝜂:  

𝒓𝒓�𝝈𝝈𝜼𝜼� =  
𝝀𝝀𝒌𝒌�𝝈𝝈𝜼𝜼�

−𝒌𝒌−𝟓𝟓
𝒓𝒓𝒆𝒆𝒓𝒓�−𝝀𝝀𝝈𝝈𝜼𝜼𝟐𝟐

�

𝚪𝚪(𝒌𝒌)Equation 19 

The base case model includes an estimable process error term. For the process error variance 
prior, k = 4 and λ = 0.01. This matches the level of process error where state-space surplus 
production models are most likely to adequately perform, e.g., have lower model errors (Ono et 
al., 2012; Thorson et al., 2014). This distribution has a 95% confidence interval from 0.03 to 0.1 
with a mean of 0.06 and a CV of 29%.  

The prior for estimable observation error p(𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖), for each CPUE series i, assumes an 
uninformative inverse-gamma distribution. The prior for the estimable component of observation 
error 𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

2   is assigned identically for both time series i as: 

𝒓𝒓�𝝈𝝈𝝉𝝉𝒓𝒓𝒆𝒆𝒓𝒓𝒊𝒊𝒎𝒎𝒂𝒂𝒓𝒓𝒓𝒓𝒂𝒂,𝒊𝒊� =  
𝝀𝝀𝒌𝒌�𝝈𝝈𝝉𝝉𝒓𝒓𝒆𝒆𝒓𝒓𝒊𝒊𝒎𝒎𝒂𝒂𝒓𝒓𝒓𝒓𝒂𝒂,𝒊𝒊�

−𝒌𝒌−𝟓𝟓
𝒓𝒓𝒆𝒆𝒓𝒓� −𝝀𝝀

𝝈𝝈𝝉𝝉𝒓𝒓𝒆𝒆𝒓𝒓𝒊𝒊𝒎𝒎𝒂𝒂𝒓𝒓𝒓𝒓𝒂𝒂,𝒊𝒊
�

𝚪𝚪(𝒌𝒌)Equation 20 

with gamma rate λ set to 0.004 and shape k parameters set to 0.001 (Gelman, 2006). The 
posterior for estimable observation error, and subsequently total observation error (which 
includes the squared form of 𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖, Equation 12) were estimated separately for each CPUE 
time series.  

Prior for Initial Year Proportion of Carrying Capacity 

The prior distribution for ψ was an uninformative lognormal distribution with mean (µψ) and 
variance (𝜎𝜎𝜓𝜓2) parameters:  

𝒓𝒓(𝝍𝝍)  =  
𝟓𝟓

𝚿𝚿𝝈𝝈𝝍𝝍√𝟐𝟐𝝅𝝅
𝒓𝒓𝒆𝒆𝒓𝒓�−

�𝒍𝒍𝒏𝒏𝝍𝝍 −  𝝁𝝁𝝍𝝍�
𝟐𝟐

𝟐𝟐𝝈𝝈𝝍𝝍𝟐𝟐
� 

Equation 21 

The value of the prior mean for ψ was set at 0.83, equal to the ratio of the 95th percentile of the 
standardization-model initial year CPUE (1958) to the 95th percentile of all standardization 
model CPUE estimates for Period 1. A CV of 50% was chosen for this prior. 



16 

2.3.4 Convergence Diagnostics 

Convergence of the MCMC samples to the posterior distribution is monitored via visual 
inspection of the trace, and Heidelberger and Welch (1992) and Geweke (1992) diagnostics as 
implemented in the coda R package (Plummer et al., 2006).  

JABBA provides additional diagnostic plots to illustrate several components of model 
performance. JABBA also produces the Root-Mean-Squared-Error (RMSE) to quantitatively 
evaluate the relative accuracy of model predictions of the entire time series with respect to 
observed values, scaled as a percentage of deviation.  

2.3.5 Retrospective Analysis 

A retrospective analysis was conducted to assess whether there are consistent patterns in model-
estimated outputs based on increasing periods of data (Mohn, 1999). A retrospective analysis is 
conducted by sequentially removing the terminal year of data and re-estimating model results. 
Each subsequent year removal is called a ‘peel.’ A retrospective analysis was conducted going 
back to 2011 by successively deleting the catch and CPUE data for years 2015 through 2011 in 
five 1-year ‘peels,’ refitting the assessment model, and comparing the results to the base case 
model with terminal data and estimates in 2016. The magnitude of retrospective pattern was 
assessed using Mohn’s rho (ρ; Mohn, 1999), which computes relative patterns of deviations with 
respect to a base model: 

𝝆𝝆 =  �
𝑿𝑿(𝒚𝒚𝟓𝟓:𝒚𝒚),𝒚𝒚 −  𝑿𝑿(𝒚𝒚𝟓𝟓:𝒚𝒚𝟐𝟐),𝒚𝒚

𝑿𝑿(𝒚𝒚𝟓𝟓:𝒚𝒚𝟐𝟐),𝒚𝒚

𝟐𝟐𝟎𝟎𝟓𝟓𝟓𝟓

𝒚𝒚=𝟐𝟐𝟎𝟎𝟓𝟓𝟓𝟓Equation 22 

where y1 = 1958 and y2 = 2016, spanning the full data set of the base case model; X indicates 
either exploitable biomass or harvest rate, and y indicates the terminal year for each retrospective 
refitting (i.e., y from 2011 to 2015). Graphical interpretations of biomass and harvest rate are 
presented to visualize retrospective patterns. 

2.3.6 Sensitivity Analyses 

Sensitivity analyses examine the effect on model-estimated results of varying prior values 
relative to the base case values. They were conducted by altering input parameter values for 
priors in isolation and comparing results to base-case model results. Sensitivity analyses were 
conducted on the following input parameters: carrying capacity (K), intrinsic population growth 
rate (r), shape parameter (m), initial year proportion of biomass to carrying capacity (ψ), process 
error (ση), estimated observation error (𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒), and unreported catch ratios. Early 
sensitivities on catchability (qi) showed minimal impact on results and are not further presented 
here.  

A table of sensitivity analyses tested is provided in Table 3. Carrying capacity (K, base case 
mean prior 1,306,243 lb with CV = 53%) had alternative prior means adjusted by 0.5, 0.75, 1.25, 
and 1.5 times base case prior means. Alternative intrinsic growth rate prior means (r, base case 
mean 0.27 with CV = 30%) were adjusted by factors of 0.5, 0.75, 1.25, and 1.5. Alternative prior 
means on shape parameter m (base case mean= 1.188, CV= 35%) were inspected by adjusting 
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the base case m prior mean by 0.75, 1.25, and 1.5. Initial year proportion of biomass to carrying 
capacity ψ (base case mean 0.83, CV = 50%) had the prior mean adjusted by a factor of 0.5 and 
0.75, and also fixed to equal 1. Sensitivity to process error (ση) was adjusted by adjusting rate 
parameters for the inverse gamma distribution so that the prior mean changed by a factor of 0.5, 
0.75, or 2, and thus ranged from 50% to 100% changes in the prior mean with CV of 30% 
retained for each. For sensitivities on observation error, we adjusted the estimated component of 
observation error 𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  by adjusting rate parameters for the inverse gamma distribution so 
that the prior mode changed by a factor of 0.5, 0.75, or 2. Given the parameterization of the 
estimated component of the observation error, the mean is undefined so changes in 
parameterization results in changes in the mode of the inverse gamma distribution. 

Lastly, sensitivity runs for unreported catches include three scenarios: adjusted reported catch 
only (UCR = 0, no unreported catch), an annual ratio of UCR from Langseth et al. (2018) and a 
high ratio (UCR = 5) (Table 1, Table 3, Figure 2). The annual ratios varied from year to year and 
ranged from UCR = 0.9 to 2.06. The high ratio value comes from two sources. First, the United 
States Fish and Wildlife Service conducts state estimates of recreational and non-commercial 
consumptive fishing activity every 5 years starting in 1991 with the most recent survey in 2011, 
finding that the estimated frequency of total fishing trips in marine non-commercial consumptive 
and recreational fisheries in Hawaii (finfish, shellfish, and crustaceans combined) is on average 
4.97 times that reported in the FRS system. This survey data primarily includes finfish, but does 
include shellfish and crustacean fishing in a few instances.1 Second, another recent study 
estimated that unreported catch of nearshore reef-associated fishes is approximately five times 
that of reported catch and 84% of total removals for examined species in the region (McCoy et 
al., 2018).  

2.3.7 Catch Projections 

Estimated posterior distributions of base case assessment model parameters were used in forward 
projections for fishing years 2020–2026 to estimate the probability of overfishing, P*, from 
2020–2026 under alternative future catches. The projection results accounted for uncertainty in 
the distribution of estimates of model parameters from the posterior of the base case model.  

In order to move the model forward to the starting year of projections, total catches from 2017 to 
2019 were set equal to the total catch value from 2016, which is a total catch of 7,290 lb 
equivalent to a reported catch of 2,870 lb. Projections were conducted from 2020 to 2026 for a 
set of alternative values of total catches, which accounts for female discards and a UCR of 1.54. 
When results for projections are shown, total catches are converted back to reported catches only 
for management purposes. The projected total catch scenarios ranged from 10,000 to 160,000 lb 
in 1000-lb increments, corresponding to projected reported catches ranging from 3,937 to 66,992 
lb. The projections were conducted assuming each value for the future total catch was constant 
for each fishing year 2020–2026. Projections were used to compute reported catches for 2020–
2026 that would produce probabilities of overfishing varying from 0% to 50% at 1% intervals. 
The future catch corresponding to a 50% risk of overfishing can be considered the overfishing 

1 See https://wsfrprograms.fws.gov/subpages/nationalsurvey/NatSurveyIndex.htm for more information. 
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limit (OFL). Other quantities of interest including corresponding relative biomass (B/BMSY), stock 
status, and risks of overfishing and overfished status were also calculated. 

3. Results

3.1 CPUE Model Results and Diagnostics 

The best-fit model for Period 1 included CML (as a random effect), year, and fishing area. The 
best-fit model for Period 1 reduced deviance by 6.7% from a null model with CML only and 
5.1% from a model with CML and fishing year only. The best-fit model for Period 2 also 
included CML (as a random effect), year, and fishing area. No habitat or oceanographic factors 
were selected in either time period. The best-fit model for Period 2 reduced deviance by 6.5% 
from a null model with CML only, and 7.2% from the model with CML and fishing year only. 
The change in AIC, log-likelihood, and degrees of freedom for each predictor are provided in 
Table 4. Alternative models also explored the impact of removing “novice fishers” from the 
models. Results (not shown here) indicated that this group did not have a large influence in the 
overall standardized CPUE scale or trend.  

Diagnostic residual plots and summary output of best-fit models show some minor deviation 
from assumptions about heteroscedasticity but in general, models did not appear to violate 
assumptions of normality. For Period 1, the histogram of quantile residuals indicated that 
distributional assumptions were reasonably satisfied (Figure 6). For both time periods, plots of 
residuals against predictor variables indicated no patterning with individual variables. For Period 
2, the histogram of quantile residuals indicated that normality was reasonably satisfied. Plots of 
quantile residuals against predictor variables showed mild skew towards lower values of the 
response variable (Figure 7). This may be attributed to a preponderance of lower catch values in 
the dataset. Altogether, the diagnostic plots were considered indicative of model assumptions 
being reasonably satisfied. Bias-corrected standardized CPUE is presented in Figure 8. Table 5 
provides standardized CPUE indices and CV for Periods 1 and 2, plus catch used in the base case 
stock assessment model. 

3.2 Assessment Model Results and Diagnostics 

All model-estimated posterior results from JABBA are reported as median values. Two hundred 
thousand iterations with a burn-in of 50,000 iterations and thinning increment of 25 were used 
for successful convergence. Visual inspection of trace plots for the base case model indicate 
steady convergence of parameters K, r, m, ψ, q1, q2, and 𝜎𝜎𝜂𝜂2. Estimated parameters all converge 
according to Geweke convergence criteria and values come from stable, stationary Markov 
chains according to Heidelberger and Welch diagnostics. Trace plots were satisfactory with no 
marked trends; the Heidelberger and Welch stationarity test indicated chains passed the half-
width ratio test. Diagnostics confirm that convergence and stationarity criteria are satisfied. 
Predicted CPUE fits from the JABBA model provide a good fit to observed (standardized) CPUE 
series (Table 9). Table 10 depicts residuals from base case model fits to CPUE, which pass the 
Shapiro-Wilk normality test for both time periods (Period 1 p = 0.32, Period 2 p = 0.28). 
Resulting fit criteria included the Standard Deviation of Normalized Residuals (SDNR) = 0.70 
and Root Mean Squared Error (RMSE) = 7.1 for the CPUE fits, which indicate fits are good. 
DIC for the base case model was 274.9. 
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Posteriors for model parameters including carrying capacity (K), intrinsic growth rate (r), shape 
parameter (m), initial proportion of carrying capacity (ψ), catchability in Period 1 (q1) and Period 
2 (q2), process error variance (𝜎𝜎𝜂𝜂2) for the base case Hawaii Kona crab assessment model are 
depicted as distributions in Figure 11. 

The two observation error components (annual CV from standardized CPUE (𝜎𝜎𝜏𝜏𝐶𝐶𝐶𝐶,𝑦𝑦,𝑖𝑖
2 ), , and 

estimable observation error (𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖
2 )), are additive in their squared forms (Equation 12) to 

yield total observation error variance 𝜎𝜎𝜏𝜏𝑦𝑦,𝑖𝑖
2  across years for Period 1 and Period 2, shown in 

Figure 12. Table 6 provides parameter estimates and confidence intervals; for process and 
observation error terms, the posterior estimates in Table 6 are presented in their unsquared form 
(i.e.,  𝜎𝜎𝜂𝜂 ,𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖

2 ), which matches the format of the prior, and are the square root of the 
values depicted in Figure 11 and Figure 12. 

The posterior median for carrying capacity K was estimated to be 1,445,595 lb. Posterior median 
intrinsic growth r = 0.17, and shape parameter m = 1.50. Initial year proportion of biomass to 
carrying capacity (ψ) was estimated to be 0.71. Maximum sustainable yield (MSY) for the base 
case model is estimated to be 73,069 lb total catch (25,870 lb reported catch). The posterior 
median estimate for biomass at maximum sustainable yield (BMSY) is 640,489 lb. The posterior 
median estimate for harvest rate at MSY, HMSY, is 0.114. Initial year biomass (B1958) is 1,026,999 
lb, while terminal year biomass (B2016) is 885,057 lb (Table 7).  

3.3 Stock Status of Kona Crab 

Reference points for this assessment come from Table 23 of the Western Pacific Regional 
Fishery Management Council’s (WPRFMC) Fishery Ecosystem Plan for the Hawaii Archipelago 
(Fishery Ecosystem Plan for the Hawaii Archipelago, 2009), for Northwest Hawaiian Islands 
lobster stocks. These reference points were borrowed based on discussions with staff from the 
Pacific Islands Regional Office and WPRFMC, since no reference points are specified for 
Hawaii Kona crab. The threshold for defining the Kona crab stock as overfished is B/BMSY < 0.7. 
The value of 0.7 comes from the minimum stock size threshold defined as (1-natM)×BMSY , since 
natM is assumed to be 0.3/yr in this assessment (see Section 1.1 Biology and Life History). The 
overfishing definition depends on biomass: overfishing occurs when H/HMSY > 1 if B > BMSY. 
Alternatively, overfishing occurs when H/HMSY > B/BMSY when B ≤ BMSY. The risk of overfishing 
is calculated according to these conditions, but since B very rarely falls below BMSY in model 
runs, the overfishing definition is often referred to as simply H/HMSY >1 throughout the rest of 
this document. Table 7 provides details of biomass B, relative biomass B/BMSY, harvest rates H, 
and relative harvest rates H/HMSY from 1958 to 2016. Additionally, Table 7 provides 
probabilities that the stock was overfished, overfished while experiencing overfishing, and 
experiencing overfishing from 1958 to 2016. These probabilities were based on categorizing 
each annual resultant of overfished/overfishing status from each saved MCMC run, using the 
aforementioned reference point control rule. 

Model results show that Hawaii Kona crabs have never been overfished (Table 7). Posterior 
median estimates of biomass relative to BMSY(B/BMSY) declined from a high of 2.14 in 1962 to 
1.12 in 1986, increased to 1.48 in 1998, decreased again to 1.12 in 2006, and increased to 1.39 in 
the final year of the stock assessment (Figure 13). The stock experienced overfishing for 2 years 
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in the early 1970s but has not been experiencing overfishing since (Figure 13). Posterior median 
estimates of harvest rates relative to HMSY(H/HMSY) are below 1.0 since 1973 and down to less 
than 0.1 since 2013, with an estimate of 0.07 in the final year of the stock assessment. There is a 
0% chance of experiencing overfishing and a 0.01% chance of being overfished in 2016 (Table 
7, Figure 14). There is uncertainty associated with model estimates. 

3.4 Results of Retrospective Analysis 

Retrospective analyses for median annual biomass and harvest rate showed no major or 
consistent retrospective pattern for five annual retrospective peels (Section 2.3.5 Retrospective 
Analysis, Figure 15). Mohn’s ρ for median annual biomass estimates was 0.18. Mohn’s ρ for 
harvest rate was 0.03.  

3.5 Results of Sensitivity Analyses 

Table 8 and Figure 16 through Figure 21 summarize analyses to test the model’s sensitivity to 
varied priors of K, r, m, ψ, ση, and alternative unreported catch scenarios. The results are 
presented as proportional changes in posterior medians. Annual biomass and biomass relative to 
their reference points (B/BMSY) sometimes exhibited some departure from base case trajectories 
in alternative scenarios, while harvest rates and harvest rates relative to their reference points 
(H/HMSY) seldom showed departures from base case results. While results of sensitivities in 
Table 8 are given as proportional departures from the base case model, it should be noted that 
absolute departures from base case harvest rate in 2016 (H2016) are often negligible in magnitude 
due to a small value for the base case H2016 posterior.  

For sensitivities to K, changes to terminal year biomass (B2016) ranged from -15% to 9% 
compared to base case estimates from changes to the prior mean for K of ± 50%. The same 
changes to the prior mean on K resulted in changes in harvest rates (H2016) ranging from a 17% 
increase to - 9% reduction, respectively. Posterior median estimates of K for the prior mean 
changes of + 50% and -50% ranged from - 14% to 22% difference from base case results. 
Results from sensitivity runs are depicted in Figure 16. 

For sensitivities to r, halving the prior mean resulted in a 17% increase in B2016, while increasing 
it by a factor of 1.5 resulted in a decrease in B2016 of 7%. Halving the prior mean for r decreased 
H2016 by 13%, while increasing it by a factor of 1.5 resulted in an increase in H2016 of 9%. The 
posterior median for r was sensitive to the prior, with a halving of the prior mean yielding a 35% 
decrease in the posterior, and with an increase by a factor of 1.5 for the r prior mean resulting in 
a 24% increase. Results from sensitivity runs for this variable are depicted in Figure 17. 

For sensitivities to m, the model exhibited proportional changes in BMSY ranging from -18% in 
response to changes in the prior mean by a reduction of 25%, to 22% in response to increasing 
the prior mean 50%. Increasing the prior mean for m by 50% also resulted in a 28% decrease in 
HMSY. Results from sensitivity runs for this variable are depicted in Figure 18. 

For sensitivities on ψ, when the prior mean was halved, B2016 decreased by 9% and H2016 
increased by 10%. Changes in the prior mean of -25% resulted in a slight decrease in B2016 of 4% 
and an increase in H2016 of 6%. Setting the prior mean to 1 also produced changes of less than 
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5% in all model-estimated outputs. The model is not very sensitive to the prior mean ψ. Results 
for sensitivity runs for this variable are depicted in Figure 19. 

For sensitivities on ση (estimated process error), reducing the prior mean by 50% resulted in a 
14% increase in BMSY and 8% decrease in HMSY. Doubling the prior mean did not have as 
pronounced an effect on these parameters and resulted in a decrease in B2016 of 13% and an 
increase in H2016 of 17%. Of the production model parameters, K was the most sensitive to ση, 
with an increase of 13% when the prior mean for ση was halved. Results for sensitivity runs for 
this variable are depicted in Figure 20. 

For sensitivities on estimated (the estimated component of observation error), changes in the 
prior mode of -50% and -25% yielded minimal (<5%) proportional changes in all model-
estimated outputs. Doubling the prior mode produced changes of less than 10% in all model-
estimated outputs, except for B2016, which showed an increase of 11%. Results for sensitivity 
runs for this variable are depicted in Figure 21. 

The model was sensitive to alternative catch scenarios which include annual catch values that are 
both much greater and lower than the base case. UCR (unreported catch ratio) scenarios are 
discussed in Sections 2.1.2 Annual Catch and 2.3.6. Sensitivity Analyses. Scenarios of adjusted 
reported catch (UCR=0) and high unreported catch (UCR=5) are the scenarios with very 
different total catch values from the base case  and showed the greatest departure from base case 
results. Using adjusted reported catch only (UCR=0) assumes that total catch is ~60% lower than 
in the base case model, and this decreased total catch MSY, BMSY, and B2016 all by ~60%. 
However, the MSY from the UCR = 0 scenario is 28,628 lb which is similar to the reported catch 
MSY from the base case model of 25,870 lb. The H2016 was reduced by 11% in the adjusted 
reported catch scenario. Using the annual UCRs increased BMSY by 15% and increased K by 
14%. Assuming a high unreported catch ratio of 5 had the greatest impact: BMSY increased by 
131%, MSY increased by 135%, and B2016 increased by 137%. Figure 22 depicts sensitivity 
results for varying UCR scenarios.  

3.6 Stock Projections 2020-2026 

Projection analyses were executed using posterior distributions from the base case model for 
Hawaii Kona crab. Projections performed for this assessment produced overfishing risks 
associated with a range of catch values (in pounds), risks of overfishing or being overfished, 
biomass, and harvest rates, among other estimates. Projections projected total catch, but results 
are shown with corresponding reported catch numbers only for management purposes. A 
summary of overfishing risk by year, with associated reported catches in lb to reach those risks, 
associated risks of the stock being overfished, stock biomass levels, and harvest rates are 
provided in Table 9. Table 10 provides risk of overfishing from 1% to 50% in 1% intervals with 
associated reported catches to reach those risks for seven projection years, 2020–2026. Figure 23 
shows the time series of biomass relative to biomass to produce MSY (B/BMSY) by year for 
various future catches and indicates that stock biomass does not drop below the B/BMSY = 0.7 
overfished threshold in any year for any projected catch scenario from 2020 to 2026, though 
scenarios with high reported catches above ~10,000 pounds trend downwards through the 
projection period. Conversely, under the projection scenario using the lowest future catches 
which are also most similar to current reported catches (~3,496 lb, red increasing lines), B/BMSY 
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continues to increase to closer to 2.0 (Figure 23). The reported catch amount corresponding to a 
50% risk of overfishing in 2026 is 33,989 lb; this corresponds to a 0.08% chance of being 
overfished in 2026 (Table 9, Figure 24). In other words, if 33,989 lb of Kona crab are reported 
caught each year from 2020 to 2026, there is a 50% risk of overfishing in 2026 (with lower risk 
of overfishing in 2020–2025). 

4. Discussion

The Hawaii Kona crab stock was not overfished or experiencing overfishing in 2016. There were 
an estimated 885,057 lb of Kona crab around Hawaii in 2016. The reported catch that 
corresponds to a 50% risk of overfishing in 2026 is 33,988 lb. Maximum sustainable yield in the 
base case model is 73,069 lb of total catch, corresponding to 25,869 lb of reported catch. 
Diagnostics, retrospective analyses, and sensitivity analyses of the JABBA surplus production 
model indicated the model has a relatively good fit to the data, the model converged, there was 
no retrospective pattern, and model results are not overly sensitive to prior distributions. 

This benchmark assessment is an improvement over prior assessments of the Hawaii Kona crab 
in that it estimated parameters of a surplus production model using a Bayesian framework with 
no deterministic estimation and included process and observation error. It utilized CPUE from 
1958 to 2016, which provides more information and contrast for estimation of posteriors in a 
production model. Furthermore, a posterior distribution of the proportion of initial biomass to 
carrying capacity was estimated using the framework of Meyer and Millar (1999a). This is the 
first application of the JABBA tool to a domestic US species, and on a crustacean fishery. This 
assessment also incorporated the addition of discard mortality as a result of a no-female take 
regulation, and also incorporated unreported catch estimates. The latter is especially important, 
since sensitivity analyses of unreported catch scenarios revealed that model results related to 
biomass and carrying capacity are sensitive to the total amount of catch included in the model 
because of the effect on the estimated scale of the model. However, relative estimates such as 
stock status in the various unreported catch scenarios did not significantly depart from base case 
estimates. Rudd and Branch (2017) asserted that unreported catches may not impede the 
assessment status of fisheries with significant unreported catches, as long as unreported catch 
ratios are consistent through time. However, in this model, the sensitivity that run annual ratios 
(UCRs that varied by year) did not lead to model estimates that were very different from the base 
case which used a constant average ratio (Table 8). 

Two data categories, if available, could improve future Kona crab stock assessments. The first 
data source is life history information. More reliable life history information for Hawaii Kona 
crabs, notably age and growth information, would be useful if the goal is to implement more 
complex assessment approaches. Reliable life history information could benefit a stock 
assessment by empirical estimation of intrinsic growth rates. Terminal biomass displayed a 
moderate degree of sensitivity and annual harvest rates also displayed sensitivity in early years of 
the assessment with changes to the prior set for intrinsic growth rate, r (Figure 17). Base case 
posterior estimates of r for Kona crab (0.10 – 0.26, Table 6) would classify the stock as a low 
resilient stock per Froese et al. (2016) in contrast to the moderately resilient classification by 
Musick (1999) based on other life history characteristics. The only other production model on 
Kona crabs for Australian conspecifics showed r values slightly lower than this assessment in 
some scenarios (~ 0.1) but had much greater uncertainty (Brown et al., 1999). Other estimated r 
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values for other brachyuran crabs which may or may not be appropriate to compare to Kona 
crabs are all for blue crabs (Callinectes sapidus): ~0.25 in North Carolina (Eggleston and 
Johnson, 2004), 0.2 or 0.3 in the Chesapeake Bay (Miller and Houde, 1998), and 0.17 in the 
Chesapeake Bay in unfished conditions (Miller, 2001).  

The second data category to improve future assessments is size or weight composition of 
individual crabs from the fishery. The DAR FRS data report total weight and total numbers of 
Kona crab caught per record, and thus individual crab weights are rare because it is rare to catch 
a single crab at a time. Computing average weight of individual crabs in each reporting day is 
possible in some records. However, weights are reported to the nearest pound, thus precision of 
average weight per crab is low particularly in smaller catches, and variability of weights per crab 
is unknown in each reporting day. Less than 45% of Kona crab single-reporting days report total 
numbers, so although an average Kona crab weight can be calculated and expanded, it is not 
clear how representative the resulting average weight would be. Individual crab weights and 
more life history information are needed if using a more complex model such as a structured 
model is eventually the goal.  
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Tables 

Table 1. Hawaii Kona crab total catch data used in base case, and catches used 
for sensitivity analyses. All catch columns are in pounds. Total catches are 
calculated from adjusted reported catches using Equation 2. 

Base case Sensitivities 

Year 

Total catch using 
average ratio, 

UCR = 1.54 

Adjusted 
reported catch, 

UCR = 0 

Total catch using 
annual ratio, UCR 

varies by year 

Total catch 
using high 

UCR = 5 
1958 22284 8761 23461 52566 
1959 10833 4259 11833 25554 
1960 23985 9430 25520 56580 
1961 38885 15288 41343 91728 
1962 77345 30409 86503 182454 
1963 53462 21019 61426 126114 
1964 32272 12688 38475 76128 
1965 29049 11421 32751 68526 
1966 25519 10033 26297 60198 
1967 44369 17444 45307 104664 
1968 67197 26419 74644 158514 
1969 91451 35955 103095 215730 
1970 89129 35042 103987 210252 
1971 110835 43576 133679 261456 
1972 176343 69331 196553 415986 
1973 159006 62515 181519 375090 
1974 103144 40552 110210 243312 
1975 62611 24616 63392 147696 
1976 67598 26577 64852 159462 
1977 58928 23168 61296 139008 
1978 80565 31675 89542 190050 
1979 73700 28976 83110 173856 
1980 26427 10390 27791 62340 
1981 45422 17858 46171 107148 
1982 21938 8625 23301 51750 
1983 28502 11206 31496 67236 
1984 43789 17216 49957 103296 
1985 55748 21918 63434 131508 
1986 70195 27598 76922 165588 
1987 56290 22131 62759 132786 
1988 45147 17750 46714 106500 
1989 33360 13116 32160 78696 
1990 47843 18810 45704 112860 
1991 60131 23641 51606 141846 
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Base case Sensitivities 

Year 

Total catch using 
average ratio, 

UCR = 1.54 

Adjusted 
reported catch, 

UCR = 0 

Total catch using 
annual ratio, UCR 

varies by year 

Total catch 
using high 

UCR = 5 
1992 
1993 
1994 
1995 
1996 
1997 
1998 
1999 
2000 
2001 
2002 
2003 
2004 
2005 
2006 
2007 
2008 
2009 
2010 
2011 
2012 
2013 
2014 
2015 
2016 

93382 
65861 
61146 
58159 
77818 
73845 
74295 
64858 
43417 
25760 
30298 
32223 
32518 
30278 
23906 
16093 
37681 
22592 
33398 
30783 
23772 
27225 

8676 
6595 
7290 

36714 
25894 
24040 
22866 
30595 
29033 
29210 
25500 
17070 
10128 
11912 
12669 
12785 
11904 

9399 
6327 

14815 
8882 

13131 
12103 

9346 
10704 

3411 
2593 
2866 

74845 
53665 
46165 
44022 
56505 
55020 
59683 
53724 
35251 
21700 
24445 
24266 
26928 
24623 
19467 
16890 
37499 
23355 
34257 
32271 
24822 
28665 

9455 
6632 
8160 

220284 
155364 
144240 
137196 
183569 
174198 
175260 
152997 
102420 
60768 
71472 
76013 
76708 
71425 
56392 
37964 
88889 
53293 
78784 
72616 
56078 
64222 
20467 
15558 
17198 
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Table 2. Prior distributions and input assumptions used for the base-case Kona 
crab production model. 

Parameter Distribution Mean CV Bounds Source/Justification 
K Range, 

converted to 
lognormal 

1,306,243 lb 53% - Empirical catch-growth 
method (Froese et al., 
2016) 

r lognormal 0.2735 30% - Musick (1999): 0.15 to 
0.50 95% C.I. for r for 
animals with lifespan 4-
12 years, mature 2, 
"moderately resilient" 

m lognormal 1.188 35% - Uninformative prior on m 
shape, mean from 
Thorson et al. (2013), 
also default in JABBA 
using a BMSY/K = 0.4 

ψ lognormal 0.83 50% - Ratio of 95th percentile 
1958 CPUE to 95th 
percentile Period 1 CPUE 

q1 uniform - - (10-30, 3) Uninformative prior 

q2 uniform - - (10-30, 3) Uninformative prior 

ση inverse 
gamma 

shape = 4 rate = 0.01 - This is the square root of 
the process error variance 
term. Default in JABBA 
based on Ono et al. 
(2012), sets median 
sigma to 7%, range from 
0% to 14.3%. 

𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1  inverse 
gamma 

shape = 0.001 rate = 0.004 - This is the square root of 
the estimated observation 
error variance term. 
Gelman (2006). 1/d 
gamma (0.001,0.004). 

𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2  inverse 
gamma 

shape = 0.001 rate = 0.004 - This is the square root of 
the estimated observation 
error variance term. 
Gelman (2006). 
1/dgamma (0.001,0.004). 

UCR - 1.54 - - Average from annual 
ratios from Langseth et 
al. (2017) based on 
Courtney and Brodziak 
(2011) 

Female post-
release 
mortality 

- 10.77% - - Wiley and Pardee (2018) 

Catch sex 
ratio, F:M 

- 51:49 - - Wiley and Pardee (2018) 
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Table 3. Sensitivity analyses run for Kona crab surplus production model. 

Sensitivity Scenario Distribution Mean/Value CV 
K prior mean reduced 50% lognormal 653,121 lb 0.53 

K prior mean reduced 25% lognormal 979,682 lb 0.53 

K prior mean increased 25% lognormal 1,632,804 lb 0.53 

K prior mean increased 50% lognormal 1,959,365 lb 0.53 

r prior mean reduced 50% lognormal 0.13 0.3 

r prior mean reduced 25% lognormal 0.20 0.3 

r prior mean increased 25% lognormal 0.34 0.3 

r prior mean increased 50% lognormal 0.41 0.3 

m prior mean reduced 25% lognormal 0.9 0.35 

m prior mean increased 25% lognormal 1.5 0.35 

m prior mean increased 50% lognormal 1.8 0.35 

ψ  prior mean reduced 50% lognormal 0.41 0.5 

ψ  prior mean reduced 25% lognormal 0.62 0.5 

ψ  prior mean = 1 lognormal 1.0 0.5 

ση prior mean reduced 50% inverse gamma shape = 4 rate = 0.0025 

ση prior mean reduced 25% inverse gamma shape = 4 rate = 0.006 

ση prior median increased 100% inverse gamma shape = 4 rate = 0.04 

𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  prior mode reduced 50% inverse gamma shape = 0.001 rate = 0.008 

𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  prior mode reduced 25% inverse gamma shape = 0.001 rate = 0.006 

𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  prior mode increased 100% inverse gamma shape = 0.001 rate = 0.015 

High ratio (UCR = 5) - - - 

Annual Ratio (UCR varies by year) - - - 

Adjusted Reported Catch (UCR = 0) - - -
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Table 4. CPUE standardization final models, showing log likelihood values and 
ΔAIC (AIC previous model – AIC proposed model) during model selection for the 
best-fit in the Period 1 (1958–2006) and Period 2 (2007–2016) time periods. 
Time 
Period Selected predictor ∆AIC ∆AIC% AIC 

Negative Log-
Likelihood 

1958–2006 License as random effect (null) 24579.85 -12286.92
Year 321.34 1.31 24258.51 -12077.98
Area 1077.49 4.38 23181.02 -11460.78

2007–2016 License as random effect (null) 3164.96 -1579.47
Year 6.44 0.20 3158.52 -1567.14
Area 103.72 3.28 3054.81 -1465.61
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Table 5. Input data used in the base case surplus production model. CPUE is 
standardized CPUE. 

Year 
Total Catch 

(lb) 

CPUE 
(lb/day) 
Period 1 

CV 
Period 1 

CPUE 
(lb/day) 
Period 2 

CV 
Period 2 

1958 22284 57.52 0.019 - - 
1959 10833 55.33 0.020 - - 
1960 23985 72.19 0.016 - - 
1961 38885 74.64 0.015 - - 
1962 77345 92.20 0.012 - - 
1963 53462 74.00 0.015 - - 
1964 32272 62.04 0.018 - - 
1965 29049 59.29 0.019 - - 
1966 25519 60.73 0.018 - - 
1967 44369 45.70 0.024 - - 
1968 67197 62.89 0.017 - - 
1969 91451 64.04 0.017 - - 
1970 89129 47.46 0.023 - - 
1971 110835 58.89 0.019 - - 
1972 176343 69.18 0.016 - - 
1973 159006 80.06 0.014 - - 
1974 103144 61.27 0.018 - - 
1975 62611 55.31 0.020 - - 
1976 67598 60.08 0.031 - - 
1977 58928 44.36 0.025 - - 
1978 80565 50.68 0.021 - - 
1979 73700 54.73 0.020 - - 
1980 26427 48.43 0.023 - - 
1981 45422 59.54 0.018 - - 
1982 21938 49.19 0.022 - - 
1983 28502 47.30 0.023 - - 
1984 43789 47.54 0.023 - - 
1985 55748 43.51 0.025 - - 
1986 70195 36.82 0.029 - - 
1987 56290 41.21 0.026 - - 
1988 45147 42.07 0.026 - - 
1989 33360 37.98 0.029 - - 
1990 47843 44.40 0.025 - - 
1991 60131 50.58 0.021 - - 
1992 93382 50.17 0.021 - - 
1993 65861 43.42 0.025 - - 
1994 61146 50.63 0.021 - - 
1995 58159 44.89 0.024 - - 
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Year 
Total Catch 

(lb) 

CPUE 
(lb/day) 
Period 1 

CV 
Period 1 

CPUE 
(lb/day) 
Period 2 

CV 
Period 2 

1996 77818 48.95 0.022 - - 
1997 73845 50.99 0.021 - - 
1998 74295 57.52 0.019 - - 
1999 64858 56.16 0.019 - - 
2000 43417 50.00 0.022 - - 
2001 25760 41.68 0.026 - - 
2002 30298 46.66 0.023 - - 
2003 32223 45.76 0.024 - - 
2004 32518 40.69 0.027 - - 
2005 30278 39.17 0.028 - - 
2006 23906 37.29 0.029 - - 
2007 16093 - - 26.93 0.043 
2008 37681 - - 30.62 0.038 
2009 22592 - - 31.86 0.036 
2010 33398 - - 32.89 0.035 
2011 30783 - - 34.01 0.034 
2012 23772 - - 32.50 0.036 
2013 27225 - - 39.91 0.029 
2014 8676 - - 29.27 0.040 
2015 6595 - - 31.84 0.037 
2016 7290 - - 27.51 0.043 
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Table 6. Posterior estimates of parameters and results from base case Kona crab 
production model. Median, lower 95% confidence interval (LCI), and upper 95% 
confidence interval are presented. 

Parameter Median 95% LCI 95% UCI 

K (lb) 1,445,595 917,297 2,809,544 

r (yr-1) 0.17 0.10 0.26 

M 1.50 0.72 3.03 

Ψ 0.71 0.50 0.95 

q1 0.00005 0.00002 0.00009 

q2 0.00003 0.00001 0.00006 

𝜎𝜎𝜂𝜂 0.09 0.05 0.13 

𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,1  0.09 0.05 0.13 

𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,2  0.08 0.04 0.19 

HMSY 0.11 0.05 0.24 

BMSY (lb) 640,489 342,488 1,392,849 

MSY (total lb) 73,069 48,045 127,364 

MSY (reported lb) 25,869 17,010 45,092 

P2016 0.61 0.39 0.84 

B/BMSY 2016 1.39 0.76 2.29 

H/HMSY 2016 0.07 0.02 0.17 
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Table 7. Model-estimated exploitable biomass, relative biomass B/BMSY, 
probability of being overfished (B/BMSY  < 0.7), harvest rate, relative harvest rate 
H/HMSY, and probability of overfishing (H/HMSY  > 1.0), by year. 

Year 
Biomass 

(lb) B/BMSY 
Probability 
Overfished 

Harvest 
rate H/HMSY 

Probability of 
Overfishing 

Probability of 
Overfished and 

Overfishing 
1958 1,026,999 1.6155 0.0002 0.0214 0.1890 0.0000 0.0000 
1959 1,060,969 1.6652 0.0002 0.0100 0.0889 0.0000 0.0000 
1960 1,207,884 1.8993 0.0000 0.0196 0.1727 0.0000 0.0000 
1961 1,287,302 2.0214 0.0000 0.0298 0.2625 0.0000 0.0000 
1962 1,366,677 2.1475 0.0000 0.0557 0.4907 0.0246 0.0000 
1963 1,246,364 1.9558 0.0000 0.0424 0.3737 0.0020 0.0000 
1964 1,123,829 1.7599 0.0000 0.0284 0.2510 0.0002 0.0000 
1965 1,069,320 1.6752 0.0001 0.0269 0.2371 0.0000 0.0001 
1966 1,038,091 1.6343 0.0002 0.0242 0.2139 0.0001 0.0000 
1967 965,544 1.5105 0.0011 0.0457 0.4026 0.0152 0.0011 
1968 1,057,149 1.6634 0.0001 0.0627 0.5530 0.0687 0.0001 
1969 1,068,661 1.6797 0.0001 0.0844 0.7439 0.2693 0.0001 
1970 988,391 1.5423 0.0004 0.0898 0.7912 0.3348 0.0004 
1971 1,076,752 1.6869 0.0001 0.1023 0.9017 0.4690 0.0001 
1972 1,184,651 1.8636 0.0000 0.1466 1.2916 0.8911 0.0000 
1973 1,200,776 1.8958 0.0000 0.1302 1.1471 0.7600 0.0000 
1974 1,059,301 1.6678 0.0000 0.0959 0.8453 0.4040 0.0000 
1975 984,950 1.5510 0.0003 0.0629 0.5542 0.0696 0.0003 
1976 973,579 1.5380 0.0006 0.0685 0.6043 0.1090 0.0006 
1977 879,669 1.3786 0.0026 0.0664 0.5855 0.1062 0.0026 
1978 903,071 1.4227 0.0017 0.0880 0.7758 0.3101 0.0017 
1979 915,410 1.4427 0.0017 0.0795 0.7004 0.2134 0.0017 
1980 884,446 1.3926 0.0031 0.0295 0.2603 0.0005 0.0017 
1981 942,360 1.4843 0.0014 0.0474 0.4178 0.0172 0.0014 
1982 878,231 1.3807 0.0031 0.0247 0.2180 0.0001 0.0003 
1983 849,904 1.3323 0.0041 0.0333 0.2933 0.0021 0.0026 
1984 829,925 1.3002 0.0054 0.0524 0.4616 0.0413 0.0054 
1985 776,623 1.2175 0.0115 0.0714 0.6292 0.1564 0.0115 
1986 720,708 1.1283 0.0222 0.0967 0.8521 0.4310 0.0222 
1987 722,275 1.1351 0.0209 0.0767 0.6764 0.2345 0.0209 
1988 726,749 1.1430 0.0195 0.0612 0.5395 0.1072 0.0195 
1989 725,165 1.1383 0.0209 0.0455 0.4016 0.0287 0.0192 
1990 792,975 1.2447 0.0090 0.0598 0.5269 0.0811 0.0090 
1991 850,648 1.3405 0.0040 0.0698 0.6152 0.1265 0.0040 
1992 859,675 1.3543 0.0033 0.1071 0.9444 0.5278 0.0033 
1993 812,040 1.2770 0.0069 0.0802 0.7069 0.2300 0.0069 
1994 843,969 1.3321 0.0036 0.0713 0.6290 0.1443 0.0036 
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Year 
Biomass 

(lb) B/BMSY 
Probability 
Overfished 

Harvest 
rate H/HMSY 

Probability of 
Overfishing 

Probability of 
Overfished and 

Overfishing 
1995 835,084 1.3082 0.0049 0.0689 0.6076 0.1269 0.0049 
1996 873,406 1.3695 0.0027 0.0883 0.7779 0.3143 0.0027 
1997 904,035 1.4159 0.0015 0.0810 0.7143 0.2309 0.0015 
1998 947,288 1.4849 0.0008 0.0777 0.6853 0.1946 0.0008 
1999 925,888 1.4609 0.0012 0.0692 0.6097 0.1162 0.0012 
2000 855,806 1.3434 0.0040 0.0501 0.4418 0.0288 0.0040 
2001 789,683 1.2409 0.0090 0.0322 0.2844 0.0019 0.0044 
2002 804,941 1.2638 0.0078 0.0373 0.3287 0.0059 0.0061 
2003 785,667 1.2347 0.0096 0.0404 0.3563 0.0106 0.0084 
2004 743,424 1.1673 0.0183 0.0433 0.3816 0.0179 0.0162 
2005 718,147 1.1280 0.0254 0.0416 0.3668 0.0163 0.0207 
2006 718,963 1.1270 0.0317 0.0328 0.2898 0.0022 0.0146 
2007 781,406 1.2327 0.0259 0.0202 0.1784 0.0000 0.0029 
2008 859,880 1.3600 0.0163 0.0430 0.3791 0.0363 0.0160 
2009 896,670 1.4218 0.0140 0.0246 0.2172 0.0005 0.0060 
2010 934,985 1.4788 0.0099 0.0350 0.3083 0.0125 0.0094 
2011 955,455 1.5131 0.0096 0.0315 0.2779 0.0073 0.0081 
2012 960,947 1.5180 0.0091 0.0242 0.2136 0.0012 0.0041 
2013 1,008,942 1.5972 0.0065 0.0263 0.2324 0.0018 0.0046 
2014 910,446 1.4437 0.0151 0.0093 0.0823 0.0000 0.0000 
2015 908,463 1.4382 0.0135 0.0071 0.0627 0.0000 0.0000 
2016 885,057 1.3977 0.0166 0.0081 0.0714 0.0000 0.0000 
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Table 8. Results of sensitivity runs, showing proportional changes in posterior median values from base case. 
Priors for the base case are given in Table 3. 

K (lb) r M Ψ 
MSY  

(total lb) BMSY HMSY B2016 H2016 
base case 1,445,594 0.171 1.501 0.720 73,069 640,488 0.114 885,056 0.008 
K prior mean reduced 50% -0.147 0.089 -0.044 -0.004 -0.051 -0.169 0.147 -0.151 0.178 
K prior mean reduced 25% -0.005 0.016 0.004 -0.005 -0.018 -0.014 0.020 -0.024 0.049 
K prior mean increased 25% 0.006 -0.011 0.012 0.010 0.002 0.013 -0.018 0.006 -0.008
K prior mean increased 50% 0.223 -0.091 0.127 -0.044 0.030 0.274 -0.198 0.097 -0.095
r prior mean reduced 50% 0.262 -0.353 -0.137 -0.004 -0.114 0.184 -0.252 0.179 -0.138
r prior mean reduced 25% 0.093 -0.155 -0.068 0.015 -0.038 0.060 -0.087 0.082 -0.074
r prior mean increased 25% -0.031 0.125 0.066 0.006 0.024 -0.018 0.059 -0.022 0.028
r prior mean increased 50% -0.102 0.247 0.121 0.003 0.025 -0.065 0.113 -0.077 0.096
m prior mean reduced 25% -0.048 -0.045 -0.278 0.005 0.064 -0.182 0.326 -0.044 0.068
m prior mean increased 25% 0.027 0.055 0.286 -0.019 -0.082 0.140 -0.186 -0.037 0.034
m prior mean increased 50% 0.032 0.088 0.525 -0.017 -0.115 0.225 -0.280 -0.027 0.039
Ψ prior mean reduced 50% 0.047 -0.029 0.080 -0.124 -0.045 0.072 -0.108 -0.093 0.100
Ψ prior mean reduced 25% 0.007 -0.021 0.038 -0.062 -0.038 0.022 -0.059 -0.040 0.063
Ψ prior mean = 1 -0.033 0.022 -0.024 0.031 -0.006 -0.044 0.047 -0.017 0.025
ση  mean reduced 50% 0.133 -0.063 0.023 0.073 0.038 0.147 -0.085 0.214 -0.174
ση  mean reduced 25% 0.074 -0.053 0.040 0.008 -0.008 0.090 -0.085 0.088 -0.061
ση  mean increased 100% -0.054 0.034 -0.018 -0.055 -0.022 -0.065 0.051 -0.139 0.171
𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  prior mode reduced 50% 0.026 -0.018 0.014 0.014 -0.012 0.029 -0.027 0.037 -0.024
𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  prior mode reduced 25% -0.018 0.004 0.010 -0.011 -0.044 -0.024 -0.004 -0.036 0.047
𝜎𝜎𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  prior mode increased 100% 0.095 -0.040 0.031 0.017 0.022 0.094 -0.064 0.114 -0.083
Unreported Catch Ratio = 5 1.326 0.009 -0.018 0.014 1.357 1.311 0.029 1.371 -0.004
Annual Ratio Unreported Catch 0.141 -0.067 0.051 0.005 0.037 0.157 -0.108 0.142 -0.010
Adjusted Reported Catch -0.597 -0.022 0.001 -0.003 -0.608 -0.599 -0.018 -0.597 -0.112



40 

Table 9. Projection results showing various probabilities of overfishing (H/HMSY  > 
1) and corresponding future annual reported catches, biomass, harvest rate, and
probability the stock is overfished (B/BMSY  < 0.7) from 2020 to 2026.

Prob. of 
overfishing 
(H/HMSY > 
1) 

0.01 0.1 0.2 0.3 0.4 0.5 

Year Reported Catch (lb) 
2020 12,392 24,429 30,094 35,051 39,299 44,256 
2021 12,392 23,721 29,032 33,280 37,175 41,070 
2022 12,038 23,013 27,970 31,864 35,405 39,299 
2023 11,684 22,659 27,262 30,802 33,989 37,529 
2024 12,038 21,951 26,554 29,740 32,926 36,113 
2025 12,038 21,597 25,845 29,386 31,864 35,051 
2026 12,038 21,243 25,491 28,324 31,156 33,989 
Year Biomass (lb) 
2020 1,101,480 1,095,540 1,099707 1,098893 1,100,925 1,100,427 
2021 1,108,561 1,078,820 1,059655 1,051517 1,038,860 1,026,565 
2022 1,116,579 1,062,823 1,033262 1,014613 993,008 975,851 
2023 1,128,754 1,046,237 1,010532 986,044 960,529 928,009 
2024 1,136,618 1,037,401 998,899.6 964,458 932,273 901,930 
2025 1,145,818 1,033,322 984,765.4 940,619 915,054 870,447 
2026 1,153,881 1,028,821 974,959.4 931,710 892,995 852,259 
Year Harvest rate 
2020 0.032 0.062 0.077 0.089 0.100 0.112 
2021 0.031 0.062 0.077 0.089 0.100 0.112 
2022 0.030 0.061 0.076 0.088 0.100 0.113 
2023 0.029 0.061 0.076 0.087 0.099 0.113 
2024 0.030 0.059 0.075 0.086 0.099 0.112 
2025 0.029 0.058 0.074 0.088 0.098 0.113 
2026 0.029 0.058 0.073 0.086 0.098 0.112 
Year Probability stock is overfished (B/BMSY < 0.7) 
2020 0.004 0.005 0.004 0.005 0.005 0.005 
2021 0.005 0.007 0.008 0.009 0.009 0.010 
2022 0.005 0.009 0.011 0.013 0.016 0.019 
2023 0.005 0.012 0.016 0.020 0.027 0.033 
2024 0.005 0.014 0.020 0.025 0.034 0.045 
2025 0.005 0.015 0.026 0.036 0.044 0.063 
2026 0.005 0.017 0.032 0.041 0.058 0.082 
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Table 10. Probability of overfishing (H/HMSY > 1) from 0.01 to 0.50 and 
corresponding projected reported catch (lb) by year. Catch values for a given 
probability of overfishing in a given year were applied in all previous projection 
years. 

P(Overfishing) 2020 2021 2022 2023 2024 2025 2026 
0.01 12,392 12,392 12,038 11,684 12,038 12,038 12,038 
0.02 15,224 15,224 14,870 14,516 14,516 14,516 14,516 
0.03 17,348 16,994 16,640 16,640 16,286 16,286 15,932 
0.04 19,119 18,765 18,056 17,702 17,348 17,348 16,994 
0.05 19,827 19,827 19,119 19,119 18,765 18,410 18,056 
0.06 21,243 20,889 19,827 19,827 19,473 19,119 18,410 
0.07 22,305 21,597 20,889 20,889 20,181 19,827 19,827 
0.08 23,013 22,305 21,951 21,243 20,889 20,889 20,181 
0.09 23,367 23,013 22,305 21,951 21,597 21,243 20,889 
0.10 24,429 23,721 23,013 22,659 21,951 21,597 21,243 
0.11 25,137 24,429 23,367 23,367 22,659 22,305 21,951 
0.12 25,845 24,783 24,429 23,367 23,367 22,659 22,305 
0.13 26,200 25,137 24,783 24,075 23,367 23,367 23,013 
0.14 26,908 25,845 25,137 24,783 24,075 23,721 23,013 
0.15 27,262 26,554 25,845 25,137 24,429 24,075 23,367 
0.16 27,970 27,262 26,200 25,491 25,137 24,429 24,075 
0.17 28,324 27,262 26,908 25,845 25,491 24,783 24,429 
0.18 29,386 27,970 27,262 26,554 25,845 25,137 24,783 
0.19 29,386 28,324 27,262 26,908 26,200 25,491 25,137 
0.20 30,094 29,032 27,970 27,262 26,554 25,845 25,491 
0.21 30,802 29,386 28,324 27,262 26,908 26,200 25,845 
0.22 31,156 29,740 28,678 27,970 27,262 26,554 26,200 
0.23 31,864 30,094 29,032 28,324 27,262 26,908 26200 
0.24 31,864 30,448 29,386 28,324 27,970 27,262 26,554 
0.25 32,572 30,802 30,094 29,032 28,324 27,616 26,908 
0.26 32,926 31,510 30,094 29,386 28,324 27,970 27,262 
0.27 33,635 31,864 30,802 29,740 29,032 28,324 27,616 
0.28 33,989 32,218 31,156 30,094 29,386 28,324 27,970 
0.29 34,343 32,926 31,510 30,094 29,386 29,032 28,324 
0.30 35,051 33,280 31,864 30,802 29,740 29,386 28,324 
0.31 35,405 33,635 32,218 31,156 30,094 29,386 28,678 
0.32 35,759 33,989 32,218 31,510 30,448 29,740 29,032 
0.33 36,113 34,343 32,572 31,864 30,802 30,094 29,386 
0.34 36,467 34,697 33,280 31,864 31,156 30,094 29,386 
0.35 37,175 35,051 33,635 32,218 31,510 30,448 29,740 
0.36 37,883 35,405 33,989 32,926 31,864 30,802 30,094 
0.37 38,237 36,113 34,697 32,926 31,864 31,156 30,094 
0.38 38,591 36,467 34,697 33,280 32,218 31,510 30,802 
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P(Overfishing) 2020 2021 2022 2023 2024 2025 2026 
0.39 39,299 37,175 35,051 33,635 32,572 31,864 31,156 
0.40 39,299 37,175 35,405 33,989 32,926 31,864 31,156 
0.41 40,007 37,529 35,759 34,697 33,280 32,218 31,510 
0.42 40,715 37,883 36,113 34,697 33,635 32,572 31,864 
0.43 41,070 38,237 36,467 35,051 33,989 32,926 32,218 
0.44 41,424 38,591 36,821 35,405 34,343 33,280 32,572 
0.45 41,778 38,945 37,529 35,759 34,697 33,635 32,572 
0.46 42,132 39,653 37,883 36,113 34,697 33,989 32,926 
0.47 42,840 40,007 37,883 36,467 35,051 34,343 33,280 
0.48 43,194 40,361 38,237 36,821 35,405 34,697 33,280 
0.49 43,902 41,070 38,591 37,175 35,759 34,697 33,635 
0.50 44,256 41,070 39,299 37,529 36,113 35,051 33,989 
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Figures 

Figure 1. Boundary of the main Hawaiian Islands (blue shaded cells) as defined in 
(Yau, 2018). The portion circled in red is the Papahānaumokuākea Marine National 
Monument as of August 25, 2016 prior to subsequent expansion. Yellow shaded 
area is Penguin Banks, Area = 331. 
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Figure 2. Scenarios of total catch for Hawaii Kona crabs by year, 1958–2016. Solid 
black line represents total catch from the base case (average ratio of UCR = 1.54). 
Dashed line represents adjusted reported catch (UCR = 0). Solid grey line 
represents total catch using an annual ratio (UCR varies by year from Langseth et 
al., 2018). Scenario of high UCR = 5 not shown because of y-axis scaling. 
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Figure 3. Boxplot illustrating the average weight per record for the 45% of Kona 
crab records that report both a nonzero number and weight from 1958 to 2016. 
The horizontal lines inside each box represent the median, the lower and upper 
box edges are the 25th and 75th percentiles respectively, and the whiskers 
extend to 1.5 times the interquartile ranges. Outliers have been omitted to 
maintain confidentiality. 
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Figure 4. Number of single-reporting days with Kona crab catch in which other 
species were caught (True) or not (False). Total number of single-reporting days 
is shown as the sum of both bars in each year. 
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Figure 5. Illustration of Pella-Tomlinson (1969) generalized relative surplus 
production curves as a function of biomass relative to carrying capacity (K) for 
various shape (m) values. In this example, K = 1, and intrinsic growth rate (r) = 
0.5. 
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Figure 6. Model diagnostics for the Period 1 (1958–2006) CPUE standardization 
model. Diagnostic plots include plots of quantile residuals against model 
predicted values (to assess heteroscedasticity), histogram of quantile residuals 
(to assess normality), and plots of quantile residuals against values of each 
predictor variable (to assess patterning in the predictor variables). 
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Figure 7. Model diagnostics for the Period 2 (2007–2016) CPUE standardization 
model. Diagnostic plots include plots of quantile residuals against model 
predicted values (to assess heteroscedasticity), histogram of quantile residuals 
(to assess normality), and plots of quantile residuals against values of each 
predictor variable (to assess patterning in the predictor variables). 
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Figure 8. Standardized (solid line, with gray shaded 95% confidence intervals) for 
Period 1 (top, 1958–2006) and Period 2 (bottom, 2007–2016). 
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Figure 9. Observed (standardized CPUE) and production model estimated CPUE 
series for Period 1 (1958–2006) and Period 2 (2007–2016). 
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Figure 10. Standardized residuals of observed (standardized) minus production 
model estimated CPUE for (top) Period 1 (1958–2006) and (bottom) Period 2 
(2007–2016). 
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Figure 11. Prior (dark gray) and posterior (light gray) distributions for model 
parameters including carrying capacity (K), intrinsic growth rate (r), shape 
parameter (m), initial proportion of biomass to carrying capacity (psi, ψ), 
catchability in Period 1 (q.1, q1) and Period 2 (q.2, q2), process error variance 
(sigma2, ση2) for the base case Hawaii Kona crab assessment model. 
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Figure 12. Total observation error variance, 𝝈𝝈𝝉𝝉𝒚𝒚,𝒊𝒊
𝟐𝟐 , by year for Period 1 (1958–2006, 

top) and Period 2 (2007–2016, bottom), partitioned into the sum of 1) observation 
error from CPUE CV 𝝈𝝈𝝉𝝉𝑪𝑪𝑪𝑪,𝒚𝒚,𝒊𝒊

𝟐𝟐
R (light gray), and 2) estimable observation error 

𝝈𝝈𝝉𝝉𝒓𝒓𝒆𝒆𝒓𝒓𝒊𝒊𝒎𝒎𝒂𝒂𝒓𝒓𝒓𝒓𝒂𝒂,𝒊𝒊
𝟐𝟐  (dark gray). 
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Figure 13. Estimated ratio of harvest rate to harvest rate at maximum sustainable 
yield (H/HMSY, top) and estimated ratio of biomass to biomass at maximum 
sustainable yield (B/BMSY, bottom) for Hawaii Kona crabs from 1958 through 2016 
(solid blue line). Solid grey area indicates 95% confidence intervals. Horizontal 
dashed lines indicates overfishing limit (H/HMSY > 1.0) and overfished limit 
(B/BMSY < 0.7). 
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Figure 14. Kobe plot of the estimated stock status for Hawaii Kona crab from 1958 
through 2016. Square denotes start year (1958), circle denotes 40-year mark 
(1999), and triangle denotes end year (2016). Outer bounds of grey shading area 
indicate 95% confidence interval for final year 2016 with 0% chance of overfished 
(B/BMSY < 0.7) and 0% chance of overfishing. Overfishing occurs when H/HMSY > 1 
if B > BMSY. Alternatively, overfishing occurs when H/HMSY > B/BMSY when B ≤ 
BMSY. Colored boxes indicate various stock statuses: red = overfished and 
overfishing, yellow = overfished but no overfishing, orange = not overfished and 
overfishing, and green = not overfished, no overfishing. 
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Figure 15. Retrospective analysis for annual biomass (top) and annual harvest 
rate (bottom) with base case model ending in 2016 as reference (base case) and 
with retrospective peels from 2011–2015. 
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Figure 16. Results of sensitivity analyses for carrying capacity, K: Estimated annual biomass (top left), harvest 
rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). 
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Figure 17. Results of sensitivity analyses for intrinsic growth, r: Estimated annual biomass (top left), harvest rate 
(bottom left), B/BMSY (top right), and H/HMSY (bottom right). 
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Figure 18. Results of sensitivity analyses for shape parameter, m: Estimated annual biomass (top left), harvest 
rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). 
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Figure 19. Results of sensitivity analyses for initial ratio of biomass to carrying capacity, ψ: Estimated annual 
biomass (top left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). 
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Figure 20. Results of sensitivity analyses for process error, ση: Estimated annual biomass (top left), harvest rate 
(bottom left), B/BMSY (top right), and H/HMSY (bottom right). 
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Figure 21. Results of sensitivity analyses for estimated observation error, 𝝈𝝈𝝉𝝉𝒓𝒓𝒆𝒆𝒓𝒓𝒊𝒊𝒎𝒎𝒂𝒂𝒓𝒓𝒓𝒓𝒂𝒂: Estimated annual biomass 
(top left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). 
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Figure 22. Results of sensitivity analyses for various assumptions on unreported catch: Estimated annual 
biomass (top left), harvest rate (bottom left), B/BMSY (top right), and H/HMSY (bottom right). 



65 

Figure 23. Projections of relative biomass, B/BMSY, for years 2020–2026 based on 
Kona crab base case model projected with various future total catch scenarios 
(10,000 to 160,000 lb, in 1000-lb increments), equivalent to reported future catches 
of 3,496 to 55,931 lb. Scenarios with low reported future catches are typically 
higher in B/BMSY over time; the top red trajectories are reported catches <10,000 
lb; blue lines are for reported catches approximately 20,000 to 30,000 lb; green 
from 30,000 to 40,000 lb; yellow, orange to bottom red trajectories are >40,000 lb. 
Horizontal dashed line indicates the overfished limit of 0.7 BMSY. 
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Figure 24. Risk of Hawaii Kona crab stock becoming overfished (B/BMSY < 0.7) 
(top) and risk of overfishing (H/HMSY > 1.0) (bottom) for fishing years 2020 through 
2026, presented as a function of projected reported catch. 
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Appendices 

Appendix I. R Code for Calculating Catch Scenarios 

require(dplyr) 
require(lubridate) 
require(reshape2) 
require(ggplot2) 

## raw DAR data ---- 
catch <- read.csv("catch_raw_30JUN.csv") 

## ratios for unreported catch 
UCR <- read.csv("UCR.csv") 
kc_only <- subset(catch, SPECIES_FK == 701) 

kc_only$FYEAR <- 
 ifelse(kc_only$REPORT_MONTH > 6, 

 kc_only$REPORT_YEAR + 1, 
 kc_only$REPORT_YEAR) 

## From Wiley and Pardee (2018) 
sexratio <- 0.51 #female sex ratio % 
survive.rate <- 0.8923 # survival rate of released crabs 

catch_kc <- kc_only %>% 
 group_by(FYEAR) %>% 
 dplyr::summarise( 
 raw_observed = sum(LBS_KEPT), 
 ## apply post-release sex ratio with estimated mortality after 2006 
 sex_adjusted = if (FYEAR > 2006) 
 raw_observed + raw_observed * (sexratio / (1 - sexratio))* (1 - survive

.rate) 
 else 
 raw_observed 

 ) %>% 
 mutate( 
 ## apply 1.54 scaling (mean(UCR$Annual_Ratio ~ 1.54)) 
 base_case = sex_adjusted + sex_adjusted * mean(UCR$Annual_Ratio), 
 ## UCR = 5x sex-adjusted catch throughout 
 UCR5 = sex_adjusted * 6, 
 ## apply annualized scaling 
 annual_ratio = sex_adjusted +  sex_adjusted * UCR$Annual_Ratio 

 ) %>% 
 filter(FYEAR > 1957 & FYEAR < 2017) %>% 
 select(FYEAR, raw_observed, base_case,sex_adjusted,annual_ratio,UCR5) 
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## write CSVs ---- 
catch_kc %>% 
 write.csv("Table1_scenarios_for_catch.csv",row.names = F) 

catch_kc %>% 
 select(FYEAR, base_case) %>% 
 write.csv("base_catch.csv",row.names = F) 

catch_kc %>% 
 select(FYEAR, annual_ratio) %>% 
 write.csv("catch_AnnualR.csv",row.names = F) 

catch_kc %>% 
 select(FYEAR, UCR5) %>% 
 write.csv("catch_5.csv",row.names = F) 

catch_kc %>% select(FYEAR, raw_observed) %>% 
 write.csv("catch_rept.csv",row.names = F) 
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Appendix II. R Code for CPUE Standardization 

Nominal CPUE Calculation

require(dplyr) 
require(lubridate) 
require(foreign) 
require(ggplot2) 

## raw DAR data ---- 
df0 <- read.csv(" catch_raw_30JUN.csv") 

## filter on gear code 40 AND species code 701 & save ---- 
df1 <- df0 %>% filter(GEAR_FK == 40 & SPECIES_FK == 701) 
write.csv(df1, "kona_crab_catch_raw.csv") 
df1 <- read.csv("kona_crab_catch_raw.csv") 

dim(df1) 
length(unique(df1$AREA_FK)) 
length(unique(df1$LANDING_PORT_FK)) 

## drop areas outside MHI_SAP Definition grids ---- 
mhiareas <- read.csv("MHI_SAPdefinition.csv") 
df1.1 <- df1[which(df1$AREA_FK %in% mhiareas$area),] 

## add FYEAR ---- 
df2 <- df1.1 %>% 
 mutate(FYEAR = ifelse(REPORT_MONTH>6, REPORT_YEAR+1,REPORT_YEAR)) 

## match on fisher names ---- 
namesdf <- read.csv("filtered_names.csv") %>% 
 select( FISHED, AREA, LICENSE, RELEASE, FNAME) 

## check if we lose data by only using names tracker thru 2016 
df2temp <- subset(df2, FYEAR == 2016) 
df2temp[!(df2temp$FISHER_LIC_FK %in% namesdf$LICENSE),] 
## there is literally one unmatched record, with LBS_KEPT of 0 

## perform match where FISHER_LIC_FK == LICENSE and FISHED == FISHED_DATE 
## create unique license ID 
## coerce FNAME to numeric; if no FNAME available, this is retained as FISHER
_LIC_FK 

df3 <- 
 merge( 
 df2, 
 namesdf, 
 by.x = c("FISHED_DATE", "FISHER_LIC_FK"), 
 by.y = c('FISHED', 'LICENSE'), 
 all = T 
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 ) %>% 
 mutate(LICENSE =  ifelse(!is.na(FNAME), as.numeric(factor(FNAME, levels=uni

que(FNAME))),FISHER_LIC_FK)) 
dim(df3) 

length(unique(namesdf$FNAME)) == length(unique(df3$FNAME)) ## now all unique 
fnames are in there 
length(unique(df3$LICENSE)) < length(unique(df3$FISHER_LIC_FK)) ## should be 
fewer licenses than unique LIC_FKs 
subset(df3, LICENSE == 611) ## this license straddles FYEAR 1994-1998, note t
hat FISHER_LIC_FK changed but LICENSE is stable 

## create LBS variable ---- 
df3$LBS <- df3$LBS_KEPT 

## group & collapse by single fishing day 
df4 <- df3  %>% 
 group_by(LICENSE,FISHED_DATE,AREA_FK) %>% 
 summarise(LBS = sum(LBS)) %>% 
 group_by(LICENSE,FISHED_DATE) %>% 
 top_n(1) %>% 
 mutate(  MONTH = month(FISHED_DATE), 

 R_YEAR = year(FISHED_DATE), 
 FYEAR = ifelse(MONTH>6, R_YEAR+1,R_YEAR)) 

## Apply 'Novice' labels ---- 
for (i in 1:nrow(df4)) { 
 fisherx <- 
 which(df4$LICENSE == df4$LICENSE[i]) ## find all matched occurences 

 ## assign dummy to novice fishers & year 1976, else retain 
 df4$lic.correct[i] <- 
 ifelse(length(fisherx) < 6, 99999, df4$LICENSE[i]) 

 df4$lic.correct[i] <- 
 ifelse(df4$FYEAR[i] == 1976, 197600, df4$lic.correct[i]) 

} 

## generate island labels ---- 
df4$island <- cut(as.numeric(as.character(df4$AREA_FK)), breaks = c(99,299,39
9,499,20000), labels =   c("big","mauinui","oahu",'kauai')) 

## apply area-based variation into novice records (99999 = maui nui) 
df4$lic.correct <- ifelse(df4$lic.correct==99999 & df4$island =='big', 88888, 
df4$lic.correct) 
df4$lic.correct <-ifelse(df4$lic.correct==99999 & df4$island =='kauai', 77777
, df4$lic.correct) 
df4$lic.correct <-ifelse(df4$lic.correct==99999 & df4$island =='oahu', 66666, 
df4$lic.correct) 
df4$lic.correct <-ifelse(df4$lic.correct==99999 & df4$island =='NA', 77777, d
f4$lic.correct) 
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## add season ---- 
df5 <- df4 %>% mutate( 
 MONTH = month(FISHED_DATE), 
 R_YEAR = year(FISHED_DATE), 
 FYEAR = ifelse(MONTH>6, R_YEAR+1,R_YEAR), 
 island = cut( 
 as.numeric(as.character(AREA_FK)), 
 breaks = c(99, 299, 399, 499, 20000), 
 labels =   c("big", "mauinui", "oahu", 'kauai') 

 ), 
 season = ifelse(MONTH == 9  | 

 MONTH == 10, 1, ifelse( 
 MONTH == 11  | MONTH == 12, 2, ifelse(MONTH == 1  | MON

TH == 2, 3, 
 ifelse(MONTH == 

 3  | MON
TH == 4, 4, 5)) 

 )) 
) 

## cumulative experience ---- 
df6 <- df5 %>% ungroup() %>% mutate(FISHED_DATE = as.Date(FISHED_DATE)) %>% 
 filter(FISHED_DATE >= as.Date("1957-07-01")  & FISHED_DATE < as.Date("2016-

06-30") )

df6$cumexp <- ave(df6$lic.correct == df6$lic.correct, df6$lic.correct, FUN = 
cumsum) 

## env data ---- 
## match on environmental data; make sure to use raw year (R_YEAR) 
EnvData <- read.csv(" Monthly_Environment_Data.csv") 
df7 <- merge(df6, EnvData, by.x = c("MONTH", "R_YEAR"), by.y = c("Month", "Ye
ar"), all.x = T) 

## habitat information ---- 
habitat <- read.csv( " Kona_Crab_Hab_stats_by_DAR_grid.csv") 
df8 <- merge(df7, habitat, by.x = "AREA_FK", by.y = 'AREA_ID', all.y = F) 

## reformatting and factors ---- 
## rename and coerce to factors. 
df9 <- df8 %>% 
 plyr::rename(c( 
 'Hardness..mean.' = 'hardness', 

 'Depth..mean.' = 'depth', 
 'Slope..mean.' = 'slope', 
 'PDO' = 'pdo', 
 'ENSOAnom' = 'enso', 
 'cumexp' = 'experience')) %>% 
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 mutate(lnlbs = ifelse(LBS > 0, log(LBS),0), 
 FYEAR = as.factor(FYEAR), 
 season = as.factor(season), 
 license = as.factor(lic.correct), 
 MONTH = as.factor(MONTH), 
 AREA = as.factor(AREA_FK)) %>% 

 select(FYEAR,FISHED_DATE, MONTH, AREA, license, LBS, lnlbs, experience, sea
son, island, pdo, enso, hardness, depth, slope) 

early <- df9 %>% filter(FISHED_DATE >= as.Date("1957-07-01")  & FISHED_DATE < 
as.Date("2006-06-30") ) 
late <- df9 %>%   filter(FISHED_DATE >= as.Date("2006-06-30") ) 

save(early, "early.Rdata") 

save(late, "late.Rdata") 

Standardization - Period 1 

require(MuMIn) 
require(dplyr) 
require(ggplot2) 
require(lubridate) 
require(lme4) 

early <- readRDS("early.Rdata") 
late <- readRDS("late.Rdata") 

## early Series(TP1) ---- 
## STEP 1 ---- 
p = proc.time() 
TP1.rmod0 = lmer(lnlbs ~ (1|license),  data = early, REML = FALSE, na.action 
= na.omit) 
TP1.rmod1 = lmer(lnlbs ~ (1|license) + FYEAR, data = early, REML = FALSE, na.
action = na.omit) 
TP1.rmod2 = lmer(lnlbs ~ (1|license) + FYEAR + season, data = early, REML = F
ALSE, na.action = na.omit) 
TP1.rmod3 = lmer(lnlbs ~ (1|license) + FYEAR + MONTH, data = early, REML = FA
LSE, na.action = na.omit) 
TP1.rmod4 = lmer(lnlbs ~ (1|license) + FYEAR + island, data = early, REML = F
ALSE, na.action = na.omit) 
TP1.rmod5 = lmer(lnlbs ~ (1|license) + FYEAR + AREA,  data = early, REML = FA
LSE, na.action = na.omit) 
TP1.rmod6 = lmer(lnlbs ~ (1|license) + FYEAR + log(experience), data = early, 
REML = FALSE, na.action = na.omit) 
TP1.rmod7 = lmer(lnlbs ~ (1|license) + FYEAR + depth, data = early, REML = FA
LSE, na.action = na.omit) 
TP1.rmod8 = lmer(lnlbs ~ (1|license) + FYEAR + hardness,data = early, REML = 
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FALSE, na.action = na.omit) 
TP1.rmod9 = lmer(lnlbs ~ (1|license) + FYEAR + pdo, data = early, REML = FALS
E, na.action = na.omit) 
TP1.rmod10 = lmer(lnlbs ~ (1|license) + FYEAR + enso,  data = early, REML = F
ALSE, na.action = na.omit) 
model.sel(TP1.rmod0, TP1.rmod1, TP1.rmod2,TP1.rmod3,TP1.rmod4,TP1.rmod5,TP1.r
mod6,TP1.rmod7,TP1.rmod8,TP1.rmod9,TP1.rmod10, rank = AICc) 
proc.time() - p 
## AREA provided most improvement [TP1.rmod5] 

## STEP 2 ---- 
## cutoff failed 
p = proc.time() ## 30 seconds 
TP1.rmoda = lmer(lnlbs ~ (1|license) + FYEAR + AREA + season, data = early, R
EML = FALSE, na.action = na.omit) 
TP1.rmodb = lmer(lnlbs ~ (1|license) + FYEAR + AREA + MONTH,  data = early, R
EML = FALSE, na.action = na.omit) 
TP1.rmodc = lmer(lnlbs ~ (1|license) + FYEAR + AREA + island, data = early, R
EML = FALSE, na.action = na.omit) 
TP1.rmodd = lmer(lnlbs ~ (1|license) + FYEAR + AREA + log(experience),  data 
= early, REML = FALSE, na.action = na.omit) 
TP1.rmode = lmer(lnlbs ~ (1|license) + FYEAR + AREA + depth, data = early, RE
ML = FALSE, na.action = na.omit) 
TP1.rmodf = lmer(lnlbs ~ (1|license) + FYEAR + AREA + hardness,  data = early
, REML = FALSE, na.action = na.omit) 
TP1.rmodg = lmer(lnlbs ~ (1|license) + FYEAR + AREA + pdo, data = early, REML 
= FALSE, na.action = na.omit) 
TP1.rmodh = lmer(lnlbs ~ (1|license) + FYEAR + AREA + enso, data = early, REM
L = FALSE, na.action = na.omit) 
# model.sel(TP1.rmod5, TP1.rmoda, TP1.rmodb, TP1.rmodc,TP1.rmodd,TP1.rmode,TP
1.rmodf,TP1.rmodg,TP1.rmodh, rank = AICc)
proc.time() - p
# interaction (slow)
TP1.rmodIA1 = lmer(lnlbs ~ (1|license) + FYEAR + AREA + FYEAR:AREA, data = ea
rly, REML = FALSE, na.action = na.omit)
model.sel(TP1.rmod5, TP1.rmoda, TP1.rmodb, TP1.rmodc,TP1.rmodd,TP1.rmode,TP1.
rmodf,TP1.rmodg,TP1.rmodh,TP1.rmodIA1, rank = AICc)

## check %dAIC (prev-current)/previous > 2% 
(AICc(TP1.rmodIA1)-AICc(TP1.rmod5))/AICc(TP1.rmodIA1)*100 >= 2 ## cuttoff fai
led 
(deviance(TP1.rmod1) - deviance(TP1.rmod5))/deviance(TP1.rmod1)*100 (deviance
(TP1.rmod0) - deviance(TP1.rmod5))/deviance(TP1.rmod0)*100 ## SAVE MODEL & TA
BLES ---- 
## re run best mod w reml = T 
TP1.rmod5T <- lmer(lnlbs ~ (1|license) + FYEAR + AREA,  data = early, REML = 
TRUE, na.action = na.omit) 
saveRDS(TP1.rmod5T, file = "TP1_r_best.rds") 
mst.all <- 
 model.sel( 
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 TP1.rmod0, 
 TP1.rmod1, 
 TP1.rmod2, 
 TP1.rmod3, 
 TP1.rmod4, 
 TP1.rmod5, 
 TP1.rmod6, 
 TP1.rmod7, 
 TP1.rmod8, 
 TP1.rmod9, 
 TP1.rmod10, 
 TP1.rmoda, 
 TP1.rmodb, 
 TP1.rmodc, 
 TP1.rmodd, 
 TP1.rmode, 
 TP1.rmodf, 
 TP1.rmodg, 
 TP1.rmodh, 
 TP1.rmodIA1, 
 rank = AICc 

 ) %>% mutate( 
 Deviance = get.models(., subset = T) %>% lapply(., deviance) %>% as.data.

frame() %>% t(), 
 modname = rownames(.), 
 'Formula' = get.models(.,subset = T) %>% lapply(FUN = formula) %>% as.cha

racter() 
 ) 

mst.fwd <- 
 model.sel(TP1.rmod0, TP1.rmod1, TP1.rmod5, rank = AICc) %>% mutate( 
 pdAIC = NA, 
 Deviance = get.models(., subset = T) %>% lapply(., deviance) %>% as.data.

frame() %>% t(), 
 pdDeviance = NA, 
 modname = rownames(.), 
 'Formula' = get.models(.,subset = T) %>% lapply(FUN = formula) %>% as.cha

racter() 
 ) 

## loop to input % changes to forward list 
for(i in rev(1:(nrow(mst.fwd)-1))){ 
 mst.fwd[nrow(mst.fwd),c("pdDeviance","pdAIC")] <- 0 ## first model (last ro

w) is zero
mst.fwd[i,"pdAICc"] <- round((mst.fwd[i+1,"AICc"] - mst.fwd[i,"AICc"])/mst.

fwd[i+1,"AICc"] *100,digits = 2) 
 mst.fwd[i,"pdDeviance"] <- round((mst.fwd[i+1,"Deviance"] - mst.fwd[i,"Devi

ance"])/mst.fwd[i+1,"Deviance"] *100,digits = 2) 
} 
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write.csv(mst.all, "TP1_MST_r_all.csv", row.names = F) 
write.csv(mst.fwd, "TP1_MST_r_fwd.csv", row.names = F) 

Standardization - Period 2 

## LATE Series(TP2) ---- 
## STEP 1 ---- 
p = proc.time() ## 4 seconds 
TP2.rmod0 = lmer(lnlbs ~ (1|license),  data = late, REML = FALSE, na.action = 
na.omit) 
TP2.rmod1 = lmer(lnlbs ~ (1|license) + FYEAR, data = late, REML = FALSE, na.a
ction = na.omit) 
TP2.rmod2 = lmer(lnlbs ~ (1|license) + FYEAR + season, data = late, REML = FA
LSE, na.action = na.omit) 
TP2.rmod3 = lmer(lnlbs ~ (1|license) + FYEAR + MONTH, data = late, REML = FAL
SE, na.action = na.omit) 
TP2.rmod4 = lmer(lnlbs ~ (1|license) + FYEAR + island, data = late, REML = FA
LSE, na.action = na.omit) 
TP2.rmod5 = lmer(lnlbs ~ (1|license) + FYEAR + AREA,  data = late, REML = FAL
SE, na.action = na.omit) 
TP2.rmod6 = lmer(lnlbs ~ (1|license) + FYEAR + log(experience), data = late, 
REML = FALSE, na.action = na.omit) 
TP2.rmod7 = lmer(lnlbs ~ (1|license) + FYEAR + depth, data = late, REML = FAL
SE, na.action = na.omit) 
TP2.rmod8 = lmer(lnlbs ~ (1|license) + FYEAR + hardness,data = late, REML = F
ALSE, na.action = na.omit) 
TP2.rmod9 = lmer(lnlbs ~ (1|license) + FYEAR + pdo, data = late, REML = FALSE
, na.action = na.omit) 
TP2.rmod10 = lmer(lnlbs ~ (1|license) + FYEAR + enso,  data = late, REML = FA
LSE, na.action = na.omit) 
model.sel(TP2.rmod0, TP2.rmod1, TP2.rmod2,TP2.rmod3,TP2.rmod4,TP2.rmod5,TP2.r
mod6,TP2.rmod7,TP2.rmod8,TP2.rmod9,TP2.rmod10, rank = AICc) 
proc.time() - p 
## AREA provided most improvement [TP2.rmod5] 

## STEP 2 ---- 
## cuttof failed 
p = proc.time() ## 30 seconds 
TP2.rmoda = lmer(lnlbs ~ (1|license) + FYEAR + AREA + season, data = late, RE
ML = FALSE, na.action = na.omit) 
TP2.rmodb = lmer(lnlbs ~ (1|license) + FYEAR + AREA + MONTH,  data = late, RE
ML = FALSE, na.action = na.omit) 
TP2.rmodc = lmer(lnlbs ~ (1|license) + FYEAR + AREA + island, data = late, RE
ML = FALSE, na.action = na.omit) 
TP2.rmodd = lmer(lnlbs ~ (1|license) + FYEAR + AREA + log(experience),  data 
= late, REML = FALSE, na.action = na.omit) 
TP2.rmode = lmer(lnlbs ~ (1|license) + FYEAR + AREA + depth, data = late, REM
L = FALSE, na.action = na.omit) 
TP2.rmodf = lmer(lnlbs ~ (1|license) + FYEAR + AREA + hardness,  data = late, 
REML = FALSE, na.action = na.omit) 
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TP2.rmodg = lmer(lnlbs ~ (1|license) + FYEAR + AREA + pdo, data = late, REML 
= FALSE, na.action = na.omit) 
TP2.rmodh = lmer(lnlbs ~ (1|license) + FYEAR + AREA + enso, data = late, REML 
= FALSE, na.action = na.omit) 
# interaction (slow) 
TP2.rmodIA1 = lmer(lnlbs ~ (1|license) + FYEAR + AREA + FYEAR:AREA, data = la
te, REML = FALSE, na.action = na.omit) 
model.sel(TP2.rmod5, TP2.rmoda, TP2.rmodb, TP2.rmodc,TP2.rmodd,TP2.rmode,TP2.
rmodf,TP2.rmodg,TP2.rmodh,TP2.rmodIA1, rank = AICc) 

model.sel(TP2.rmod5, TP2.rmoda, TP2.rmodb, TP2.rmodc,TP2.rmodd,TP2.rmode,TP2.
rmodf,TP2.rmodg,TP2.rmodh,TP2.rmodIA1, rank = AICc) 
proc.time() - p 
## AREA provided most improvement [TP2.rmodb] 

## check %dAIC (prev-current)/previous > 2% 
(AICc(TP2.rmoda)-AICc(TP2.rmod5))/AICc(TP2.rmoda)*100 >= 2 ## cuttoff failed 
(deviance(TP2.rmod1) - deviance(TP2.rmod5))/deviance(TP2.rmod1)*100 (deviance
(TP2.rmod0) - deviance(TP2.rmod5))/deviance(TP2.rmod0)*100 ## SAVE MODEL & TA
BLES ---- 
## re run best mod w reml = T 
TP2.rmod5T <- lmer(lnlbs ~ (1|license) + FYEAR + AREA,  data = late,  REML = 
TRUE, na.action = na.omit) 
saveRDS(TP2.rmod5T, file = "TP2_r_best.rds") 
mst.all <- 
 model.sel( 
 TP2.rmod0, 
 TP2.rmod1, 
 TP2.rmod2, 
 TP2.rmod3, 
 TP2.rmod4, 
 TP2.rmod5, 
 TP2.rmod6, 
 TP2.rmod7, 
 TP2.rmod8, 
 TP2.rmod9, 
 TP2.rmod10, 
 TP2.rmoda, 
 TP2.rmodb, 
 TP2.rmodc, 
 TP2.rmodd, 
 TP2.rmode, 
 TP2.rmodf, 
 TP2.rmodg, 
 TP2.rmodh, 
 TP2.rmodIA1, 
 rank = AICc 

 ) %>% mutate( 
 Deviance = get.models(., subset = T) %>% lapply(., deviance) %>% as.data.

frame() %>% t(), 
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 modname = rownames(.), 
 'Formula' = get.models(.,subset = T) %>% lapply(FUN = formula) %>% as.cha

racter() 
 ) 

mst.fwd <- 
 model.sel(TP2.rmod0, TP2.rmod1, TP2.rmod5, rank = AICc) %>% mutate( 
 pdAIC = NA, 
 Deviance = get.models(., subset = T) %>% lapply(., deviance) %>% as.data.

frame() %>% t(), 
 pdDeviance = NA, 
 modname = rownames(.), 
 'Formula' = get.models(.,subset = T) %>% lapply(FUN = formula) %>% as.cha

racter() 
 ) 

## loop to input % changes to forward list 
for(i in rev(1:(nrow(mst.fwd)-1))){ 
 mst.fwd[nrow(mst.fwd),c("pdDeviance","pdAIC")] <- 0 ## first model (last ro

w) is zero
mst.fwd[i,"pdAIC"] <- round((mst.fwd[i+1,"AICc"] - mst.fwd[i,"AICc"])/mst.f

wd[i+1,"AICc"] *100,digits = 2) 
 mst.fwd[i,"pdDeviance"] <- round((mst.fwd[i+1,"Deviance"] - mst.fwd[i,"Devi

ance"])/mst.fwd[i+1,"Deviance"] *100,digits = 2) 
} 

write.csv(mst.all, "TP2_MST_r_all.csv", row.names = F) 
write.csv(mst.fwd, "TP2_MST_r_fwd.csv", row.names = F) 

Prediction 

## em-means predictions on random effects models 
require(emmeans) 
require(dplyr) 
require(ggplot2) 

early <- readRDS("early.Rdata") 
late <- readRDS("late.Rdata") 

## load best models 
TP1.best <- readRDS("TP1_r_best.rds") 
TP2.best <- readRDS("TP2_r_best.rds") 

raw.emmeans1 <- emmeans(TP1.best, ~ FYEAR, data = early ) %>% data.frame() 
saveRDS(raw.emmeans1, "rawemmeans1_r.rds") 
raw.emmeans1 <- readRDS("rawemmeans1_r.rds") 

raw.emmeans2 <- emmeans(TP2.best, ~ FYEAR) %>% data.frame() 
saveRDS(raw.emmeans2, "rawemmeans2_r.rds") 
raw.emmeans2 <- readRDS("rawemmeans2_r.rds") 
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emdf <- bind_rows(na.omit(raw.emmeans1) %>% 
 group_by(FYEAR) %>% 
 dplyr::summarise( 
 raw.mean = mean(emmean), 
 total.sigma = sd(resid(TP1.best)), 
 cor.mean = raw.mean + (total.sigma ^ 2) / 2, 
 trans.mean = exp(cor.mean), 
 lci =  exp(cor.mean) -  exp(total.sigma) * 1.96, 
 uci =  exp(cor.mean) +   exp(total.sigma) * 1.96, 
 CV = exp(mean(SE)) / trans.mean, 
 meanlbs = trans.mean 

 ) %>% mutate(SOURCE = 'Ranef Standardization P1'), 
 na.omit(raw.emmeans2) %>% 
 group_by(FYEAR) %>% 
 dplyr::summarise( 
 raw.mean = mean(emmean), 
 total.sigma = sd(resid(TP2.best)), 
 cor.mean = raw.mean + (total.sigma ^ 2) / 2, 
 trans.mean = exp(cor.mean), 
 lci =  exp(cor.mean) -  exp(total.sigma) * 1.96, 
 uci =  exp(cor.mean) +  exp(total.sigma) * 1.96, 
 CV = exp(mean(SE)) / trans.mean, 
 meanlbs = trans.mean 

 ) %>% mutate(SOURCE = 'Ranef Standardization P2') 

) 
emdf$FYEAR  <- as.numeric(as.character(emdf$FYEAR)) 

write.csv(emdf,"emmeans_ranef_10Jul.csv", row.names = F) 
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Appendix III. R Code for JABBA Prime File to Execute Model in JABBA 

# required packages 
library(gplots); library(coda); library(rjags); library(R2jags); library(fitd
istrplus); library(reshape) 

# Set Working directory file, where assessments are stored 
File = "FILEA" 
# Set working directory for JABBA R source code 
JABBA.file = "JABBAFILE" 
# JABBA version 
version = "v1.2" 
# Set Assessment file: assessment folder within File that includes .csv input 
files 
assessment = "pex_base_em" 
# add specifier for assessment (File names of outputs) 

#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# Graphic, Output, Saving (.RData) settings 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
KOBE.plot = TRUE # Produces JABBA Kobe plot 
KOBE.type = c("ICCAT","IOTC")[2] # ICCAT uses 3 colors; IOTC 4 (incl. orange)  
Biplot= TRUE # Produces a "post-modern" biplot with buffer and target zones (
Quinn & Collie 2005) 
SP.plot = c("standard","phase")[2] # Produces standard or 'Kobe phase' SP plo
t 
save.trajectories =TRUE # saves posteriors of P=B/K, B/Bmsy and H/Hmsy as .RD
ata object 
harvest.label = c("Hmsy","Fmsy")[1] # choose label preference H/Hmsy versus F
msy 
CPUE.plot= TRUE # Runs state-tool to produce "aligned" multi-CPUE plot 
meanCPUE = FALSE # Uses averaged CPUE from state-space tool instead of indivi
dual indices 
Projection = TRUE # Use Projections: requires to define TACs vectors 
save.projections = TRUE # saves projection posteriors as .RData object 
catch.metric = "(lb)" # Define catch input metric e.g. (tons) "000 t" etc 
Reproduce.seed = TRUE # If FALSE a random seed assigned to each run, if TRUE 
set.seed(123) 
# P_bound = c(0.02,1.2)  # Soft penalty bounds for P 
# Save entire posterior as .RData object 
save.all = TRUE # (if TRUE, a very large R object of entire posterior is save
d) 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 

#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# Optional: Note Scenarios 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# Specify Scenario name for output file names 
Scenarios = c("base-case",NA,NA,NA) 
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for(s in 1:1){ 

 Scenario = Scenarios[s] 

 Model = c(4,4,4,4)[s] 
 Mod.names = c("Schaefer","Fox","Pella","Pella_m")[4] 

 # Depensation option: 
 # Set Plim = Blim/K where recruitment may become impaired (e.g. Plim = 0.25

) 
 # Choose Plim = 0 to reduce to conventional Schaefer, Fox, Pella models 
 Plim = 0 

 # Required specification for Pella-Tomlinson (Model = 3/4) 
 BmsyK = 0.4 # Set Surplus Production curve inflection point 
 shape.CV = 0.35 # Must be defined if Model = 4! 
 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 

 #-------------------------------------------------- 
 # Read csv files 
 #-------------------------------------------------- 

 # Use errors (SEs, CVs, any other form) from csv file for abundance indices 
(TRUE/FALSE) 
 SE.I = TRUE 
 # Load assessment data 
 catch = read.csv(paste0(File,"/",assessment,"/catch",assessment,".csv")) 
 cpue = read.csv(paste0(File,"/",assessment,"/cpue",assessment,".csv")) 

 if(SE.I ==TRUE){ 
 se =  read.csv(paste0(File,"/",assessment,"/se",assessment,".csv")) 

 } 
 indices2 = names(cpue)[-1] 
 wink.colors = data.frame(idx = indices2, 

 cols = c('#e6194b', "#3cb44b", "#ffe119", 
 "#0082c8","#f58231", "#911eb4", 
 "#46f0f0", "#f032e6", "#d2f53c", 
 "#fabebe", "#008080","#e6beff", "#aa6e28"

)[1:length(indices2)]) 

 #------------------------------------------------------ 
 # Option use mean CPUE from state-space cpue averaging 
 #----------------------------------------------------- 
 meanCPUE = FALSE 

 #----------------------------------------------------- 
 # Starting value option for r and K 
 #----------------------------------------------------- 
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 #------------------------------------------------ 
 # Prior for unfished biomass K 
 #------------------------------------------------ 
 # The option are: 
 # a) Specify as a lognormal prior with mean and CV 
 # b) Specify as range to be converted into lognormal prior 

 # ><> new objective K prior 
K.dist <- c("lnorm","range")[2] # ><> to range
# Get low and upper r quantile 10th and 90th
qrs <- qlnorm(c(0.1,0.9),log(0.27),0.3)

 #Apply CMSY Eq 3 by Froese et al, (2017) 
 Klow <- max(catch[,2])/qrs[2] 
 Khigh <- 4*max(catch[,2])/qrs[1] 
K.prior <- c(Klow,Khigh)

 #----------------------------------------------------------- 
 # mean and CV and sd for Initial depletion level P1= SB/SB0 
 #----------------------------------------------------------- 
 # Set the initial depletion prior B1/K 
 # To be converted into a lognormal prior (with upper bound at 1.1) 

 psi.dist = c("lnorm","beta")[1] 
 # specify as mean and CV 
 psi.prior.mean <- signif(as.numeric(61.674/quantile(cpue[,2], na.rm = TRUE, 

 probs = 0.95)), digits = 
2) ## uci over 95th
psi.prior = c(psi.prior.mean,0.5)

#--------------------------------------------------------------
# Determine estimation for catchability q and observation error
#--------------------------------------------------------------
# Assign q to CPUE
sets.q = 1:(ncol(cpue)-1)

#----------------------------------------------------
# Determine r prior
#----------------------------------------------------
# The option are:
# a) Specifying a lognormal prior
# b) Specifying a resiliance category after Froese et al. (2017; CMSY)
# Resilience: "Very low", "Low", "Medium", High" (requires r.range = TRUE)

# use [1] lognormal(mean,stdev) or [2] range (min,max) or
r.dist = c("lnorm","range")[1]
r.prior = c(0.2735,0.3)

 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
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 # Observation Error 
 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 

 #To Estimate additional observation variance set sigma.add = TRUE 
 sigma.est = TRUE 

 # Series 
 sets.var = 1:(ncol(cpue)-1) # estimate individual additional variance 

 # As option for data-weighing 
 # minimum fixed observation error for each variance set (optional choose 1 

value for both) 
 fixed.obsE = c(0.0) # Important if SE.I is not available 

 # Total observation error: TOE = sqrt(SE^2+sigma.est^2+fixed.obsE^2) 

 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
 # Process Error 
 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
 #Estimate set sigma.proc == True 
 sigma.proc = TRUE 
 # Determines if process error deviation are estimated for all years (TRUE) 
 # or only from the point the first abundance index becomes available (FALSE

) 
 proc.dev.all = TRUE 
 #------------------------------------------ 
 if(sigma.proc == TRUE){ 
 igamma = c(4,0.01) #specify inv-gamma parameters 

 # Process error check 
 gamma.check = 1/rgamma(1000,igamma[1],igamma[2]) 
 # check mean process error + CV 
 # mu.proc = sqrt(mean(gamma.check)); CV.proc = sd(sqrt(gamma.check))/mean

(sqrt(gamma.check)) 

 # check CV 
 # round(c(mu.proc,CV.proc),3) 
 # quantile(sqrt(gamma.check),c(0.1,0.9)) 

 }else{ 
 sigma.proc = 0.05 #IF Fixed: typicallly 0.05-0.15 (see Ono et al. 2012) 

 } 
 #-------------------------------------------- 
 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
 # Optional: Do TAC Projections 
 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>> 
 Projection = TRUE# Switch on by Projection = TRUE 

 # Set range for alternative TAC projections 
 TACs = seq(10000,160000,1000) 
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 TACint <- catch[nrow(catch),2] ## Catch 2016 is initial 

 # Set number of years out from 2016 
 pyrs = 10 

 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
 # Execute model and produce output 
 #><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 

 # MCMC settings 
 ni <- 200000 # Number of iterations 
 nt <- 25 # Steps saved 
 nb <- 50000 # Burn-in 
 nc <- 2 # number of chains 
 nsaved = (ni-nb)/nt*nc 

 source(paste0(JABBA.file,"/JABBA",version,".R")) 

}# THE END 
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Appendix IV. R Source Code for JABBA Model and Projections

cat(paste0("\n","><>><>><>><>><>><>><>><>")) 
cat(paste0("\n","><> Run Model ",Mod.names,"<><")) 
cat(paste0("\n","><>><>><>><>><>><>><>><>","\n","\n")) 
# setwd(paste(File)) 
dir.create(paste0(File,"/",assessment),showWarnings = FALSE) 
dir.create(paste0(File,"/",assessment,"/",Scenario,"_",Mod.names),showWarning
s = FALSE) 
dir.create(paste0(File,"/",assessment,"/",Scenario,"_",Mod.names,"/Input"),sh
owWarnings = FALSE) 
input.dir = paste0(File,"/",assessment,"/",Scenario,"_",Mod.names,"/Input") 

#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
# Define objects to make sure they exist if not included in Prime file 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 
if(exists("igamma")==FALSE) igamma = c(4,0.01)  # Generic process error prior 
if(exists("BmsyK")==FALSE) BmsyK = 0.4  # JABBA default for Pella model 
if(exists("Model")==FALSE){ model = 1; Mod.names = c("Schaefer")} # Run Schae
fer if model is not specified 
if(exists("proc.dev.all")==FALSE) proc.dev.all = FALSE # process error deviat
ion if only catch is available 
if(exists("Plim")==FALSE) Plim = 0  # Standard non-compound model 
if(exists("P_bound")==FALSE) P_bound = c(0.02,1)  # Soft penalty bounds for P  
if(exists("KOBE.plot")==FALSE) KOBE.plot = TRUE # Produces JABBA Kobe plot 
if(exists("KOBE.type")==FALSE) KOBE.type = c("ICCAT","IOTC")[2] # ICCAT uses 
3 colors; IOTC 4 (incl. orange) 
if(exists("SP.plot")==FALSE) SP.plot = c("standard","phase")[2] # Produces st
andard or 'Kobe phase' SP plot 
if(exists("Biplot")==FALSE) Biplot= TRUE # Produces a "post-modern" biplot wi
th buffer and target zones (Quinn & Collie 2005) 
if(exists("save.trajectories")==FALSE) save.trajectories =FALSE # saves poste
riors of P=B/K, B/Bmsy and H/Hmsy as .RData object 
if(exists("harvest.label")==FALSE) harvest.label = c("Hmsy","Fmsy")[2] # choo
se label preference H/Hmsy versus Fmsy 
if(exists("CPUE.plot")==FALSE) CPUE.plot= TRUE # Runs state-tool to produce "
alligned" multi-CPUE plot 
if(exists("catch.metric")==FALSE) catch.metric = "(t)" # Runs state-tool to p
roduce "alligned" multi-CPUE plot 
if(exists("meanCPUE")==FALSE) meanCPUE = FALSE # Uses averaged CPUE from stat
e-space tool instead of individual indices
if(exists("Projection")==FALSE) Projection = FALSE # Use Projections: require
s to define TACs vectors
if(exists("save.projections")==FALSE) save.projections = FALSE# saves project
ion posteriors as .RData object
if(exists("Reproduce.seed")==FALSE) Reproduce.seed = FALSE # If FALSE a rando
m seed assigned to each run (default)
if(exists("TACint")==FALSE) TACint = mean(catch[nrow(catch)-3,2]:catch[nrow(c
atch),2]) # use mean catch from last years
if(exists("imp.yr")==FALSE) imp.yr = as.numeric(format(Sys.Date(), "%Y"))+1 #
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use next year from now 
if(exists("init.values")==FALSE) init.values =FALSE # Allows to add manual st
arting values for K, r, q 
if(exists("sigmaobs_bound")==FALSE) sigmaobs_bound = 1 # Adds an upper bound 
to the observation variance 
if(exists("sigmaproc_bound")==FALSE) sigmaproc_bound = 0.2 # Adds an upper bo
und to the process variance 
if(exists("q_bounds")==FALSE) q_bounds= c(10^-30,100) # Defines lower and upp
er bounds for q 
if(exists("K_bounds")==FALSE) K_bounds= c(10,10^8) # Defines lower and upper 
bounds for q 
# Save entire posterior as .RData object 
if(exists("save.all")==FALSE) save.all = FALSE # 
#><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><> 

## Prepare input data ---- 

cat(paste0("\n","><> Prepare input data <><","\n")) 
indices = names(cpue)[2:ncol(cpue)] 
n.indices = max(length(indices),1)
catches = names(catch)[2:ncol(catch)]
n.catches = length(catches)

years=catch[,1] 
styr = min(years) 
endyr = max(years) 
n.years = length(years)
styr.cpue = min(cpue[,1])
styr.I = styr.cpue-styr+1

# Convert input data to matrices for JAGS input 
conv.cpue = as.numeric(rbind(matrix(rep(NA,(styr.I-1)*n.indices),styr.I-1,n.i
ndices),as.matrix(cpue[,-1]))) 
CPUE=matrix(conv.cpue,nrow=n.years,ncol=n.indices) 

if(SE.I==FALSE){ 
 se = cpue 
 conv.se = as.numeric(rbind(matrix(rep(NA,(styr.I-1)*n.indices),styr.I-1,n.i

ndices),as.matrix(cpue[,-1]))) 
 se2 = matrix(ifelse(fixed.obsE>0,fixed.obsE^2,10^-10),n.years,n.indices)#/2 

} else{ 
 conv.se = as.numeric(rbind(matrix(rep(NA,(styr.I-1)*n.indices),styr.I-1,n.i

ndices),as.matrix(se[,-1]))) 
 #conv.se = sqrt(conv.se^2+fixed.obsE^2) 
 se2 = matrix(ifelse(is.na(conv.se),0.3^2,conv.se)^2,n.years,n.indices)+fixe

d.obsE^2#/2
}
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conv.catch = as.numeric(rbind(matrix(rep(NA,(styr.I-1)*n.catches),styr.I-1,n.
catches),as.matrix(catch[,-1]))) 
Catch=matrix(conv.catch,nrow=n.years,ncol=n.catches) 
Catch[is.na(Catch)] = 0 # Replace any NA by zero 

# Total Catch 
TC = apply(Catch,1,sum) 

# Plot Catch 

cat(paste0("\n","><> Plot Catch in Input subfolder <><","\n")) 

Par = list(mfrow=c(1,1),mar = c(5, 5, 1, 1), mgp =c(3,1,0), tck = -0.02,cex=0
.8) 
png(file = paste0(input.dir,"/Catches_",assessment,".png"), width = 7, height 
= 5, 

 res = 200, units = "in") 
par(Par) 
plot(catch[,1],catch[,1],ylim=c(0,max(catch[,2:ncol(catch)],na.rm=TRUE)),ylab
=paste0("Catch ",catch.metric),xlab="Year",type="n") 
for(i in 2:ncol(catch)) lines(catch[,1],catch[,i],lty=(i-1),lwd=2) 
legend("topright",paste(names(catch)[2:ncol(catch)]),lty=1:(ncol(catch)-1),bt
y="n") 
dev.off() 

#--------------------- 
# Index color palette 
#--------------------- 
jabba.colors = as.character(rep(c('#e6194b', "#3cb44b", "#ffe119", 

 "#0082c8","#f58231", "#911eb4", 
 "#46f0f0", "#f032e6", "#d2f53c", 
 "#fabebe", "#008080","#e6beff", "#aa6e28"),

2)) 
#-------------------- 
# Set seed 
#-------------------- 
if(Reproduce.seed==FALSE){ set.seed(ceiling(runif(1,min=0,max=1e6))) } else {
set.seed(123)} 

#--------------------------------------------------------------------------- 
# CPUE run State-Space model for averaging CPUE 
#--------------------------------------------------------------------------- 
if(CPUE.plot==TRUE){ 
 cat(paste0("\n","><> Run State-Space CPUE averaging tool","\n")) 
 #find first time-series with first CPUE 
 q1.y = c(1:n.years)[is.na(apply(CPUE,1,mean,na.rm=TRUE))==FALSE][1] #first 

year with CPUE 
 q1.I = which.max(CPUE[q1.y,]) 

 qs = c(q1.I,c(1:(ncol(cpue)-1))[-q1.I]) 
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 sink("cpueAVG.jags") 
 cat(" 

 model { 

 # Prior specifications 
 eps <- 0.0000000000001 # small constant 

 iq[1] ~ dgamma(1000,1000) 
 q[1] <-  pow(iq[1],-1) 
 logq[1] <- log(1) 
 for(i in 2:nI){ 
 iq[i] ~ dgamma(0.001,0.001) 
 q[i] <- pow(iq[i],-1) 
 logq[i] <-  log(q[i]) 
 } 

 ") 

 if(sigma.proc==TRUE){ 
 cat(" 

 # Process variance 
 isigma2 <- isigma2.est 
 sigma2 <- pow(isigma2,-1) 
 sigma <- sqrt(sigma2) 
 fakesigma.fixed <- sigma.fixed # Prevent unused variable error msg 
 ",append=TRUE) 

 }else{ cat(" 
 isigma2 <- pow(sigma.fixed+eps,-2) 

 sigma2 <- pow(isigma2,-1) 
 sigma <- sqrt(sigma2) 

 ",append=TRUE)} 

 if(sigma.est==TRUE){ 
 cat(" 

 # Obsevation variance 
 # Observation error 
 itau2~ dgamma(0.001,0.001) 
 tau2 <- 1/itau2 

 for(i in 1:nI) 
 { 
 for(t in 1:N) 
 { 
 var.obs[t,i] <- SE2[t,i]+tau2 
 ivar.obs[t,i] <- 1/var.obs[t,i] 
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 # note total observation error (TOE) 
 TOE[t,i] <- sqrt(var.obs[t,i]) 

 }} 
 ",append=TRUE) 

 }else{ cat(" 
 # Obsevation variance 

 # Observation error 
 itau2~ dgamma(2,2) 
 tau2 <- 1/itau2 

 for(i in 1:nI) 
 { 
 for(t in 1:N) 
 { 
 var.obs[t,i] <- SE2[t,i] # drop tau2 
 fake.tau[t,i] <- tau2 

 ivar.obs[t,i] <- 1/var.obs[t,i] 
 # note total observation error (TOE) 
 TOE[t,i] <- sqrt(var.obs[t,i]) 

 }} 

 ",append=TRUE)} 

 # Run rest of code 
 cat(" 

 # Process variance prior 
 isigma2.est ~ dgamma(0.001,0.001) 

 # Priors and constraints 
 logY.est[1] ~ dnorm(logY1, 1)  # Prior for initial population size 

 mean.r ~ dnorm(1, 0.001)  # Prior for mean growth rate 

 # Likelihood 
 # State process 
 for (t in 1:(N-1)){ 
 r[t] ~ dnorm(mean.r, isigma2) 
 logY.est[t+1] <- logY.est[t] + r[t] } 

 # Observation process 
 for (t in 1:N) { 
 for(i in 1:nI){ 
 y[t,i] ~ dnorm(logY.est[t]+logq[i], ivar.obs[t,i]) 
 }} 
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 # Population sizes on real scale 
for (t in 1:N) { 
Y.est[t] <- exp(logY.est[t])

 } 

 } 
 ",fill = TRUE) 

 sink() 

q.init = 1
mCPUE = as.matrix(CPUE[q1.y:n.years,qs])
mSE2 = as.matrix(se2[q1.y:n.years,qs])
if(n.indices>1) for(i in 2:n.indices){q.init[i] = mean(mCPUE[,i],na.rm=TRUE

)/mean(mCPUE[,1],na.rm=TRUE)} 
 # Bundle data 
 jags.data <- list(y = log(mCPUE),SE2=mSE2, logY1 = log(mCPUE[1,1]), N = len

gth(q1.y:n.years),nI=n.indices,sigma.fixed=ifelse(sigma.proc==TRUE,0,sigma.pr
oc)) 

 # Initial values 
 inits <- function(){list(isigma2.est=runif(1,20,100), itau2=runif(1,80,200)

, mean.r = rnorm(1),iq = 1/q.init)} 

 # Parameters monitored 
 parameters <- c("mean.r", "sigma","r", "Y.est","q") 

 # Call JAGS from R (BRT 3 min) 
 mod.cpue <- jags(jags.data, inits, parameters, "cpueAVG.jags", n.chains = n

c, n.thin = max(nt,2), n.iter = max(ni/5,10000), n.burnin = nb/10) 

 cat(paste0("\n","><> Plot State-Space CPUE fits in Input subfolder <><","\n
")) 
 # get individual trends 
 fitted <- lower <- upper <- NULL 
 cpue.yrs = years[q1.y:n.years] 

 for (t in 1:nrow(mCPUE)){ 
 fitted[t] <- median(mod.cpue$BUGSoutput$sims.list$Y.est[,t]) 
 lower[t] <- quantile(mod.cpue$BUGSoutput$sims.list$Y.est[,t], 0.025) 
 upper[t] <- quantile(mod.cpue$BUGSoutput$sims.list$Y.est[,t], 0.975)} 

q.adj = apply(mod.cpue$BUGSoutput$sims.list$q,2,median)

 Par = list(mfrow=c(1,1),mar = c(3.5, 3.5, 0.1, 0.1), mgp =c(2.,0.5,0), tck 
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= -0.02,cex=0.8) 
 png(file = paste0(input.dir,"/CPUE_",assessment,"_",Scenario,".png"), width 

= 5, height = 3.5, 
 res = 200, units = "in") 

 par(Par) 
u.ylim = NULL
for(i in 1:n.indices){ u.ylim = c(u.ylim,exp(log(mCPUE[,i]/q.adj[i])+1.96*s

qrt(mSE2[,i])))} 
 ylim = c(0,max(u.ylim,na.rm=TRUE)) 
 plot(0, 0, ylim = ylim, xlim = range(cpue.yrs), ylab = "Expected CPUE", xla

b = "Year", col = "black", type = "n") 
 legend("topright",paste(indices),lwd=2,col=(jabba.colors)[1:n.indices],bty=

"n") 
 polygon(x = c(cpue.yrs,rev(cpue.yrs)), y = c(lower,rev(upper)), col = "gray

", border = "gray90") 

 for(i in 1:n.indices) 
 { 
 shift = runif(1,-0.1,0.1) 
 cols=jabba.colors[qs[i]] 
 plotCI(cpue.yrs+shift,mCPUE[,i]/q.adj[i],ui=exp(log(mCPUE[,i]/q.adj[i])+1

.96*sqrt(mSE2[,i])),li=exp(log(mCPUE[,i]/q.adj[i])-1.96*sqrt(mSE2[,i])),add=T
RUE,col= cols,pt.bg = cols,pch=21,gap=0) 

 lines(cpue.yrs+shift,mCPUE[,i]/q.adj[i], col = cols,lwd=2) 
 points(cpue.yrs+shift,mCPUE[,i]/q.adj[i], bg = cols,pch=21) 

 } 
 lines(cpue.yrs,fitted,lwd=2) 

 dev.off() 

 logSE = apply(log(mod.cpue$BUGSoutput$sims.list$Y.est),2,sd) 

 if(nrow(mCPUE)<n.years) { 
 fitted = c(rep(NA,q1.y-1),fitted) 
 logSE = c(rep(0.2,q1.y-1),logSE) 

 } 
 avgCPUE = data.frame(Year=years,CPUE= fitted,logSE=logSE) 

 write.csv(avgCPUE,paste0(input.dir,"/avgCPUE_",assessment,"_",Scenario,".cs
v")) 

 if(meanCPUE==TRUE){ 
 cat(paste0("\n","><> Use average CPUE as input for JABBA <><","\n")) 

 CPUE = as.matrix(avgCPUE[,2]) 
 cpue.check = cpue[,-1] 
 cpue.check[is.na(cpue[,-1])]=0 
 CPUE[,1] = ifelse(apply(cpue.check,1,sum)==0,rep(NA,length(CPUE[,1])),CPU

E[,1]) 
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 se2 =  as.matrix(avgCPUE[,3]^2) 
n.indices=1
indices = "All"
sets.q =1
sets.var =1

 } 

 } 

#-------------------------------------------------------------------------- 
# END of CPUE State-Space tool 
#-------------------------------------------------------------------------- 

#----------- 
# FUNCTIONS 
#----------- 
cat(paste0("\n","><> Prepare JABBA prior inputs <><","\n")) 

#-------------------------------------------------- 
# Function to get beta prior parameters 
#-------------------------------------------------- 
get_beta <- function(mu,CV,Min=0,Prior="x"){ 
 a = seq(0.0001,1000,0.001) 
 b= (a-mu*a)/mu 
 s2 = a*b/((a+b)^2*(a+b+1)) 
 sdev = sqrt(s2) 
 # find beta )parameter a 
CV.check = (sdev/mu-CV)^2
a = a[CV.check==min(CV.check)]
#find beta parameter b
b = (a-mu*a)/mu
x = seq(Min,1,0.001)
pdf = dbeta(x,a,b)
plot(x,pdf,type="l",xlim=range(x[pdf>0.01]),xlab=paste(Prior),ylab="",yaxt=

"n") 
 polygon(c(x,rev(x)),c(rep(0,length(x)),rev(ifelse(pdf==Inf,100000,pdf))),co

l="grey") 
 return(c(a,b)) 

} 

#-------------------------------------------------- 
# Function to get gamma prior parameters 
#-------------------------------------------------- 

get_gamma <- function(mu,CV,Prior="x"){ 
 a = seq(0.0001,1000,0.0001) 
 b = a/mu 
 s2 = (a/b^2) 
 sdev = sqrt(s2) 
 # find beta )parameter a 
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CV.check = (sdev/mu-CV)^2
a = a[CV.check==min(CV.check)]
#find beta parameter b
b = a/mu
x = sort(rgamma(1000,a,b))
pdf = dgamma(x,a,b)
plot(x,pdf,type="l",xlim=range(x[pdf>0.01]),xlab=paste(Prior),ylab="",yaxt=

"n") 
 polygon(c(x,rev(x)),c(rep(0,length(x)),rev(ifelse(pdf==Inf,100000,pdf))),co

l="grey") 
 return(c(a,b)) 

} 

#-------------------------------------------------- 
# Function to get lognormal prior parameters 
#-------------------------------------------------- 
plot_lnorm <- function(mu,CV,Prior="x"){ 
 sdev= sqrt(log(CV^2+1)) 
 rand.pr = rlnorm(1000,log(mu),sdev) 
 x = seq(min(rand.pr),quantile(rand.pr,0.995),max(rand.pr/500)) 
 pdf = dlnorm(x,log(mu),sdev) 
 plot(x,pdf,type="l",xlim=range(x),xlab=paste(Prior),ylab="",yaxt="n") 
 polygon(c(x,rev(x)),c(rep(0,length(x)),rev(ifelse(pdf==Inf,100000,pdf))),co

l="grey") 
 return(c(mu,sdev)) 

} 

#------------------------------------ 
# Function kobeJabba for FLR 
#------------------------------------ 
kobeJabba<-function(x,minyear=1){ 

 out=cbind(melt(x[,,2]),c(x[,,3])) 
 names(out)=c("iter","year","stock","harvest") 
 out$year=out$year+minyear-1 
 out} 

#------------------------------------------------- 
# Function kobeJabbaProj for projections with FLR 
#------------------------------------------------- 
kobeJabbaProj<-function(x,minyear=1,tac=NULL){ 

 out=cbind(melt(x[,,,2]),c(x[,,,3])) 
 names(out)=c("iter","year","tac","stock","harvest") 
 out$year=out$year+minyear-1 

 out} 

#---------------------------------------------------- 
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# Determine initial ranges for r 
#---------------------------------------------------- 
if(r.dist=="range"){ 
 # initial range of r based on resilience (FishBase.org) 
 if(length(r.prior)>1){ start.r = r.prior} else 
 if(r.prior == "High") { 
 start.r <- c(0.6,1.5)} else if(r.prior == "Medium") { 
 start.r <- c(0.2,0.8)}  else if(r.prior == "Low") { 
 start.r <- c(0.05,0.5)}  else { # i.e. res== "Very low" 
 start.r <- c(0.015,0.1)} 

 log.r = mean(log(start.r)) 
 sd.r = abs(log.r - log(start.r[1]))/2 
r.prior = c(exp(log.r),sd.r)
CV.r = sqrt(exp(sd.r^2)-1)

} else { 
 log.r = log(r.prior[1]) 
 sd.r = r.prior[2] 
CV.r = sqrt(exp(sd.r^2)-1)

} 

#---------------------------------------------------- 
# Prepare K prior 
#---------------------------------------------------- 
if(K.dist=="range"){ 
 log.K = mean(log(K.prior)) 
 sd.K= abs(log.K - log(K.prior[1]))/2 
CV.K = sqrt(exp(sd.K^2)-1)

} else { 

 log.K = log(K.prior[1]) 
CV.K = K.prior[2]
sd.K=sqrt(log(CV.K^2+1))

} 

#---------------------------------------------------------- 
# Get JABBA parameterization and surplus production function 
#---------------------------------------------------------- 
# For Pella-Tomlinson 
if (Model == 3 | Model == 4) { 
 ## run thru sensitivities if given shape 
 # find inflection point 
 ishape = NULL 
 # Find shape for  SBmsytoK 
 ishape = seq(0.1, 10, 0.001) 
 check.shape = ((ishape) ^ (-1 / (ishape - 1)) - BmsyK) ^ 2 
 #  Set shape (> 0, with 1.001 ~ Fox and 2 = Schaefer) 
 shape =  ishape[check.shape == min(check.shape)] 
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 if (exists("sensname")) { 
 if (sensname == 'M') { 
 m = shape = sensmean[s] ## becomes m.mu 
 shape.CV = sensvar[s] 
 cat(paste0(shape, " ", shape.CV), "\n") 

 } ## end sensname == M 
 } ## end sensname exists 

} else {shape = FALSE} 

#------------------------------------------------ 

# Set shape m for Fox and Schaefer: Fox m ~1; Schaefer m =2 
if(shape==FALSE){ 
 if(Model == 1){m=2} else {m = 1.001}}else{m=shape} 

cat(paste0("\n","><> Plot Prior distributions in Input subfolder  <><","\n")) 

Par = list(mfrow=c(1,3),mai=c(0.5,0.1,0,.1),omi = c(0.1,0.2,0.1,0) + 0.1,mgp=
c(2,1,0), tck = -0.02,cex=0.8) 
png(file = paste0(input.dir,"/Priors_",assessment,"_",Scenario,".png"), width 
= 9, height = 3, 

 res = 200, units = "in") 
par(Par) 
K.pr = plot_lnorm(exp(log.K),CV.K,Prior="K")

if(psi.dist=="beta"){ 
 psi.pr = get_beta(mu=psi.prior[1],CV=psi.prior[2],Min=0,Prior=paste0("Prior 

B(",years[1],")/K"))} else { 
 psi.pr = plot_lnorm(mu=psi.prior[1],CV=psi.prior[2],Prior=paste0("Prior B

(",years[1],")/K")) 
 } 

r.pr = plot_lnorm(mu=exp(log.r),CV=CV.r,Prior="r")
mtext(paste("Density"), side=2, outer=TRUE, at=0.5,line=1,cex=0.9)
dev.off()

cat(paste0("\n","><> Plot assumed Surplus Production shape in Input subfolder 
<><","\n")) 

# Plot MSY 
Par = list(mfrow=c(1,1),mai=c(0.6,0.3,0,.15),omi = c(0.1,0.2,0.2,0) + 0.1,mgp
=c(2,1,0), tck = -0.02,cex=0.8) 
png(file = paste0(input.dir,"/Production",assessment,"_",Scenario,".png"), wi
dth = 6, height = 5, 

 res = 200, units = "in") 



95 

par(Par) 

# Get Bmsy/B0 as a function of M 
Bmsy=(m)^(-1/(m-1)) 
P = seq(0.0001,1,0.001) 
SP = ifelse(P>Plim,r.pr[1]/(m-1)*P*(1-P^(m-1)),r.pr[1]/(m-1)*P*(1-P^(m-1))*4*
P) 
#if(is.null(refBmsy)==TRUE) refBmsy = Bmsy 
plot(P,SP/max(SP),type="l",ylab="Relative Yield",xlab="B/B0",lwd=2) 
mtext(paste("Relative Yield"), side=2, outer=TRUE, at=0.6,line=1,cex=0.9) 
legend("topright",c("SPM"),col=c(1),lwd=2,bty="n") 

if(Model==4){ 
 # shape density 
 #dm = dgamma(seq(0.001,5,0.1),5,5)*m 
 dm = dlnorm((seq(0.001,5,0.1)),log(m),shape.CV) 
 dm = dm/max(dm) 
 bmsyk  = (seq(0.001,5,0.1))^(-1/(seq(0.001,5,0.1)-1)) 

 polygon(c(bmsyk,rev(bmsyk)),c(dm,rep(0,length(dm))),col="grey",border=0) 
} 
abline(v=Bmsy,lty=2) 
mtext(paste("Relative Yield"), side=2, outer=TRUE, at=0.6,line=1,cex=0.9) 
legend("topright",c("SPM"),col=c(1),lwd=2,bty="n") 
abline(v=Bmsy,lty=2) 
dev.off() 

# Note PRIORS and save input subfolder 
Priors =rbind(K.pr,psi.prior,c(r.pr[1],CV.r)) 
row.names(Priors) = c("K","Psi","r") 
colnames(Priors) = c("Mean","CV") 
write.csv(Priors,paste0(input.dir,"/Priors",assessment,"_",Scenario,".csv")) 

#---------------------------------------------------------- 
# Set up JABBA 
#---------------------------------------------------------- 
cat(paste0("\n","><> Set up JAGS input <><","\n")) 
# Plot MSY 
# remove scientific numbers 
options(scipen=999) 
#---------------------------------------------------------- 

# starting values 
nq = length(unique(sets.q)) 
nvar = length(unique(sets.var)) 
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## TAC setup 
#---------------------------------------------------------- 
# Setup TAC projection 
#--------------------------------------------------------- 
if(Projection==TRUE) { 
 nTAC = length(TACs) 
 TAC = mat.or.vec(pyrs, nTAC) 
 yr.now = as.numeric(format(Sys.Date(), "%Y")) + 1 
 yr.last = max(years) # assessment year 

 for (i in 1:nTAC) { 
 TAC[, i] = c(rep(TC[n.years], yr.now - yr.last), rep(TACs[i], pyrs - (yr.

now -yr.last))) 
 } 

} else if(Projection == FALSE){ 
 nTAC = 1 
 TAC = TC[n.years] 
 pyrs = 1 

} 

#--------------------------------------------------------------- 
# JABBA Schaefer/Fox Models 1-2, Pella 3 
#--------------------------------------------------------------- 

# Slope of hockey-stick 
slope.HS = ifelse(Plim==0,1/10^-10,1/Plim) 

nSel = 1 # setup for JABBA-SELECT version (in prep) 
nI = ncol(CPUE) # number of CPUE series 
stI = ifelse(proc.dev.all==TRUE,1, c(1:n.years)[is.na(apply(CPUE,1,mean,na.rm
=TRUE))==FALSE][1]) #first year with CPUE 

# Initial starting values 
inits <- function(){list(K= rlnorm(1,log.K,0.3),q = runif(nq,0.005,0.5), isig
ma2.est=runif(1,20,100), itau2=runif(nvar,80,200))} 
# starting value option 
if(init.values==TRUE){ 
inits <- function(){list(K= K.init,r=r.init,q = q.init, isigma2.est=runif(1,2
0,100), itau2=runif(nvar,80,200))} 
} 

# JABBA input data 
surplus.dat = list(N=n.years, TC = TC,I=CPUE,SE2=se2,mu.m=m,r.pr=r.pr,psi.pr=
psi.pr,K.pr = K.pr, 

 nq=nq,nI = nI,nvar=nvar,sigma.fixed=ifelse(sigma.proc==TRU
E,0,sigma.proc), 

 sets.var=sets.var, sets.q=sets.q,pen.bk = rep(0,n.years),P
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lim=Plim,slope.HS=slope.HS, 
 nTAC=nTAC,pyrs=pyrs,TAC=TAC,igamma = igamma,stI=stI,TACint 

=TACint,P_bound=P_bound,proc.pen=0,K.pen = 0, 
 obs.pen = rep(0,nvar),q_bounds=q_bounds,sigmaobs_bound=sig

maobs_bound,sigmaproc_bound=sigmaproc_bound,K_bounds=K_bounds) 
# If shape parameter is estimated (Model =4) 
if(Model==4){ 
 surplus.dat$m.CV = shape.CV } 

# JAGS model file 
JABBA = "JABBA.jags" 

# PARAMETERS TO MONITOR 
params <- c("K","r", "q", "psi","sigma2", "tau2","m","Hmsy","SBmsy", "MSY", "
BtoBmsy","HtoHmsy","CPUE","Proc.Dev","P","SB","prP","prBtoBmsy","prHtoHmsy","
TOE") 

cat(paste0("\n","><> RUN ",Mod.names," model for ",assessment," ",Scenario," 
in JAGS <><","\n","\n")) 

# JAGS MODEL Standard 
sink("JABBA.jags") 
cat(" 

 model { 

 # Prior specifications 
 eps <- 0.0000000000000000000000000000000001 # small constant 

 #Catchability coefficients 
 for(i in 1:nq) 
 { 
 q[i] ~ dunif(q_bounds[1],q_bounds[2]) 
 } 

 ") 

if(Model==4){ 
 cat(" 

 # Shape m prior 
 m ~ dlnorm(log(mu.m),pow(m.CV,-2)) 
 ",append=TRUE) 

 }else{ cat(" 
 m <- mu.m 

 ",append=TRUE)} 
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if(psi.dist =="beta"){ 
 cat(" 

 # Beta Prior for Biomass depletion at the start (deteministic) 
 psi ~ dbeta(psi.pr[1],psi.pr[2]) 
 ",append=TRUE) 

} else { 
 cat(" 

 # Lognormal for Biomass depletion at the start (deteministic) 
 psi ~ dlnorm(log(psi.pr[1]),pow(psi.pr[2],-2)) #I(0.1,1.1) 
 ",append=TRUE) 

} 

if(sigma.proc==TRUE){ 
 cat(" 

 # Process variance 
 isigma2 <- isigma2.est 
 sigma2 <- pow(isigma2,-1) 
 sigma <- sqrt(sigma2) 
 fakesigma.fixed <- sigma.fixed # Prevent unused variable error msg 
 ",append=TRUE) 

}else{ cat(" 
 isigma2 <- pow(sigma.fixed+eps,-2) 

 sigma2 <- pow(isigma2,-1) 
 sigma <- sqrt(sigma2) 

 ",append=TRUE)} 

if(sigma.est==TRUE){ 
 cat(" 

 # Obsevation variance 
 for(i in 1:nvar) 
 { 
 # Observation error 
 itau2[i]~ dgamma(0.001,0.004) 
 tau2[i] <- 1/itau2[i] 
 } 

 for(i in 1:nI) 
 { 
 for(t in 1:N) 
 { 
 var.obs[t,i] <- SE2[t,i]+tau2[sets.var[i]] 
 ivar.obs[t,i] <- 1/var.obs[t,i] 
 # note total observation error (TOE) 
 TOE[t,i] <- sqrt(var.obs[t,i]) # Total observation variance 

 }} 
 ",append=TRUE) 

}else{ cat(" 
 # Obsevation variance 
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 for(i in 1:nvar) 
 { 
 # Observation error 
 itau2[i]~ dgamma(4,0.01) 
 tau2[i] <- 1/itau2[i] 
 } 

 for(i in 1:nI) 
 { 
 for(t in 1:N) 
 { 
 var.obs[t,i] <- SE2[t,i] # drop tau2 
 fake.tau[t,i] <- tau2[sets.var[i]] 

 ivar.obs[t,i] <- 1/var.obs[t,i] 
 # note total observation error (TOE) 
 TOE[t,i] <- sqrt(var.obs[t,i]) 

 }} 

 ",append=TRUE)} 

# Run rest of code 
cat(" 

 # Process variance prior 
 isigma2.est ~ dgamma(igamma[1],igamma[2]) 

 # Carrying Capacity SB0 
 K ~ dlnorm(log(K.pr[1]),pow(K.pr[2], -2)) 

 # informative priors for Hmsy as a function of r 
 r ~ dlnorm(log(r.pr[1]),pow(r.pr[2],-2)) 

 #Process equation 
 Pmean[1] <- log(psi) 
 iPV[1] <- ifelse(1<(stI),10000,isigma2) # inverse process variance 
 P[1] ~ dlnorm(Pmean[1],iPV[1]) # set to small noise instead of isigma2 
 penB[1]  <- ifelse(P[1]<P_bound[1],log(K*P[1])-log(K*P_bound[1]),ifelse(P

[1]>P_bound[2],log(K*P[1])-log(K*P_bound[2]),0)) # penalty if Pmean is outsid
e viable biomass 

 # Process equation 
 for (t in 2:N) 
 { 
 Pmean[t] <- ifelse(P[t-1] > Plim, 
 log(max(P[t-1] +  r/(m-1)*P[t-1]*(1-pow(P[t-1],m-1)) - TC[t-1]/K,0.005)), 
 log(max(P[t-1] +  r/(m-1)*P[t-1]*(1-pow(P[t-1],m-1))*P[t-1]*slope.HS - TC

[t-1]/K,0.005))) 
 iPV[t] <- ifelse(t<(stI),10000,isigma2) # inverse process variance 
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 P[t] ~ dlnorm(Pmean[t],iPV[t]) 
 penB[t]  <- ifelse(P[t]<(P_bound[1]),log(K*P[t])-log(K*(P_bound[1])),ifel

se(P[t]>P_bound[2],log(K*P[t])-log(K*(P_bound[2])),0)) # penalty if Pmean is 
outside viable biomass 

 } 

 # Process error deviation 
 for(t in 1:N){ 
 Proc.Dev[t] <- P[t]-exp(Pmean[t])} 

 # Enforce soft penalties on bounds for P 
 for(t in 1:N){ 
 pen.bk[t] ~ dnorm(penB[t],1000) # enforce penalty with CV = 0.1 
 } 

 Hmsy <- r*pow(m-1,-1)*(1-1/m) 

 for (t in 1:N) 
 { 
 SB[t] <- K*P[t] 
 H[t] <- TC[t]/SB[t] 
 } 

 # Observation equation in related to EB 

 for(i in 1:nI) 
 { 
 for (t in 1:N) 
 { 
 Imean[t,i] <- log(q[sets.q[i]]*P[t]*K); 
 I[t,i] ~ dlnorm(Imean[t,i],(ivar.obs[t,i])); 
 CPUE[t,i] <- q[sets.q[i]]*P[t]*K 
 }} 

 #Management quantities 
 SBmsy_K <- (m)^(-1/(m-1)) 
 SBmsy <- SBmsy_K*K 

 MSY <- SBmsy*Hmsy 
 for (t in 1:N) 
 { 
 # use x y to put them towards the end of the alphabetically sorted  mcmc 

object 
 #SP[t] <- pow(r.pella,-(m-1))*SB[t]*(1-pow(P[t],m-1)) 
 BtoBmsy[t] <- SB[t]/SBmsy 
 HtoHmsy[t] <- H[t]/(Hmsy) 
 } 
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 # Enforce soft penalty on K if < K_bounds > 
K.pen ~ dnorm(penK,1000) # enforce penalty
penK  <- ifelse(K<(K_bounds[1]),log(K)-log(K_bounds[1]),ifelse(K>K_bounds

[2],log(K)-log(K_bounds[2]),0)) # penalty if Pmean is outside viable biomass 

 # Enforce soft penalty on process deviance if sigma.proc > 0.2 
 proc.pen ~ dnorm(penProc,1000) # enforce penalty 
 penProc  <- ifelse(sigma>sigmaproc_bound,log(sigma)-log(sigmaproc_bound),

0) 

 # Enforce soft penalty on observation error if sigma.obs > sigma_bound 
 for(i in 1:nvar){ 
 obs.pen[i] ~ dnorm(penObs[i],1000) # enforce penalty 
 penObs[i]  <- ifelse(pow(tau2[i],0.5)>sigmaobs_bound,log(pow(tau2[i],0.5)

)-log(sigmaobs_bound),0) 
 } 

 ", append=TRUE) 

# PROJECTION 
if(Projection==TRUE){ 
 cat(" 

 for(i in 1:nTAC){ 
 # Project first year into the future 
 prPmean[1,i] <- ifelse(P[N] > Plim, 
 log(max(P[N] +  Hmsy/(1-1/m)*P[N]*(1-pow(P[N],m-1)) - TACint/K,0.005)), 
 log(max(P[N] +  Hmsy/(1-1/m)*P[N]*(1-pow(P[N],m-1))*4*P[N] - TACint/K,0

.005))) 
 prP[1,i] ~ dlnorm(prPmean[1,i],isigma2) 
 # Project all following years 
 for(t in 2:pyrs){ 
 prPmean[t,i] <- ifelse(prP[t-1,i] > Plim, 
 log(max(prP[t-1,i] +  Hmsy/(1-1/m)*prP[t-1,i]*(1-pow(prP[t-1,i],m-1)) - 

TAC[t-1,i]/K,0.001)), 
 log(max(prP[t-1,i] +  Hmsy/(1-1/m)*prP[t-1,i]*(1-pow(prP[t-1,i],m-1))*s

lope.HS*prP[t-1,i] - TAC[t-1,i]/K,0.005))) 
 # process error (as monte-carlo simular) 
 prP[t,i] ~ dlnorm(prPmean[t,i],isigma2)} 
 for(t in 1:pyrs){ 
 prB[t,i] <- prP[t,i]*K 
 prH[t,i] <- TAC[t,i]/prB[t,i] 
 prHtoHmsy[t,i] <- prH[t,i]/Hmsy 
 prBtoBmsy[t,i] <- prB[t,i]/SBmsy 
 }} 
 ",append=TRUE)} else { 
 cat(" 

 #Prevent error for unused input 
 fakeTAC <-  TAC 
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 fakepyrs <- pyrs 
 fakenTAC <- nTAC 
 fakeTACint <- TACint 
 prHtoHmsy <- 1 
 prP <- 1 
 prBtoBmsy <- 1 
 ", append=TRUE)} 

cat(" 

} # END OF MODEL 
 ",append=TRUE,fill = TRUE) 

sink() 

ptm <- proc.time() 

mod <- jags(surplus.dat, inits,params,paste(JABBA), n.chains = nc, n.thin = n
t, n.iter = ni, n.burnin = nb)  # adapt is burn-in 

proc.time() - ptm 
save.time = proc.time() - ptm 

cat(paste0("\n",paste0("><> Scenario ",Scenario,"_",Mod.names," completed in 
",as.integer(save.time[3]/60)," min and ",round((save.time[3]/60-as.integer(s
ave.time[3]/60))*100)," sec <><","\n"))) 

cat(paste0("\n","><> Produce results output of ",Mod.names," model for ",asse
ssment," ",Scenario," <><","\n")) 

# if run with library(rjags) 
posteriors = mod$BUGSoutput$sims.list 

#----------------------------------------------------------- 
# <><<><<><<><<><<><<>< Outputs ><>><>><>><>><>><>><>><>><> 
#----------------------------------------------------------- 
output.dir = paste0(File,"/",assessment,"/",Scenario,"_",Mod.names,"/Output") 
dir.create(output.dir, showWarnings = FALSE) 

# run some mcmc convergence tests 
par.dat= data.frame(posteriors[params[c(1:7)]]) 
geweke = geweke.diag(data.frame(par.dat)) 
pvalues <- 2*pnorm(-abs(geweke$z)) 

heidle = heidel.diag(data.frame(par.dat)) 

# postrior means + 95% BCIs 
#Model  parameter 
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apply(par.dat,2,quantile,c(0.025,0.5,0.975)) 

man.dat = data.frame(posteriors[params[8:10]]) 
#Management quantaties 
apply(man.dat,2,quantile,c(0.025,0.5,0.975)) 

# Depletion 
Depletion = posteriors$P[,c(1,n.years)] 
colnames(Depletion) = c(paste0("P",years[1]),paste0("P",years[n.years])) 

# Current stock status (Kobe posterior) 
H_Hmsy.cur = posteriors$HtoHmsy[,c(n.years)] 
B_Bmsy.cur = posteriors$BtoBmsy[,c(n.years)] 

# Prepare posterior quantaties 
man.dat = data.frame(man.dat,Depletion,B_Bmsy.cur,H_Hmsy.cur) 

results = round(t(cbind(apply(par.dat,2,quantile,c(0.025,0.5,0.975)))),6) 

results = data.frame(Median = results[,2],LCI=results[,1],UCI=results[,3],Gew
eke.p=round(pvalues,3),Heidel.p = round(heidle[,3],3)) 

ref.points = round(t(cbind(apply(man.dat,2,quantile,c(0.025,0.5,0.975)))),3) 

ref.points = data.frame(Median = ref.points[,2],LCI=ref.points[,1],UCI=ref.po
ints[,3]) 

# get number of parameters 
npar = length(par.dat) 
# number of years 
N=n.years 

# Save posteriors (Produces large object!) 
if(save.all==TRUE) save(posteriors,file=paste0(output.dir,"/",Scenario,"_post
eriors")) 

#------------------------------------------------------------------------- 
# Save parameters, results table and current status posterior in csv files 
#------------------------------------------------------------------------- 

# Save model estimates and convergence p-values 
write.csv(data.frame(results),paste0(output.dir,"/Estimates_",assessment,"_",
Scenario,".csv")) 

# Make standard results table with parameter estimates and reference points 
Table = rbind(data.frame(results)[,1:3],data.frame(ref.points)) 
Table[4,] = round(sqrt((Table[4,])),3) 
rownames(Table)[4] = "sigma.proc" 
write.csv(Table,paste0(output.dir,"/Results_",assessment,"_",Scenario,".csv")
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) 
#Save posterior of recent assessment year (KOBE posterior) 

write.csv(data.frame(BtoBmsy=B_Bmsy.cur,FtoFmsy=H_Hmsy.cur),paste0(output.dir
,"/Status_posterior",assessment,".csv")) 

## source all plotting scripts 
#source(paste0(JABBA.file,'/plot_JABBA.R')) 

if(save.trajectories==TRUE){ 
 cat(paste0("\n","><> Saving Posteriors of FRP trajectories <><","\n")) 

 # FRP trajectories 
 trajectories = array(NA,c(nsaved,n.years,3)) 
 trajectories[,,1] = posteriors$P 
 trajectories[,,2] = posteriors$BtoBmsy 
 trajectories[,,3] = posteriors$HtoHmsy 

 kb=kobeJabba(trajectories,years[1]) 
 save(kb,file=paste0(output.dir,"/",Scenario,"_trajectories")) 

} 

cat(paste0("\n","><> Scenario ",Mod.names,"_",Scenario," for ",assessment," - 
DONE! <><","\n")) 
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