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simulation of CH4ctl was in better agreement (within 
3 ppb) with HIPPO measurements compared to that 
using a posteriori emission (difference as great as 8 
ppb for HIPPO-1 and HIPPO-3). This is because the 
CH4ctl inversion produced greater CH4 emissions in 
the latitude band of 25–50°N. In contrast, CH4ags a 
posteriori emissions are greater in the latitude band 
of 30°S–Eq compared to a priori emissions and thus 
the large model IH gradients during HIPPO-3 and 
HIPPO-4. This suggests that inversions using 39 
surface sites provide somewhat limited constrain on 
accurately describing the fine details in latitudinal 
distribution of CH4 emissions. 

In addition to the spatial/meridional emission distri-
bution, estimation of the time evolution of emissions 
is an integral part of understanding the mechanisms 
of CH4 emissions due to natural climate variability 
and human activity. Figure 10 shows the time series 
of CH4 over Sendai, Japan. The simulated mole frac-
tions calculated with a posteriori emissions agree with 
the measured values within 0.3 % (5 ppb) for indi-

vidual years, except for the CH4e42 case. The vertical 
gradients are also well simulated for 2002–2012 (not 
shown) with typical model-observation differences 
lower than 20 ppb. More interestingly we find that the 
simulated CH4 seasonal cycle amplitude has increased 
from ~40 ppb (peak to trough) in 2002–2003 to ~60 
ppb during 2011–2012. The seasonal cycle ampli-
tude is overestimated by ACTM simulation using a 
priori emissions, and largest overestimation is seen 
for the CH4e42 case, suggesting that the impact of 
the emission increase in China on CH4 concentration 
seasonality might be observable over Japan. ACTM 
simulations using a posteriori emissions better match 
the observed seasonal cycles (Figs. 10c, d) and are 
indistinguishable from each other. These comparisons 
clearly indicate that the CH4e42 inversion case still 
overestimates emissions of CH4 from the East Asia 
region. Thus our best estimated emission increase 
is 7–8 Tg yr–1 over the periods of 2002–2006 and 
2008–2012. Note here that the a posteriori uncertainty 
was about 22 Tg yr–1 for the East Asia region, which 

Fig. 10. CH4 over Sendai, Japan in altitude range of 2–4 km (top) and 0–2 km (down). Measurements are taken 
from Tohoku University (circle) and ACTM simulations for 6 inversion cases (lines; colours correspond to the 
emissions in Fig. 6) are shown.
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does not truly reflect the quality of mean a posteriori 
fluxes, and the quality of the mean fluxes is better 
verified (within 10 Tg yr–1) using independent aircraft 
measurements.

Given the similarities in increase of anthropo-
genic CO2 and CH4 emissions, we briefly discuss 
implications our CH4 inversion results for CO2 
inverse modeling. Despite the differences in emis-
sion sectors, global total anthropogenic CO2 and CH4 
emissions increased by 16 % and 10 %, respectively, 
between the periods of 2002–2006 and 2008–2012 
(EDGAR42FT 2013). In the case of CO2 inver-
sions, residual (terrestrial biosphere) fluxes for land 
regions are estimated assuming that our knowledge 
of anthropogenic emission due to fossil fuel burning 
and cement production is accurate. This implies that if 
the regional CO2 anthropogenic emission is overesti-
mated, the terrestrial biosphere will appear as a lower 
source or increased sink of CO2 by inverse modeling. 
However, the CH4 inversion emission validation 
results clearly suggest an overestimation of anthropo-
genic emissions in EDGAR42FT (2013). We propose 
that the enhanced residual CO2 sinks in the East Asian 
terrestrial biosphere are likely to be estimated by 
inverse modeling of atmospheric CO2, if correction 
to anthropogenic CO2 emission increase rate is not 
applied before inversion. As an example, the increase 
in CH4 emission by 19 Tg yr–1 by EDGAR42FT was 
reduced to 7–8 Tg yr–1 by our inversion for the East 
Asia region. 

Large fractions of total CO2 and CH4 emission 
increases from China are attributed to fossil-fuel 
burning alone, i.e., public electricity and heat produc-
tion (48 %) and fugitive from solid (32 %), respec-
tively, according to the EDGAR42 during the periods 
between 2001–2004 and 2005–2008. By analogy, 
we may expect less than 50 % of the anthropogenic 
CO2 emission increase of 1.0 PgC yr–1 estimated by 
EDGAR42FT between the periods of 2002–2006 and 
2008–2012. Thus CO2 inversions using EDGAR42FT 
anthropogenic emission as a priori would estimate 
an increased terrestrial biosphere sink over East Asia 
between the periods of 2002–2006 and 2008–2012. 
We propose that the large terrestrial CO2 sink of 
1.56 PgC yr–1 over Asia estimated in recent inverse 
modeling studies (e.g., Zhang et al. 2014) is partly an 
artifact of greater anthropogenic emission estimated 
by the inventory emissions for China. Interestingly, if 
the anthropogenic CO2 emissions from China grew at 
half the rate of what is projected by emission invento-
ries, total emissions from China would have overtaken 
CO2 emission from the United States in 2009 (1.45 

PgC yr–1), not in 2006 (1.59 PgC yr–1) as suggested in 
EDGAR42FT (see also Gregg et al. 2008). 

3.8  Time-latitude distribution of the atmospheric 
growth rate

Figure 11 shows the growth rate of CH4 as 
measured and simulated at 21 background sites out of 
the 39 sites used in the inversion (case CH4ags). This 
reconfirms that use of the same sites in the inversion 
and subsequent forward simulations do not neces-
sarily constitute a perfect model condition, i.e., when 
the same transport model is used before and after 
inversion. Due to insufficient degrees of freedom 
in the inversion system in the case of CH4e42, the 
inverted fluxes failed to represent the time evolution 
of global total CH4 emissions for simulating CH4 
growth rates that are consistent with observations 
(RMSE, root-mean square error = 5.6 ppb yr–1, and 
mean bias 3.5 ppb yr–1; not shown). Growth rates 
are calculated by taking the time-derivative of long-
term trends of CH4 time series calculated with a curve 
fitting method (Nakazawa et al. 1997). However, the a 
posteriori RMSE and bias were reduced significantly 
compared to the a priori emission case of CH4e42 (8.3 
and 6.7 ppb yr–1, respectively). The RMSE defines 
how well the model captures the observed interan-
nual variations in the growth rate and bias indicates 
model-observation agreement between overall trends 
during the period of analysis (2002–2012). Notably, 
the RMSE and mean bias in CH4 growth rates simu-
lated using CH4ags emissions are 3.6 and 0.44 ppb 
yr–1, respectively, better than those in the a priori 
emission case, 5.7 and –1.6 ppb yr–1 (Fig. 11). Low 
reduction of CH4 growth rate RMSE (~37 %) after 
inversion is likely to be caused by the use of cyclosta-
tionary regional pulse function. 

Figure 11 suggests that the anomalous positive 
growth rate in 2002–2003 and negative growth rates 
in 2004–2005 originated in the tropics and the NH. 
However, the recent positive anomalies in growth 
rates in 2007 and 2010 are more likely to have orig-
inated in the SH and the tropics. An increase in 
anthropogenic emission is also suggested by the 
EDGAR42FT inventory (Figs. 6c, d; case CH4e42), 
which is consistent with our inversion results for 
emission trends over South America and South Asia. 
The rate of global total fire emissions decreased 
slightly from 16 Tg yr–1 in 2002–2006 to about 13 Tg 
yr–1 in 2007–2012 (van der Werf et al. 2010; updated 
results). The inversion flux analysis does not allow 
us to ascertain what type of activities have caused 
the increase in emissions. However, the University of 
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Fig. 11. Observed and simulated CH4 growth rates for 2002–2012, based on selected 21 marine sites of the 39 sites 
used in inversions. Simulated cases using CH4ags a priori and a posteriori emissions are depicted in the bottom 
and middle panels, respectively, using a common colour scale (light blue to pink). Sites used in making these 
plots are indicated on the right side of the bottom panel, placed according to their location latitudes. 



P. K. PATRA et al.February 2016 109

Colorado, INSTAAR (White and Vaughn 2015) has 
observed a decrease (more negative value of the rela-
tive ratio of 13C to 12C, i.e., towards lighter CH4) in 
stable carbon isotopic ratios of atmospheric CH4 (13C-
CH4) since about 2008, suggesting an increase in CH4 
production through microbial activity, such as enteric 
fermentation (as discussed earlier using FAO statistics 
of cattle and cow population) and wetlands. However, 
our a priori emission cases including wetland emis-
sion variations using VISIT terrestrial ecosystem 
model did not suggest any increase (Ito and Inatomi 
2012). The estimated CH4 emissions from enteric 
fermentation globally increased from 89 Tg yr–1 in 
2002 to 99 Tg yr–1 in 2009 (FAOSTAT, 2015; ~10 
Tg yr–1 increase is also seen in EDGAR42FT for the 
period 2000-2010). This increase in emission corre-
sponds to global non-dairy cattle population increase 
from 1056 million in 2002 to 1160 million in 2012 
(approximately, 10 %), with majority of contributions 
coming from Asia (15 %), South America (14 %) and 
Africa (22 %). 

4.  Conclusions

A CH4 inverse model was developed using ACTM 
by introducing a few modifications to our CO2 inver-
sion system for estimation of emissions from 53 land 
regions globally at monthly time intervals for the 
period 2002–2012. The new system is also appli-
cable to other species, such as N2O, Halocarbons, 
with low reactivity in the atmosphere and reasonably 
well balanced global total a priori sources and sinks 
estimates. We have used interannually varying mete-
orology (JRA-25 nudged to AGCM) for simulating 
atmospheric CH4 and regional basis function simula-
tions were simulated using one year of meteorology 
(2009). Model simulations did not consider interan-
nual variation in OH radical concentration, although 
the temperature dependent reaction rates were 
calculated. We prepared 7 cases of a priori emission 
scenarios and utilized them for checking the perfor-
mance of the inverse model to constrain regional, 
semi-hemispheric and global total CH4 emissions. We 
used CH4 mole fraction measurements from 39 sites 
(37 NOAA and 2 JMA) in the period of 2001–2013.

The a posteriori CH4 emissions are in general 
agreement with previous studies. Global total emis-
sions are estimated to be 505–506 Tg yr–1 in 2002–
2006 and 524–532 in 2008–2012 (range based on 6 
inversion cases). The renewed growth in atmospheric 
CH4 burden since 2007 was triggered by emissions 
from tropical Asia and southern South America. Using 
the statistics from Food and Agriculture Organiza-

tion of the United Nations (FAOSTAT) and a prelim-
inary analysis of carbon isotopic ratio of atmospheric 
CH4 (13CH4), we conclude that the renewed growth 
rate in 2007 and its sustenance is caused by CH4 
sources from enteric fermentation. On contrary to 
the large anthropogenic emissions from China in the 
EDGAR42FT emission inventory (~17 Tg yr–1 during 
the 2002–2006 and 2008–2012), our results suggest a 
much lower increase rate of 7–8 Tg yr–1. The inven-
tory emissions are calculated based on the economic 
activity and country level energy consumption statis-
tics, which are then applied with emission factors for 
various species. Given that the EDGAR42FT database 
also show rapid increase in fossil fuel CO2 emissions 
from China, and residual terrestrial fluxes in inverse 
modeling are estimated with an assumption that 
fossil fuel CO2 emissions are accurately known (e.g., 
Rayner et al. 1999; Peylin et al. 2013), we propose 
that the CO2 residual sink over East Asia estimated 
by inverse modeling is likely to be overestimated for 
the recent years because of overestimation of CO2 
emissions from fossil fuel burning. Further efforts 
are needed to resolve such ambiguity in estimation of 
CO2 fluxes by inverse modeling. Artifacts of an over-
estimation in anthropogenic CO2 emission on CO2 
inversion of terrestrial biosphere sources and sinks are 
discussed in Section 3.7. 

One of the major deficiencies of this inverse model 
setup is poor constrain on the seasonal cycle of CH4 
emissions at the regional scale. There were, however, 
signs of closer agreement between the a posteriori 
emissions for CH4ctl and other 6 ensemble cases. This 
is mainly because of the sparse measurement network 
practically used for the inversion (39 sites). In the 
future, we would also like to realistically introduce 
interannual variations in loss of CH4 by OH chemistry 
and Cl in marine boundary layer – both of which are 
poorly known presently. 
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Appendix

Details of 39 measurement sites used in the inver-
sion. Most (37) sites are operated by the GMD/NOAA 
and two (YON and MNM) are operated by JMA. 
Root mean-square errors of model-observation differ-
ences are also given for ACTM simulations using a 
priori and a posteriori emissions (CH4ags case). 

Sl.
No.

WDCGG
name

Latitude
(°)

Longitude
(°E)

Altitude
(m)

Model-
Observed CH4

A
priori

A
posteriori

  1
  2
  3
  4
  5
  6
  7
  8
  9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

alt482n00
asc107s00
ask123n00
bhd541s00
bmw432n00
brw471n00
cba455n00
cgo540s00
chr501n00
crz146s00
eic327s00
esp449n00
gmi513n00
hba775s00
hun646n00
ice663n00
izo128n00
key425ocn
kum519n00
mhd653lnd
mid528n00
mlo519n00
nwr440n01
pal667n00
psa764s00
rpb413n00
sey104s00
shm452n00
smo514s00
spo789s00
sum672n00
syo769s00
uta439n00
uum244n00
wis631n00
wlg236n00
zep678n00
mnm224nhr
yon224nhr

82.5
–7.9
23.3

–41.4
32.3
71.3
55.2

–40.7
1.7

–46.5
–27.1
49.4
13.4

–75.6
47.0
63.4
28.3
25.7
19.5
53.3
28.2
19.5
40.1
68.0

–64.9
13.2
–4.7
52.7

–14.2
–87.0
72.6

–69.0
39.9
44.5
31.1
36.3
78.9
24.3
24.5

297.5
345.6

5.6
174.9
295.1
203.4
197.3
144.7
202.8
51.9

250.6
233.5
144.8
333.5
16.7

339.7
343.5
279.8
205.2
350.1
182.6
204.4
254.4
24.1

296.0
300.6
55.2

174.1
189.4
335.2
321.5
39.6

246.3
111.1
34.9

100.9
11.9

154.0
123.0

210
54

2710
85
30
11
25
94
3

120
50
39
2

33
248
100

2367
3
3
8
8

3397
3523
560
10
45
7

40
42

2810
3238

16
1320
914
400

3810
475

8
30

22.9
11.5
20.8
44.6
23.0
20.5
21.8
14.8
22.4
15.0
13.7
25.2
21.7
15.6
24.2
24.2
18.5
27.2
25.4
23.4
23.5
28.0
20.7
27.8
14.7
21.0
24.5
21.5
16.5
14.9
21.5
14.5
33.5
28.7
24.8
22.7
24.2
27.1
26.1

8.9
5.1
7.4

28.4
12.4
12.0
9.8
5.6

10.5
5.8
4.9

10.5
11.8
5.9

18.0
10.8
8.1

12.6
10.0
11.5
9.7

11.9
8.8

15.9
5.5
8.4

13.4
10.9
7.2
5.3
7.8
5.3

13.9
16.3
11.2
11.6
9.9

10.1
12.1
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