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ABSTRACT

Theempirical cumulative density function (ECDF) approach canbeused to combinemultiple, diverse assessment

metrics into summary assessment metrics (SAMs) to analyze the results of impact experiments and preoperational

implementation testing with numerical weather prediction (NWP) models. The main advantages of the ECDF

approach are that it is amenable to statistical significance testing and produces results that are easy to interpret

because the SAMs for various subsets tend to vary smoothly and in a consistent manner. In addition, the ECDF

approach canbe applied in various contexts thanks to the flexibility allowed in the definition of the reference sample.

The interpretations of the examples presented here of the impact of potential future data gaps are

consistent with previously reported conclusions. An interesting finding is that the impact of observations

decreases with increasing forecast time. This is interpreted as being caused by the masking effect of NWP

model errors increasing to become the dominant source of forecast error.

1. Introduction

A welter of quantitative assessment metrics are pro-

duced by modern numerical weather prediction (NWP)

data assimilation and forecast systems. Boukabara et al.

(2016, hereafter BGK) introduced the overall forecast

score (OFS) as a mathematically rigorous, yet sim-

ple, approach to compositing large collections of

diverse assessment metrics using normalized scores

combining different variables, levels, forecast times,

and metrics. We present in this study an alternative

approach to computing a composite score that relies

on an empirical cumulative distribution function

(ECDF) to normalize the assessment metrics. In

simple terms, the ECDF normalization of a partic-

ular forecast metric is the fraction of forecasts that

are worse than the given forecast. A principal ad-

vantage of the ECDF approach is in assigning con-

fidence intervals to the composite score. In this

discussion, the assessment metrics are the fore-

cast anomaly correlation (AC) and the forecast
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root-mean-square error (RMSE); however, the discus-

sion is general and applicable to any other similar met-

rics, both for forecasts and for analyses.

When conducting an impact test comparing alterna-

tive or new analysis methods, quality control procedures,

forecast model components (e.g., cumulus parameteri-

zations), or observational data sources (e.g., adding new

satellite sensors to a NWP data assimilation system), it

is often desirable to create summaries of the various

assessment metrics. Such summaries can be used to

concisely report results and, for better or worse, are

sometimes relied on for programmatic decision-

making. An example is the ECMWF scorecard that

summarizes the impact of recent changes in the In-

tegrated Forecast System (IFS) reported by Hólm
et al. (2016). In Fig. 1, which shows a portion of that

scorecard, each symbol corresponds to the forecast

impact of the system changes on an individual metric.

For example, in the rightmost column, which is for

RMSE in the tropics, the first line of symbols sum-

marizes the positive (green) impact on 100-hPa tem-

perature, with the most significant results for day 7,

while the next line of symbols summarizes the mixed

impacts on 250-hPa temperature, with highly signifi-

cant negative impact on days 1 and 2, followed by both

significant and highly significant positive impacts on

days 4–10. While a scorecard summarizes a large

number of different assessment metrics in just one page,

in some situations, a more compact summary may

be useful.

Summary assessment metrics (SAMs) can be cre-

ated if the individual original or primary assessment

metrics (PAMs) are first normalized. The normalized

assessment metrics (NAMs) are comparable and

therefore can be combined. While global SAMs have

limited diagnostic usefulness, SAMs created along

various dimensions of the NAMs (e.g., as a function of

forecast hour) are useful displays of how error varies

along such dimensions for different experiments.

There are many possible normalizations. One nor-

malization is to convert PAMs into skill scores, for

example,

S5 12 r2e /r
2
s , (1)

where re is the experiment RMSE and rs is the standard

or reference RMSE. Both the Met Office (UKMO)

NWP index (Rawlins et al. 2007, see their appendix) and

the U.S. Air Force (USAF) General Operations (GO)

index (Newman et al. 2013; Shao et al. 2016) are defined

as N5 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 Sw

p
, where Sw is a weighted sum of the

individual skill scores calculated using Eq. (1). The

NWP index and the GO index differ in the selection of

PAMs, the definition of rs, and values of the weights.

Another normalization is seen in the ECMWF score-

card, where differences between the new and old IFS

FIG. 1. A portion of the ECMWF scorecard for IFS cycle 41r2 (implemented 8Mar 2016) compared to cycle 41r1 (implemented 12May

2015) for the high-resolution forecasts verified by the respective analyses for 10 Aug 2015–7Mar 2016. The symbols indicate ranges of the

ratio of metric difference to confidence interval width, which is calculated for a paired two-sided t test at p5 0:05. The symbols and the

ranges (with closed ends indicated by square brackets) are given below the scorecard. [After Fig. 7 of Hólm et al. (2016).]
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PAMs are normalized based on a paired t test for the 95%

significance level. Recently, BGK suggested the OFS

normalization based on theminimumandmaximum in the

sample, and applied this to a set of PAMs almost identical

to that used here (as described in section 4). Here we

propose and explore the use of an alternative normaliza-

tion based on the probability integral transform (Angus

1994), by making use of the ECDF of a reference sample.

TheECDFnormalization for an individual specificPAM

is the fraction of the reference sample of similar PAMs

worse (i.e., less skillful) than the given individual PAM.This

provides a natural way to normalize each PAM into the

range [0, 1]. The average of a number of normalized

PAMs has a distribution that is asymptotically normal

(section 2b). Note that the reference sample can be all

similar PAMs from the current experiments, or a sample

of similar PAMs from recent operational forecasts.

Advantages of the ECDF approach are that 1) it is

nonparametric and hence does not rely on assumptions of

normality; 2) it is extremely stable, in particular in com-

parison to the use of the sampleminimum andmaximum;

3) allows for flexibility in the choice of reference sample,

and therefore can be used for on-going day-by-day

monitoring; and 4) can be applied, as is done in section 4,

to multiple experiments simultaneously (i.e., does not

require a pairwisematchup).As a consequence of the first

point the ECDF approach provides more reliable esti-

mates of uncertainty, and therefore confidence intervals.

The calculations of NAMs, SAMs, and the uncertainty

of SAMs are detailed in section 2. This calculation is in-

dependent of how the reference sample is specified and of

the collection of PAMs used. Then in section 3, different

approaches to defining the reference sample are consid-

ered. The definition of the reference sample should al-

ways be included in any report of SAMs. Example results

are presented in section 5 for the experiments of BGK,

which is briefly described first in section 4. A summary

and conclusions are given in section 6.

2. Calculation procedures

The calculation of SAMs involves the following three

steps:

d Subset—Define appropriate subsets. For example,

one subset could be all initial times for all experi-

ments, for Northern Hemisphere extratropics (NHX)

AC for 5-day forecasts of 500-hPa height. Under H0,

the null hypothesis, all the metrics within a subset are

from the same reference distribution.
d Normalize—Each PAM is normalized. The resulting

NAMs range from 0 (poor) to 1 (excellent). The

normalization is different for each subset. ECDF

normalization, described below and schematically

depicted in Fig. 2, is proportional to rank in the

subset of the reference sample. Under H0, the nor-

malized metrics are uniformly distributed on [0, 1].
d Average—Since the normalized metrics are compara-

ble, we may average them for each experiment over

some or all of the different subset dimensions: variables,

levels, forecast times, geographic domains, initial times,

and metrics (e.g., AC and RMSE). Under H0, the

averages are approximately Gaussian and have mean

0.5, and variance 1/(12n), where n is the number of

NAMs averaged.

a. Calculation of normalized assessment metrics
(NAMs)

We normalize each PAM value (x) using an ECDF for

that metric. Then the NAM is equal to the probability that

X, a randomly chosen element from the reference subset

distribution is worse than x. We denote this probability by

P(x). Stated another way, each NAM (y) is a dimension-

less number on the unit interval [0, 1], determined as the

quantile of the ECDF corresponding to the PAM value

[i.e., y5P(x)5Pr(X is worse than x)]. This discussion

applies within each subset (i.e., within the particular vari-

able, level, forecast time, geographic domain, and metric).

Figure 2 illustrates how the normalizationworks for the

subset of NHX AC for 5-day forecasts of 500-hPa height

taken from the experiments of BGK. In the figure, the

sample of all such forecasts defines the ECDF curve, and

FIG. 2. The ECDF and the transformation fromPAMs to NAMs.

In this example the ECDF (black curve) is derived from the sample

of NHXACPAMs for 5-day forecasts of 500-hPa height taken from

the experiments of BGK. The colored lines show the transformation

from PAM to NAM for the forecast initialized at 0000 UTC 18 Jul

2014 for each experiment.
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the mapping from PAM to NAM is drawn for each fore-

cast initialized at 0000 UTC 18 July 2014. Because of the

steepness of the ECDF curve for AC values between 0.80

and 0.90, the 2polar, 3pgps, 3polar, and cntrl experiments’

AC values of 0.806, 0.815, 0.846, and 0.877, respectively,

are normalized to 0.262, 0.316, 0.484, and 0.771. The use of

subsets accounts for the natural variation of forecast skill

along the subset dimensions (i.e., from subset to subset).

This approach is nonparametric: it does not make any

assumption about the distribution of the metrics. Note

that we define theNAM to be zero for any xworse than all

values in the subset distribution and the NAM to be one

for any x better than all values in the subset distribution.

Practically, a NAM is the fraction of cases in the ref-

erence subset sampleR that areworse than the particular

value of the PAM. Using the rank function results in ef-

ficient calculation. First consider a PAM like AC where

larger values are better—that is, xa , xb implies that case

a is worse than case b. If there are n elements inR, and if

r is the rank of x in the sampleR1 x (i.e., the sampleR
with x appended), then the NAM is given by

y5
r2 1

n
. (2)

The values of y must be in the interval [0, 1] since if x is

smaller than all ofR, the rank of x inR1 x is 1 and if x is

larger than all ofR, the rank of x inR1 x is n1 1.When

calculating the rank, ties are given the minimum possible

rank. This method of treating ties—used in golf matches

and sometimes called the 1224 rank—has the effect that

(r2 1) is always the number of worse (smaller) values.

For a metric like RMSE, where smaller values are better,

determine the rank of the negative of RMSE, and then

applyEq. (2). For ametric likemean error, where smaller

absolute values are better, determine the rank of the

negative of the absolute value of themean error, and then

apply Eq. (2). If mean error PAMs are included, then it is

preferable to substitute error standard deviation PAMs

for RMSE PAMs, since RMSE, being the root-mean-

square of error standard deviation and mean error, is not

independent of the mean error.

When the reference sample R is equal to the experi-

ment sample E composed of all the values of x, then the

vector r of all the values of r can be determined at once by

applying a ranking procedure toR.1 WhenR 6¼ E, r can
be calculated by applying rank to two samples: first to the

sample E, then to the sample E1R (created by ap-

pending R to E). Then

r2 15 rank(E1R)2 rank(E) . (3)

Consider an example: suppose the rank of x is 5 within E
and 15 within E1R. Then since x is better than 4 ele-

ments in E and 14 in E1R, we know that x is better than

10 elements in R.

b. Summary assessment metrics (SAMs) and
significance testing

Under the null hypothesis (H0) that there is no im-

pact due to the individual case (initial or valid time) or

experiment, each NAM has an independent uniform

distribution on the unit interval. This holds exactly if

we use the true distribution function of the PAMs

(Angus 1994), and the approximation becomes in-

creasingly accurate as the reference sample size in-

creases. Then, each NAM has an expected value of 1/2

and a variance of 1/12. When a set of forecasts is es-

pecially good or especially bad, H0 would be rejected.

This allows for significance testing of various combi-

nations of NAMs into SAMs. If a SAM is the average of

m NAMs, then that SAM has an expected value of 1/2

and a variance of 1/(12m). If we difference two similar

SAMs (say for two experiments) then that difference

has an expected value of 0 and a variance of 1/(6m). In

general, under H0, a SAM has a Bates (1955) distri-

bution. For moderately large m,2 SAMs will be effec-

tively normally distributed, allowing easy calculation of

p values and testing of significance.

3. The ECDF reference sample

The choice of the reference sample for defining the

ECDF is critical and will depend on the type of experi-

ment. We outline two alternatives here, but others are

possible. In any use of this approach, the reference sam-

ple must be clearly defined.

1 For example, in the R computer language, calculate r with the

command r ) rank(R, ties.method5‘min’, na.last5‘keep’). Here

ties.method5‘min’ chooses 1224 ranking, and na.last5‘keep’ sets

the rank of missing values to missing.

2 In this context, moderately large may be only 10 or so. While

uniform random numbers can be transformed into random num-

bers of any distribution using the inverse probability integral

transform (Angus 1994), in the ‘‘old’’ days, 12 random uniform

numbers were used to calculate ‘‘random normal’’ numbers.

Practical experience over the years shows that 12 is adequate for

many purposes, but the choice of 12 versus say 10 or 15 was

probably driven by coding considerations to avoid divisions, which

can be costly on some current and most early computer architec-

tures. Since the sum of 12 uniform randomnumbers has amean of 6

and a variance of 1, the algorithm ‘‘add 12 uniform random num-

bers and subtract 6’’ produces standard (zero mean, unit variance)

random numbers with no division operations.
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One sample definition, the self-sample, is the collection

of all cases (valid times or initial times) and all experi-

ments. (This is the case R5E in section 2.) The self-

sample is applicable for impact experiments where we

expect fairly large impacts outside the range of an his-

torical sample. By design the average of SAMs over the

experiments should be 0.5. Then if there are only two

experiments, in plots of SAMversus forecast time or some

other subset dimension, the SAM curve for one experi-

ment will be themirror image about the line y5 1/2 of the

other experiment. In a comparison of an observing system

simulation experiment (OSSE) to an observing system

experiment (OSE) using the self-sample for the OSE

and a restricted self-sample for theOSSE (restricted to the

same experiments conducted in the parallel OSE) could

provide a useful tool to calibrate the OSSE to the OSE.

A second reference sample definition, the historical

sample, is the collection of all cases from the last year or

the last several years close to the same time of year. The

historical sample is preferred for preoperational tests of

incremental improvements to a forecast system. There

are various options for implementing the historical sam-

ple: if x is the AC of the 48-h forecast of tropical vector

winds at 850hPa, the reference sample might be the ACs

of the 48-h forecast of tropical vector winds at 850hPa for

the previous year for the range n/22 1 days before to n/2

days after the calendar day of the metric we are normal-

izing. Because this sample definition changes from day to

day, the calculation of the rank cannot be optimized as

described in section 2. An alternative that would allow

some optimization would be to use the three months of

the previous year centered on the current month.

Other reference samples could be used. For example,

to show the improvement of forecast skill over decades,

all the forecasts over that time period could be used to

define the ECDF. Using the previous year for eachNAM

would give a different view—a rate of increase view.

4. Application to a data impact study

Calculations shown below (section 5) are for the OSEs

described by BGK. These experiments examine three

plausible future data configurations in the global observing

system (GOS) that would result in data gaps, and BGK

quantify the impacts of these changes in GOS configura-

tion on the skill of the January 2015 NOAA global oper-

ational system, which includes the Global Forecast System

(GFS) model at T1534 resolution (;13-km horizontal

resolution), and the hybrid, ensemble Kalman filter/

Gridpoint Statistical Interpolation (GSI) analysis system

with 80 ensemble members at T574 resolution (;27-km

horizontal resolution), all using 64 vertical levels. The fol-

lowing are the experiment names with brief descriptions.

d cntrl: All satellite and conventional observing systems

used in the January 2015 operational implementation

are included in this baseline (best case) experiment.
d 3polar: This experiment considers the loss of all second-

ary and backup polar satellites, retaining only one

satellite in each primary (early morning, midmorning,

and evening) orbit.
d 3pgps:As in 3polar, but with a decrease in the density of

extratropical (poleward of 248) satellite radio occulta-

tion (RO) observations.
d 2polar: As in 3polar, but without the evening platform

(i.e., retaining only two polar satellites: one in the

early morning orbit and one in the midmorning orbit).

To analyze the results of these experiments, BGK

compared a number of statistical metrics (AC, RMSE,

andmean error or bias) for several variables (geopotential

height, temperature, vector wind, and specific humidity)

using different verification datasets (the cntrl analysis, the

operational ECMWF analysis, and North American ra-

diosondes). Additional assessment tools compared 6-h

quantitative precipitation forecasts to radar/rain gauge

precipitation analyses and hurricane track forecasts to

best-track estimates. In addition, BGK calculated SAMs

using both the OFS and the UKMO NWP index.

In summary, BGK find that ‘‘removing secondary satel-

lites results in significant degradation of the forecast. This is

unexpected since it is generally assumed that secondary

sensors contribute to system’s robustness but not necessarily

to forecast performance. Second, losing the afternoon orbit

on top of losing secondary satellites further degrades fore-

cast performances by a significant margin. Finally, losing

extratropical RO observations on top of losing secondary

satellites also negatively impacts the forecast performances,

but to a lesser degree’’ (p. 2547). These findings are con-

sistent with the results presented in section 5.

The ECDF assessment metrics for the OSEs of BGK

in this paper (here and in section 5) are determined with

the self-sample reference sample of section 3 (i.e., all

initial times for the four experiments). The PAMs are

calculated from the Verification Statistics Database

(VSDB; Brill and Iredell 1998) archive3 for the four

3 The VSDB files contain the sums needed to calculate both

RMSE and AC. For the RMSE calculation, the pres files contain

the number of points in the geographical domain, the domain

means of the forecast and analysis, and the domain means of the

three possible products of the forecast and analysis (i.e., F 3 F,

F 3 A, A 3 A). For the horizontal wind vector, the calculations

are similar but with vectors replacing scalars, and dot products

replacing ordinary multiplications. For the AC calculation, the

anom files have the same structure as the pres files, but with the

forecast and analysis replaced with the forecast and analysis

anomaly with respect to climatology.
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experiments using the cntrl analysis for verification.

From the VSDB files, the RMSE and AC are calculated

for all values of the following:

d variables: for geopotential height, temperature, and

vector wind;
d levels: at 250, 500, 700, and 850hPa;
d forecast times: every 24h from 1 to 7 days;
d geographic domains: for NHX, Southern Hemisphere

extratropics (SHX), and tropics;
d initial times: at 0000 UTC from 25 May until 31 July

2014 (or 0525 to 0731 in mmdd format); and
d experiments: for 2polar, 3pgps, 3polar, and cntrl.

Unlike BGK, we do not include the 0-h forecast time

since 0-h errors can be quite different from other fore-

cast times. Also here we use three domains, instead of a

single global domain, since forecast skill behavior in the

tropics is often quite different than in the extratropics.

Some of these RMSE and AC values are missing be-

cause there are no entries in the files archived by BGK.

First the AC values are missing for geopotential height

at 850 hPa, temperature at 700 hPa, and wind at 700hPa.

Second, all RMSE and AC values are missing for the

single 2polar forecast initialized at 0000 UTC 15 July

2014. Note that we include all forecasts times for each

initial time. This means that samples for each forecast

time are the same size, but samples for valid times at the

beginning and end of the experiments vary. For exam-

ple, 120-h forecasts valid at 0525–0529 and 0806–

0807 UTC are not included because they have initial

times before 0525 and after 0731 UTC, respectively. For

the purpose of plotting some of the figures that follow,

missing values are replaced with 0.5 (the expected value

under H0).

5. Example results

Example results are presented here using the ECDF

approach for SAMs for the experiments of BGK (as

described in section 4). The results presented average

over both RMSE and AC metrics because when exam-

ined separately they are very similar.

In Fig. 3 all the PAMs (m . 30 000) for one experi-

ment are compressed into a single number. The refer-

ence sample in these results and all results that follow is

the combination of all initial times for all experiments.

Here the NAMs have been averaged over variables,

levels, forecast times, geographic domains, initial times,

and metrics. In this figure and those that follow, de-

viations from the expected value (0.5 underH0) measure

the impacts of the different observing system configu-

rations. The larger the deviation, the larger the impact.

Positive impacts correspond to increases (and negative

impacts correspond to decreases) in forecast accuracy

relative to the null hypothesis that the experimental

treatments have no effect. Also in this figure and those

that follow, confidence intervals are determined as

explained in section 2b.

The main results obtained by BGK using the OFS are

confirmed by Fig. 3:

d The loss of quasi-redundant polar satellite sensors

(3polar) results in a significant degradation of overall

forecast quality.
d Both removal of the PM polar satellite data and re-

moval of the RO extratropical data lower forecast skill,

further degrading forecast quality compared to 3polar.
d Removal of the PM polar satellite data (2polar) has a

much larger negative impact than reducing the RO

observation coverage (3pgps).

The ECDF uncertainties indicate that these results are

statistically robust.

Figure 4 plots SAM as a function of forecast time at

different pressure levels and for each experiment. Here

the NAMs have been averaged over variables, domains,

initial times, and metrics. Impacts range from large

positive for cntrl (black) to large negative for 2polar

(light blue). All the impacts for these two experiments

(i.e., for cntrl and 2polar) are very significant statistically

(outside the 0.01–0.99 probability band shown in gray in

Fig. 4). Forecast error sources are initial condition errors

andmodel errors. Therefore in theseOSEs, where initial

condition errors are different, but model errors are

similar, there are greater impacts for shorter forecast

times. Impacts are somewhat greater for higher levels

FIG. 3. SAM as a function of experiment alone. The horizontal

gray line corresponds to the null hypothesis of no impact. The

vertical bar plotted over each colored symbol shows the 99%

confidence interval for the result.
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(250, 500hPa) and more so at shorter forecast times. Im-

ages similar to Fig. 4 may be generated to explore the

behavior of forecast skill along other subset dimensions—

for example, instead of plotting SAMs for different pres-

sure levels, SAMs might be plotted for different variables

or domains.

Figure 5 plots SAM for the different experiments as a

function of valid date averaged over forecast days 4, 5,

and 6. The ordering of the experiments is fairly consis-

tent: 2polar is usually the worst and cntrl is usually the

best. Some dates are more difficult to forecast for all

experiments (e.g., 15 June). This phenomenon of ex-

ceptional poor forecasts (a.k.a., dropouts) was in-

vestigated by Alpert et al. (2009) and Kumar et al.

(2009, 2016).

6. Summary and conclusions

The empirical cumulative density function (ECDF)

approach can be used to combine multiple, diverse as-

sessment metrics into summary assessment metrics

(SAMs) to analyze the results of impact experiments and

for preoperational implementation testing with NWP

models. The main advantages of the ECDF approach are

that it is amenable to statistical significance testing and

produces results that are easy to interpret because the

SAMs for various subsets tend to vary smoothly and in a

consistent manner. In addition, the ECDF approach can

be applied in various contexts thanks to the flexibility

allowed in the definition of the reference sample

(section 3).

SAMs could be weighted averages of NAMs. In this

paper SAMs are simple averages of NAMs, but there are

several reasons to use a weighted average. First, there

may be a desire to weight some components more highly

because of their relevance to a particular forecasting

situation. For example, PAMs related to upper-level

winds would be of greater interest for aviation fore-

casting. Second, some of the PAMs might be correlated.

For example, if four PAMs were strongly correlated,

rather than eliminate three of these and having to decide

which to keep, the associated weights might be reduced.

Third, some PAMs might be particularly sensitive to

exceptional poor forecasts (i.e., dropouts; Kumar et al.

2009, 2016) and it might be desirable to increase the

associated weights. If this is not done, the ECDF ap-

proach will tend to hide the dropout signal—by design

the normalization eliminates differences in distribu-

tions. Very large differences in PAMs that have long

tailed distributions become homogenized and are no

longer exceptional once normalized. It should be noted

that dropout cases are worthy of synoptic evaluation

FIG. 4. SAM as a function of forecast time for different levels (symbols) and different experiments (colors).
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that goes well beyond the statistical assessments that are

the subject of this paper. For weighted averaged SAMs,

the presentation in section 2b is unchanged except for

that the estimate of variance of the SAM becomes

(�iw
2
i )/[12

�
�iwi

�2
], where wi is the weight associated

with the ith NAM. It should be acknowledged that

choosing weights, or indeed selecting which PAMs to

include,4 is often ad hoc and introduces a degree of

subjectivity in otherwise objective assessments.

The main (perhaps only) assumption of the ECDF

approach is the null hypothesis that all the members of a

subset are from the same distribution. For OSEs or

OSSEs, the subset will usually include all initial (or valid)

times for all experiments. When we reject the null hy-

pothesis, we would like to attribute the impact to the dif-

ferences between experiments, and this is reasonablewhen

the SAMs under consideration include all valid times.

However, as seen in Fig. 5 there can be variations with

valid time. Itmight be possible to reduce such variations by

applying the ECDF method as described here to differ-

ences of PAMs at the same valid time—in the present case

these might be 2polar–cntrl, 3pgps–cntrl, and 3polar–cntrl.

In such an application, it would be consistent with the null

hypothesis of no impact due to the observing systems

configuration to choose the reference sample as the dif-

ferences of PAMs from all possible experiment pairs. In

the present case there would be 12 such pairs, including for

example, both 2polar–3polar and 3polar–2polar.

The interpretations of the examples presented here

(section 5) are consistent with the previously reported

conclusions of BGK and with some but not all conclu-

sions of other data gap studies (Cucurull and Anthes

2015; Lord et al. 2016). An interesting finding is that the

impact of observations decreases with increasing fore-

cast time. We expect differences in initial conditions to

grow. However, it is likely that NWP model error grows

more quickly since model error is added at every time

step. Further, in these experiments, model error is sim-

ilar from experiment to experiment since the same

model is used in each experiment. Therefore, NWP

model error is expected to tend to mask the impact of

the differences in initial conditions with increasing

forecast time. Also, as seen in Fig. 4, out to 72h, the

impacts are greater higher in the atmosphere, possibly

because the data assimilation system extracts more in-

formation there. There are two potential contributing

factors: first, there are more higher-peaking satellite

FIG. 5. SAM as a function of valid time (mmdd format) for different experiments (colors and symbols). These

results are for SAMs averaged over the 96-, 120-, and 144-h forecast times.

4 Since selection is the ultimate 0 or 1 weighting scheme.
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radiance channel observations that pass the cloud quality

control; and second, the data assimilation system makes

use of channel subsets in which higher-peaking channels

have been preferentially selected since less information

can currently be extracted from channels sensitive to the

boundary layer and lower troposphere because repre-

sentativeness errors are greater for such channels.
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