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Abstract 

      Since the atmospheric system is a nonlinear chaotic system, its numerical prediction is bound 

by a predictability limit due to imperfect initial conditions and models. Ensemble forecasting is a 

dynamical approach to quantify the predictability of weather, climate and water forecasts. This 

chapter introduces various methods to create an ensemble of forecasts based on three aspects: 

perturbing initial conditions (IC), perturbing a model and building a virtual ensemble. For 

generating IC perturbations, methods include 1) random, 2) time-lagged, 3) bred vector, 4) 

ensemble transform (ET), 5) singular vector (SV), 6) conditional nonlinear optimal perturbation 

(CNOP), 7) ensemble transform Kalman filter (ETKF), 8) ensemble Kalman filter (EnKF), and 

9) perturbations in boundaries including land surface and topography. For generating model 

perturbations, methods include 1) multi-model and multi-physics, 2) stochastically perturbed 

parametrization tendency (SPPT), 3) stochastically kinetic energy backscatter (SKEB), 4) 

convection triggering, 5) stochastic boundary-layer humidity (SHUM), 6) stochastic total 

tendency perturbation (STTP), and 7) vorticity confinement. A method to create a spatially 

correlated random pattern (mask) needed by SPPT and SKEB, etc., is introduced based on the 

Markov process; a factor-separation method is introduced to estimate the relative impact of 

various physics schemes and their interactions. A method of perturbing a dynamic core to create 

an ensemble is also mentioned. Quantitative forecast uncertainty information and ensemble 

products can also be generated from “virtual ensembles” based on existing deterministic 

forecasts through at least five different approaches including 1) time-lagged, 2) poor-man’s, 3) 

hybrid, 4) neighborhood, and 5) analog ensembles. Generally speaking, the selection of 

perturbation methods in constructing an EPS is more important for smaller scale and shorter 

range forecasts and less critical for larger scale and longer range forecasts. Finally, the frequently 

asked question about the trade-off between ensemble size and model resolution is discussed. By 

introducing these methods, we hope to help readers who are interested in ensemble forecasting 

but not familiar with these approaches to build their own EPS or produce ensemble products as 

well as for students to learn the subject of ensemble forecasting. 

 

Key Words: ensemble forecasting, initial condition perturbation, boundary perturbation, model 

physics and dynamic core perturbations, virtual ensembles, ensemble size 
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1. Introduction 

        The value of science is in predicting the future. The process of numerical weather prediction 

(NWP) has three basic components: data collection (observation), assimilation of observed data 

into initial conditions used by a numerical weather prediction model, and model integration to 

project an initial state into the future. Intrinsic errors are introduced at each of these three steps: 

for example, instrumental and human error in collecting and interpreting observations; imperfect 

methods for data retrieval and assimilation, imperfect model physics and numerical methods. 

Furthermore, there are inevitably inconsistencies in the adaptation of model forecasts to real 

world applications, whether by variations in post-processing methods or by a human diversity in 

interpretation. All these errors are intrinsic, largely unavoidable, and perhaps even unknown to 

us in real world operations.  

        Due to its nonlinear nature, a numerical prediction model of weather, climate, or water is 

chaotic, i.e., a tiny difference in the initial state can be amplified into significantly larger 

differences in a future state (Lorenz, 1963, 1965, 1993; Thompson, 1957). These differences 

could be as large as those between two randomly-picked fields from climatology, in which case 

lose all value. Therefore, any prediction of weather, climate or water events has uncertainty and 

limits to predictability. For example, Figure 1 shows two NCEP (National Centers for 

Environmental Prediction) operational GFS (Global Forecasting System) model medium-range 

(16-day) forecasts, initialized only six hours apart in time. These two numerical forecasts 

predicted two very different large-scale flow patterns at the 500 hPa level: one places a strong 

trough over the east coast while the other places it over the western U.S. (more than 3000 km 

apart). Similarly impactful discrepancies are not uncommon in real-time operations in all time 

scales, including the short-range, especially during major high-impact weather events (Wang et 

al. 2011). For further reading about the predictability of weather and climate, readers are referred 

to Palmer and Hagedorn (2006). 

       Therefore, quantifiable information about uncertainty and predictability is an important 

aspect of a weather forecast. Besides the prediction of an event itself, the uncertainty and 

predictability associated with the prediction also need to be estimated (“a prediction of 

predictability”). As Socrates once taught us “a wise man is he who knows he knows not”. We 

need to humbly admit that unless forecast uncertainty is quantified, a forecast is incomplete. 

Ensemble forecasting is a dynamical and flow-dependent approach of quantifying this forecast 
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uncertainty (errors of the day) and provides a basis to communicate forecast confidence to end-

users who can then be better prepared. It has become an increasingly important aspect of a 

forecast (National Research Council, 2006; Wang et al. 2011). Information about uncertainty can 

be used in many ways. For example, it can be integrated into the decision-making process based 

on economic values (Richardson, 2000; Du and Deng, 2010).  

Figure 1. Two consecutive NCEP Global Forecasting System (GFS) 16-day 500-hPa HGT/VORT forecasts 
that are 6 hours apart in initiation time. 

       Lewis (2005) discusses the roots of ensemble forecasting. After Lorenz (1963, 1965) 

discovered the chaotic nature of atmospheric behavior in 1960s, some pioneering scientists 

started to seriously consider stochastic approaches to predicting weather and climate (Epstein, 

1969; Leith, 1974). Since we do not exactly know a single ground truth but have many equally 

plausible initial conditions (IC) or physics options, a scientific and complete description of IC 

and model physics is best done with a probabilistic distribution and in stochastic fashion within a 

reasonable range of error (uncertainty). As a result, there might be a number of possible 

(A) 00z, Oct. 3 – 00z, Oct. 19, 2006 (B) 06z, Oct. 3 – 06z, Oct. 19, 2006

Two consecutive NCEP operational Global Forecasting System (GFS) 16-day 500mb 
HGT/VORT  forecasts (with only 6hr-hour apart in initial conditions)!
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realizations for each forecast derived from a highly nonlinear chaotic numerical model (Lorenz, 

1993). In other words, a complete forecast of a particular point-value should be not as a mere 

single deterministic value but as a probabilistic distribution with forecast uncertainty or 

confidence explicitly expressed. This is the basic concept of ensemble forecasting which can be 

schematically described by Fig. 2. The primary mission of an ensemble prediction system (EPS) 

is, therefore, to encompass truth by an ensemble of solutions with a good spread-skill 

relationship (i.e., ensemble spread quantifiably reflects the error of the ensemble mean forecast 

and the derived probabilistic forecasts are statistically reliable, Du et al. 2014). Besides this 

primary goal, an important by-product of an EPS is to improve the performance and reduce the 

uncertainty of a deterministic forecast through various approaches such as ensemble averaging, 

ensemble based data assimilation and targeted observations (Du et al. 2014). By the above 

definition of its primary mission, ensemble forecasting is most valuable when there is a large 

forecast uncertainty and it has minimal value when the weather is quiescent and highly 

predictable relative to a single deterministic forecast. By the way, ensemble forecasting mainly 

deals with random error but not systematic error in a forecast; a good quality model and initial 

conditions are the basis for the success of an EPS (Wang et. al., 2018). 

           In the early days, an EPS such as the Monte-Carlo approach proposed by Leith (1972) 

mainly addressed uncertainty in the IC, but this definition has now been greatly expanded by 

addressing uncertainties in all components of a modeling system including atmospheric initial 

states, model physics and numerical methods, lower boundary forcing such as land or sea surface 

states, lateral boundary conditions (LBC, for regional model), and other coupling mechanisms 

like air-sea interaction. Some methodologies used to construct an EPS or produce an ensemble of 

forecasts are described in this chapter, grouped into three categories: IC uncertainty, model 

uncertainty and virtual ensembles.  
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Figure 2. A schematic concept of “ensemble prediction”. 

2. Methods to address uncertainty in initial conditions

      Some IC perturbation methods are introduced in this section. Generally speaking, IC methods 

have evolved through three generations: the first generation is a Monte Carlo type, i.e., a random 

perturbation; the second generation is related to dynamical unstable modes such as Breeding 

vector, SV and CNOP; and the third generation is directly connected with analysis or observation 

errors such as ETKF, and EnKF, etc.  

(1) Random Perturbation. A perturbation is randomly generated based on some kind of

error statistics (usually a normal distribution) representing the average error range in an analysis. 

These error statistics such as mean and standard deviation can be derived from the differences 

between two commonly-used operational analyses such as the NCEP and ECMWF global 

analyses over a long time period (Errico and Baumhefner, 1987; Mullen and Baumhefner, 1994). 

Therefore, these error statistics are not purely random but normally exhibit spatial and temporal 

patterns which are consistent with our meteorological knowledge: e.g., the error is larger over 

less-observed regions such as the oceans than over densely-observed areas such as the 

continental U.S.; larger in active weather regions such as the two storm tracks over the Pacific 
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and Atlantic oceans; and larger when the natural variability is larger: e.g., larger in the middle 

and high latitudes than in the tropics, larger in winter than in summer and so on. Although this 

type of perturbation represents the average error of analysis well, it does not truly reflect “errors 

of the day” and more critically it lacks a spatially correlated dynamical structure coupled with 

daily weather systems. As a result, the perturbation growth with forecast time is not ideal, 

especially in the short range, which often leads to less spread among ensemble members. The 

Random Perturbation method was used in early ensemble studies such as Mullen and Du (1994) 

and Du et al. 1997. The multi-analysis (without any perturbations added) approach can be 

viewed as another type of Random Perturbation method, such as was used in the early prototype 

NCEP SREF (Stensrud et al. 1999) and the Northwest US regional ensemble system at the 

University of Washington (Grimit and Mass, 2002). Since the number of available analyses is 

always limited, a purely multi-analysis-based ensemble normally has a small ensemble size. Note 

that an EnKF-based data assimilation-produced multiple analysis is not regarded as an ad hoc 

multi-analysis approach but is regarded as a perturbing-observation method which will be 

discussed separately as method 7 in this section. Through EnKF, the limitation of small ensemble 

size for a multi-analysis-based EPS can be overcome. 

(2) Scaled Time-Lagged Perturbation (STL pert). This method directly applies the forecast

errors from a few of the most recent past cycles (e.g., 12, 9, 6, and 3 hours ago) as IC 

perturbations for the current cycle’s ensemble run, e.g., using 06z, 09z, 12z and 15z cycles’ 12-, 

9-, 6- and 3-h forecast errors as IC perturbations for the 18z cycle of the ensemble run. In this 

approach the magnitude of the perturbations obviously depends on a forecast’s age since forecast 

error normally increases with lead time. To have a similar magnitude in all perturbations derived 

from different-aged forecasts, these past forecast errors are first scaled to the same magnitude 

and then either added to or subtracted from the current cycle’s control analysis (as a pair of 

perturbed members) to create multiple perturbed ICs to initialize an EPS (Ebisusaki and Kalnay, 

1991; Kalnay, 2003), as illustrated by Eq. (1):    

    TL pert = scaling factor x (past forecast – current analysis)      (1) 

The practice of “pairing” (adding and subtracting) ensures that the perturbations are centered on 

the control IC in addition to doubling the ensemble membership. Time-lagged IC perturbation 
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has dynamically growing structures associated with developing weather systems, which is 

beneficial as the ensemble spread grows with forecast lead time. Another advantage of this 

method is that it can carry over information from past initial conditions. A limitation is that it 

cannot create an ensemble with a very large membership since the number of “usable” old 

forecasts is limited. An example of this approach is used in the 1998 Storm and Mesoscale 

Ensemble Experiment (SAMEX, Hou et al. 2001).  

(3) Bred Growing Mode (BGM). The BGM method is also called Breeding or Bred Vector

(BV). It evolved from the Scaled Time-Lagged method (Eq. 1). It differs from STL in that it uses 

the difference between a pair of past (say, 6 or 12 hours ago) concurrent forecasts valid at the 

current model initial time rather than a past forecast error to calculate IC perturbations (Eq. 2). 

The difference is then scaled and added to or subtracted from the current cycle’s control analysis 

(Toth and Kalnay, 1993 and 1997). In this way, one can overcome the membership limitation in 

the Scaled Time-Lagged method to create as many members as desired as long as one has 

enough initial perturbation seeds in a cold start. Since there is no bred vector available yet in a 

cold start run, another substitute perturbation (such as random, time-lagged, or perturbations 

borrowed from other available EPS) is needed to start an initial ensemble run. 

          BV = scaling factor x (past forecast 1 – past forecast 2)  (2) 

Kalnay (2003) proved that BV is a nonlinear extension of a Lyapunov vector with fast growing 

dynamical structure. Experience (e.g., the NCEP SREF, Du et al. 2004) shows that a bred vector 

becomes mature in structure and leads to a healthy spread growth after being cycled for about 

two to three days after its cold start. Toth and Kalnay pointed out that the spatial structure of a 

mature bred vector is not sensitive to the scaling period2 and the norm selected, and that the bred 

vector well reflects the analysis error introduced during a data assimilation cycle. If the pair of 

past concurrent forecasts used in the BV calculation have different physics schemes in model 

integration (e.g., two different convective schemes), the resulting BV perturbation will 

automatically contain physics uncertainty information.  By taking advantage of this, the NCEP 

2But our experiences with both the NCEP SREF and GEFS show that the quality of an IC perturbation is 

actually strongly dependent on scaling period, e.g., a 12-hr forecast-based BV perturbation worked much better 

than the 6-hr forecast-based one, as the latter has too much small-scale noisy structure in space. 
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SREF (Du and Tracton 2001) was particularly designed to use a pair of members with different 

physics to calculate its BV. The advantage of using two members with different physics has also 

been examined by Chen et al. (2005). On other hand, one might argue that BV is a “looking-

backward” method because the difference between two past forecasts really reflects the fast 

growing modes that occurred in the past but is not guaranteed to grow fast in the future, although 

Kalnay argues that BV has the ability to indicate “the future”, especially the coming of major 

events or a regime transition (Kalnay 2007). Another weakness is that bred perturbations from 

different ensemble members are not orthogonal but are correlated to each other, resulting in less 

independent information contained in an ensemble (Wang and Bishop, 2003; Martin et. al., 

2007). As a result, the magnitude of ensemble spread growth is closely related to the initial size 

of a bred vector. There are various ways proposed to increase the orthogonality of a bred vector. 

One of them is the Ensemble Transform with Rescaling (ETR) method (see method 4 below). 

Another effort to improve the classical Breeding method is Geometric Breeding, which controls 

the spatial correlation of bred vectors among members, making them less correlated to each other 

(Martin et. al., 2007). Geometric Breeding shows a better spread-skill relationship than classical 

Breeding.  

        Given its effectiveness, simplicity and small computational cost, the breeding method is 

popular and widely used in many numerical weather prediction centers around the world, 

including NCEP for both its global and regional EPS’s (Tracton and Kalnay, 1993; Du and 

Tracton, 2001). 

(4) Ensemble Transform with Rescaling (ETR). To orthogonize bred vectors, the ETR

technique is used to make bred vectors more orthogonal to each other by applying a simplex 

transformation matrix to transform forecast-based perturbations to analysis perturbations (Wei et 

al. 2008). The ETR method is based on an improved version of the ensemble transfer (ET) 

technique originally developed for a target observation study (Bishop and Toth 1999).  The 

technique is described below.  Let 
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assimilation (DA) system. In the ensemble representation, the n x n forecast and analysis 

covariance matrices are approximated, respectively, as  
TaaaTfff ZZPZZP ==     and     ,                                               (4)    

where the superscript T indicates the matrix transpose. For a given set of forecast perturbations Z
f at time t, the analysis perturbations Z a are obtained through an ensemble transformation T such 

that  

ΤZZ fa = .                                                           (5)              

       In the ETR method, the best possible initial analysis error variance from the DA is used to 

restrain and construct the above transformation matrix. If P a is the diagonal matrix with diagonal 

values being the analysis error variances obtained from the operational DA system, the 

transformation matrix T can be constructed as follows. For any ensemble forecast system, the 

forecast perturbation Z f can be constructed as equation (1).  One can solve the following 

eigenvalue problem 

1CΓCZPZ −−
=   1 faTf  ,                                                  (6) 

Where C contains the column orthonormal eigenvectors (ci) of aTf PZ 1−  Z f or equivalently the 

singular vectors of fa ZP 2/1− ,  and Γ is a diagonal matrix containing the associated eigenvalues 

(λi) with the magnitude in decreasing order, that is, ].....,,,[ 21 kcccC = ,  ICC =T   and  

) ....., ,,( 21 kdiag λλλ=Γ .  The new analysis perturbations can be constructed through 

transformation 
Tfa CCΓZZ 2/1−=                                                            (7) 

       To make sure the initial spread distribution is similar to the analysis error variance, a final 

rescaling step is carried out in the ETR. This regional rescaling process is similar to that used in 

the breeding method, i.e., the individual initial perturbations from (7) are rescaled by the analysis 

error variance using 

        ,  ), ,(),,(),,( ljiljilji a
m

a
m zy a= (8) 

Where i, j, l are indices for the horizontal and vertical directions in grid point space, and m = 1, 

2, … k is the index for the ensemble member. α is the rescaling factor derived from the analysis 

error variance (P a) and the grid point values of analysis perturbations. It is defined as the ratio of 

the square root of kinetic energy from P a and the square root of the kinetic energy of analysis 
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perturbations at each grid point. The reader is referred to Wei et al. (2008) for more 

mathematical details.  

        ETR-based perturbations are centered around a control analysis and span a subspace that 

has a maximum number of degrees of freedom. Thus, the variance is maintained in as many 

directions as possible within the ensemble subspace. Theoretically the covariance constructed 

from the newly generated initial perturbations is approximately consistent with the analysis 

covariance from the DA, if the number of ensemble members is large. Wei et al. (2008) has also 

showed that the orthogonality of the initial perturbations will increase as the number of ensemble 

members increases. If the number of ensemble members approaches infinity, then the 

transformed perturbations will be orthogonal under the inverse of the analysis error variance 

norm. In addition, the initial perturbations generated from the ETR are flow-dependent if the 

analysis variance is derived from the DA system at every cycle.  

         ETR belongs to the third generation of initial perturbation techniques, which generate 

initial perturbations that are consistent with the DA system (Wei et al. 2008). Other such 

methods include EnKF (Ensemble Kalman filter, Evensen 1994; Houtekamer et al. 1996; see 

method 7 below), EAKF (Ensemble Adjustment Kalman filter, Anderson 2001) and ETKF 

(Ensemble Transform Kalman Filter, Bishop et al. 2001; see method 6 below). ETR is 

computationally efficient and was implemented in the NCEP global ensemble system in 2006 to 

enhance the Breeding method (Wei et. al., 2006 and 2008). Other similar ensemble forecast 

systems based on ET, for meteorological and ocean forecasts, have been developed at the NRL’s 

Marine Meteorological Division and Oceanography Division and implemented at the Navy’s 

Fleet Numerical Meteorology and Oceanography Center (FNMOC) and at the U.S. Naval 

Oceanographic Office (NAVOCEANO), respectively (McLay et al. 2007, 2010; Wei et al. 

2014).  

(5) Singular Vector (SV). Singular vectors (SVs) are the perturbations with the fastest 

growth during a finite time interval. They have been used in the ECMWF ensembles to simulate 

the effect of initial errors projecting along these directions, since these are the components that 

would grow fastest and have the largest impact on the forecast quality (Buizza & Palmer 1995, 

Molteni et al. 1996). At ECMWF, growth is measured by a metric based on a total energy norm. 

The SVs are computed by solving an eigenvalue problem defined by an operator that is a 

combination of the tangent forward and adjoint model versions integrated over a time period 
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named the optimization time interval. The advantage of using singular vectors is that if the 

forecast error evolves linearly and the proper initial norm is used, the resulting ensemble 

captures the largest amount of forecast error variance at optimization time (Ehrendorfer & 

Tribbia 1997). Farrell (1982), while studying the growth of perturbations in baroclinic flows, 

noted that the long-time asymptotic optimization is dominated by discrete exponentially growing 

normal modes.  However, other physically realistic perturbations are possible, which amplify 

more over a given finite time interval than the most unstable normal mode. Subsequently, Farrell 

(1988, 1989) showed that perturbations with the fastest growth over a finite time interval could 

be identified by solving the eigenvalue problem of the product of the tangent forward and adjoint 

model propagators, supporting earlier conclusions by Lorenz (1965), who pointed out that 

perturbation growth in realistic models is related to the eigenvalues of the operator product. After 

Farrell and Lorenz, calculations of perturbations growing over finite-time intervals have been 

performed, for example, by Borges and Hartmann (1992) using a barotropic model, and by 

Molteni and Palmer (1993) using a barotropic and a 3-level quasi-geostrophic model at spectral 

triangular truncation T21.  Buizza et al. (1993) first identified singular vectors in a primitive 

equation model with a large number of degrees of freedom. 

       The singular vectors are computed by solving an eigenvalue problem defined by the tangent 

forward and adjoint model equations. Consider the non-linear model equations: 

),( tA
t

χχ
=

∂
∂

(9) 

The time evolution of a small perturbation x around a time evolving trajectory χ(t) can be 

described, in a first approximation, by the linearized model equations: 

xA
t
x

l ⋅=
∂
∂

                                                             (10) 

where: 

)(

)(

t
l x

xAA
χδ

δ
= (11) 

is the tangent operator computed at the trajectory point χ(t). The equations are clearly valid only 

for a finite time interval, up to the time when the non-linear terms can be neglected. 
 
Let L(t,0) 

denote the tangent forward propagator of the linear model equation. In other words, this is the 

operator that would evolve the initial state x(0) to the forecast time t:
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     )0()0,()( xtLtx ⋅= (12) 

Let E denote a total energy metric, so that: 

>⋅=< )(),()( 2 txEtxtx                                                       (13) 

is the squared total energy norm of the perturbation x(t), where <..,..> denotes the Euclidean 

product. Using the definition of the tangent forward operator, the total energy of the perturbation 

x(t) can be computed as: 

    >⋅⋅⋅=< )0(),0()( 2 xLExLtx                                             (14) 

Let L* denote the adjoint of the operator L with respect to the Euclidean norm, so that: 

 >⋅⋅⋅>=<⋅⋅⋅< )0(*),0()0(),0( xLELxxLExL                     (15) 

Then the total energy norm can be computed as:  

    >⋅⋅⋅=< )0(*),0()( 2 xLELxtx                                           (16) 

The singular vectors are the phase-space directions with the maximum ratio between the final-

time and the initial time norms:  

>⋅<
>⋅⋅⋅<

)0(),0(
)0(*),0(

xEx
xLELx (17) 

They are computed by solving an eigenvalue problem defined by the product of the tangent 

forward and adjoint operators, and the total energy metric. In the ECMWF ensemble, the norm is 

the dry total energy metric, the optimization time interval is 48-hours, and the singular vectors 

are computed at T42L91 resolution. The reader is referred to Buizza & Palmer (1995), Molteni et 

al. (1996) and Palmer et al. (2007) for more details. 

(6) Conditional Nonlinear Optimal Perturbation (CNOP). Singular vectors approach has

been used to explore optimal growth of initial uncertainties in numerical weather forecast and 

climate prediction. The SVs are a group of orthogonal initial perturbations that possess the 

largest growth rate in different but mutually orthogonal subspaces of initial perturbations in 

linearized models. The SVs approach was first introduced to meteorology by Lorenz (1965) and 

established on the basis that the evolution of initial perturbations can be described approximately 

by the tangent linear model (TLM) of a nonlinear model. The leading SV (LSV), i.e. the SV of 

the largest growth rate in the TLM, is often used to represent the optimal initial error that has the 

largest growth rate at prediction time. However, the LSV has difficulties in describing the 

nonlinear optimal growth of initial perturbations of the finite amplitude due to its linear 
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approximation and then fails to reveal the initial errors that cause the largest prediction errors in 

predictability studies of weather and climate. 

Considering the limitations of LSV, Mu et al. (2003) proposed the approach of conditional 

nonlinear optimal perturbation (CNOP) to study the nonlinear optimal growth of initial errors. 

The CNOP represents the initial perturbation that satisfies a certain physical constraint and 

possesses the largest nonlinear evolution at prediction time (Mu et al., 2003). For a chosen norm 

‖•‖, an initial perturbation u0δ is called the CNOP if and only if  

( ) ( ) ( )
0 0

0
0 , 0 0 , 0|| ||

max t t t tJ δ δ≤
= + −

u
u M U u M U ,                    (18) 

where 
0 ,t tM  is the propagator of a nonlinear model from an initial time t0 to a future time t, U0 is 

the initial value of the reference state U(t) [i.e. U(t) = Mt(U0)] to be predicted, u0 is 

superimposed on U(t) and represents an initial perturbation, and the inequality ‖u0‖ ≤ δ is the 

constraint of the initial perturbation amplitudes defined by a chosen measurement ‖•‖. To solve 

the CNOP, one can transform the Eq. (18) into a minimization problem by considering its 

negative and then calculate the minimization problem by some minimization solvers such as the 

spectral projected gradient 2 (SPG2; Birgin et al. 2000), sequential quadratic programming 

(SQP; Powell 1982), the Limited Memory Broyden-Fletcher-Goldfarb-Shanno method (L-

BFGS; Liu and Nocedal 1989), or other intelligence algorithms.  

           The CNOP is a natural generalization of LSV in nonlinear regime and defined by directly 

using a nonlinear model. When the bound of initial constraint is sufficiently small, the CNOP 

can be approximated by the LSV; when the initial constraint is large, the LSV’s approximation to 

the CNOP does not hold [see the review of Duan and Mu (2009)]. In this case, the CNOP 

represents the initial perturbation that has the largest nonlinear evolution at prediction time and is 

superior to the LSV in identifying the optimal initial perturbation in nonlinear model (Duan and 

Mu, 2009). 

 The CNOP has been successfully used to reveal the optimal initial errors and determine the 

optimal observing locations in the El Nino-Southern Oscillation, Tropical cyclone, Indian Ocean 

Dipole, Kuroshio large meander, and Northern Atlantic Ocean forecasting [see the review of Mu 

et al. (2015) and Dai et al. (2016)]. In the studies of ensemble forecast, Mu and Jiang (2008) 

focused on the limitation of linear theory of SVs and replaced the LSV with CNOP while 

keeping other SVs unchanged (hereafter referred to as CNOP+SVs approach) to obtain the initial 
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perturbations of ensemble forecasts, showing much higher skill of the CNOP+SVs approach 

against the SVs approach (also see Jiang and Mu, 2009). This suggests that it is useful for 

improving ensemble forecast skill to consider nonlinearity in yielding initial perturbations. 

Therefore, to fully consider nonlinearities in ensemble initial perturbations, Duan and Huo 

(2016) extended to calculate orthogonal CNOPs. The orthogonal CNOPs are a group of 

nonlinear optimal initial perturbations denoted as 1st-CNOP, 2nd-CNOP, 3rd-CNOP, …, nth-

CNOP. The jth-CNOP represents the nonlinear optimal initial perturbation in the subspace Ωj that 

is orthogonal to 1st-CNOP, 2nd-CNOP, 3rd-CNOP, …, j-1th-CNOP. The jth-CNOP can be obtained 

by the Eq. (18) but with the constraint condition being u0j ϵ Ωj, where Ωj is as in the Eq. (19). 
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where u0j is the initial perturbation in the subspace Ωj. Clearly, the 1st-CNOP possesses the 

largest nonlinear evolution in the whole space of initial perturbations and the jth-CNOP possesses 

the largest nonlinear evolution in the subspace Ωj orthogonal to the leading j-1 CNOPs. These 

CNOPs are orthogonal and can be ranking as 1st-CNOP > 2nd-CNOP > 3rd-CNOP > … > nth-

CNOP according to the magnitudes of their evolutions at the final time t. 

Duan and Huo (2016) adopted the orthogonal CNOPs to conduct ensemble forecast 

experiments by using the Lorenz-96 model (Lorenz, 1996). They further increased the ensemble 

forecast skill generated by the CNOP+SVs because the orthogonal CNOPs fully considered the 

nonlinearity in ensemble initial perturbations. Furthermore, Huo (2016) applied the orthogonal 

CNOPs to much realistic weather model-MM5 (fifth-generation Pennsylvania State University 

National Center for Atmospheric Research Mesoscale Model; Dudhia, 1993) and conducted the 

ensemble forecast experiments for typhoon track. They also showed great usefulness of the 

orthogonal CNOPs in achieving ensemble forecasts of higher skill. The CNOPs could be another 

useful approach to generating initial perturbations of ensemble forecasting. 

(7) Ensemble Transform Kalman Filter (ETKF). The ETKF method, since its inception, has

gone through a series of theoretical developments and has been widely applied to various 

applications including targeting observations (Bishop et al. 2001; Majumdar et al. 2002), 

ensemble prediction (Wang and Bishop 2003; Wang et al. 2004; Bowler et al. 2008; Hacker et al. 

2011), and hybrid ETKF-variational data assimilation (Wang et al. 2007, 2008ab, 2009, Wang 
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2011).  The ETKF algorithm used for ensemble generation is briefly summarized here, but more 

details are documented in Bishop et al. (2001), Wang and Bishop (2003), Wang et al. (2004), and 

Wang et al. (2007).  

        In the ETKF ensemble generation scheme, the forecast ensemble perturbations are updated 

by the ETKF to produce the analysis ensemble perturbations. The ETKF transforms the matrix of 

forecast perturbations 𝗫𝗫b into a matrix of analysis perturbations 𝗫𝗫a, whose columns contain K 

analysis perturbations, x′ak, k = 1…K. The transformation happens through the postmultiplication 

by the matrix 𝗧𝗧, that is,  

𝑋𝑋𝑎𝑎 = 𝑋𝑋𝑏𝑏𝑇𝑇 (20) 

The transformation matrix is chosen to ensure that the analysis-error covariance formed from the 

outer product of the transformed perturbations will be precisely equal to the true analysis-error 

covariance, assuming that the covariance of the forecast ensemble denotes the true forecast-error 

covariance, all errors are normally distributed, and 𝗛𝗛 is linear. As shown in Bishop et al. (2001), 

Wang and Bishop (2003), and Wang et al. (2004), a precise spherical simplex solution of 𝗧𝗧 is:  

T = C(𝛤𝛤 + 𝐼𝐼)−1/2𝐶𝐶𝑇𝑇        (21) 

where 𝗖𝗖 contains the eigenvectors and Γ the eigenvalues of the K × K matrix (𝗫𝗫b)T𝗛𝗛T𝗥𝗥−1𝗛𝗛𝗫𝗫b and 

𝗜𝗜 is the identity matrix. For the ensemble size K of 100 or less, the computation is relatively 

inexpensive.  

        Research has shown that when K is significantly smaller than the rank r of the true forecast-

error covariance, this formula systematically underestimates the analysis-error variance. In Wang 

and Bishop (2003), the ensemble of analyzed deviations 𝗫𝗫a was inflated by large factors to 

compensate for the ETKF’s underestimate of the analysis-error variance (Wang and Bishop 

2003). An alternative formulation of the ETKF was proposed by Wang et al. (2007) that 

significantly ameliorated this bias by accounting for (i) the fact that the sample covariance of K 

forecast trials systematically overestimates the true error variance within the ensemble subspace 

when K ≪ r, and, (ii) the expected difference in angle subtended between ensemble-based 

eigenvectors and true eigenvectors. Based on these arguments, the ETKF transformation matrix 

𝗧𝗧 becomes: 

T = C(𝜌𝜌𝛤𝛤 + 𝐼𝐼)−1/2𝐶𝐶𝑇𝑇              (22)
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where the scalar factor ρ is the fraction of the forecast error variance projected onto the ensemble 

subspace. It is estimated by:  

where p is the number of observations,  is the normalized observation operator  = 𝗥𝗥−1/2𝗛𝗛, and 

the columns of 𝗘𝗘 contain the eigenvectors of the ensemble covariance in normalized observation 

space. As shown in Eq. (12) of Bishop et al. (2001):  

The overbar represents the average over some independent samples. Note that the computational 

efficiency of the ETKF is realized by solving the transformation matrix in ensemble perturbation 

subspace (Bishop et al. 2001; Wang and Bishop 2003).  

      To further ameliorate the underestimation of the analysis-error variance, an inflation factor is 

applied to increase the ensemble covariance. For example, the maximum-likelihood inflation 

method is applied to the analysis perturbations in the study of Wang and Bishop (2003). The idea 

is to multiply the initial perturbations obtained at time ti by an estimated inflation factor Πi; that 

is:  

𝑋𝑋𝑖𝑖𝑎𝑎 = 𝑋𝑋𝑖𝑖
𝑓𝑓𝑇𝑇𝑖𝑖𝞟𝞟𝑖𝑖 (25) 

The purpose of this is to ensure that at time ti+1 the background ensemble forecast variance is 

consistent with the ensemble-mean background-error variance over global observation sites. 

Specifically, we define d̃i as the innovation vector at ti, normalized by the square root of the 

observation error covariance matrix, that is, d̃i = 𝗥𝗥−1/2(yi − 𝗛𝗛xb
i), where yi is the observation 

vector at ti and 𝗛𝗛xb
i is the ensemble mean background forecast valid at time ti mapped into 

observation space by the observation operator 𝗛𝗛. Given that the inflation factor at ti−1 was Πi−1, 

the inflation factor for the transformed perturbation at ti is obtained by first checking if d̃T
id̃i is 

javascript:popRef2('i1520-0493-135-3-1055-Bishop2')
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equal to Tr( 𝗣𝗣e
i 

T + 𝗜𝗜), where Tr denotes the trace. If it is not, we need to introduce a parameter 

ci so that:  

(26) 

Then the inflation factor Πi is defined as: 

     (27) 

This rescaling of the initial perturbations attempts to correct the spread of the set of forecast 

ensemble perturbations at time ti+1 by using the rescaling factor which would have produced a 

proper forecast ensemble spread at ti if it had been applied to the transformed perturbations at 

ti−1.  Accordingly:  

      (28) 

where p is the number of observations.  Πi, therefore, is a product of these c parameters from the 

first forecast at time t1 to that at time ti, that is:  

     (29) 

Implicitly we assume d̃T
id̃i = Tr〈d̃id̃T

i〉, which requires the number of independent elements in 

the innovation vector d̃i to be large. The real-time global observational network meets this 

assumption well (Dee 1995). For regional applications, because the number of observations in 

our experiment is rather limited, we replace d̃T
id̃i by using the average of the squared innovation 

vectors from two weeks prior to time ti, denoted as d̃T
id̃prior ti Thus it becomes:  

    (30) 

(8) Ensemble Kalman Filter (EnKF). The EnKF can be viewed as a method to perturb

observations. It performs a Monte Carlo simulation of errors as they evolve in a data assimilation 

cycle (Evensen 1994; Houtekamer and Mitchell 1998). In the Monte Carlo method, each member 

of an ensemble samples the uncertainty in the inputs (e.g., observations) of the system. For each 
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set of perturbed inputs, the system is subsequently run to provide an output that reflects the 

uncertainty in the input. If the input ensemble is representative of the input uncertainty then the 

output ensemble will be representative of the output uncertainty. 

        In the EnKF, a data-assimilation cycle is performed using Eqs. 31–33. In Eq. 31, an N-

member ensemble fi (t) of prior estimates of the state of the atmosphere at time t is combined 

with the new observations o available at this time. The forward operator H goes from model 

space to observation space and can be nonlinear. To sample uncertainty in Eq. 31, one can use an 

ensemble oi of observation sets that have been randomly perturbed with respect to the actual 

observation set o. Similarly, when in Eq. 33 the forecast model M is used to integrate the 

analyses ai (t) forward in time to obtain an ensemble of prior estimates fi (t + 1) at the next 

analysis time t + 1, an ensemble of perturbation fields qi can be added to reflect the uncertainty 

in the numerical model. Note that a Kalman gain matrix K is used to give an appropriate weight 

to the observations o, which have error covariance R, and the prior estimate f, which has error 

covariance Pf as in Eq. 32. 

   (31) 

 (32) 

       ai (t) = fi (t) + K(oi − Hfi (t)), i = 1, … , N 

       K = PfHT (HPfHT + R)−1

             fi (t + 1) = M(ai (t)) + qi,   i = 1, … , N (33) 

      The EnKF is conceptually similar to the Random Perturbation method, but it is probably 

easier to specify the uncertainties in the observations o than to specify the uncertainties in the 

analysis a. In the data-assimilation cycle, the perturbations grow and evolve with the dynamics 

of the flow as represented with the model M. They will thus reflect the errors of the day as in the 

breeding method. In the data-assimilation step (Eqs. 31, 32), the covariances Pf estimated from 

the available ensemble of trial fields fi are used to determine an optimal weight of the 

information in the trial fields and the new l observations. Thus, the ensemble-based knowledge 

of the flow-dependent errors in the trial field is used to optimally spread the information of 

observations into space. Here, the main difference with the Kalman filter (Kalman 1960) is that 

the covariance matrix Pf for the error in the high-dimensional trial fields is estimated using an 

ensemble of typically O(100) members as in Eq. 34: 

Pf _1 N – 1 N Xi=1 (fi − f)(fi − f)T                                             (34) 
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The rank N−1 of the ensemble-based covariance matrix is usually augmented using a covariance 

localization technique (Hamill et al. 2001) and practical implementations will avoid having to 

store the full matrix Pf . 

       The data-assimilation step (Eq. 31) will reduce uncertainty, as estimated with the evolving 

ensemble, where observations are available. This is similar to the ETR method except that the 

ensemble covariances, not just the variances in a specific space, are fully consistent with the 

statistical properties of the observational network. 

       The ensemble of analyses that is available from the EnKF can be used to provide the 

ensemble of initial conditions for an ensemble prediction system. In the ensemble prediction 

system, the same Monte Carlo principles can be applied to sample important uncertainty in the 

forecast model and in boundary conditions such as, for example, the soil moisture field. The 

coherent treatment of all known sources of error is an attractive property of the EnKF. It is 

increasingly being used for theoretical studies as well as for operational applications. At 

Environment Canada an EnKF has been in operational use for global atmospheric data-

assimilation since 2006 (Houtekamer et al. 2014). It provides initial conditions for the global and 

regional ensemble prediction systems. At NCEP, an EnKF has been used to support the global 

deterministic assimilation system since 2012, initially as a hybrid 3DEnVar (Kleist and Ide 

2015a, Hamill et al. 2011; Wang et al. 2013), which was then upgraded to hybrid 4DEnVar in 

2016 (Kleist and Ide 2015b). The 20 out of 80 EnKF-based analyses are also used to initialize the 

NCEP global ensemble. At ECMWF, an EnKF is now being developed in research. 

(9) Perturbations in boundary conditions including land surface and topography. Besides

perturbations to the model’s interior initial states, the lower, upper, and lateral (for limited area 

models) boundary conditions need to be perturbed too. The lower boundary forcing is introduced 

by land and water surface layer parameters such as sea surface temperature, heat and moisture 

flux, ice and snow cover, soil properties (moisture, temperature and type), surface albedo, 

roughness and greenness. For example, soil moisture uncertainty has a significant impact on 

convective precipitation in the warm season (Sutton et al. 2006; Aligo et al. 2007; Du et al. 2007) 

and surface temperature (Du et al. 2007). The sensitivity of 2-meter temperature to initial soil 

moisture shows a strong diurnal variation related to solar radiation (much stronger during 

daytime than nighttime) and geographically preferred regions (Du et al. 2007). Du et al. (2007) 

also reported that the impact of soil moisture perturbation on an ensemble forecast depends on 
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the perturbation’s spatial structure and magnitude, e.g., uniformly wet or dry in space and larger 

magnitude perturbations produce a larger ensemble spread than spatially uncorrelated random 

wet or dry and smaller magnitude perturbations. The uncertainties in an upper boundary forcing 

from space (such as solar activity) or the way an upper boundary (model top) been treated in a 

model haven’t been accounted for in current EPS’s. This needs to be studied quantitatively. 

        The difference between model and real world topography contributes to the forecast error 

especially for precipitation, temperature and wind. A terrain perturbation scheme has been first 

incorporated into an EPS by Li et al. (2017). The terrain ensemble in their study is constructed 

by using different combinations of two terrain smoothing schemes and three terrain interpolation 

schemes within the WRF model to produce six ensemble members. They tested the terrain-

perturbing scheme and compared with other initial condition and physics perturbation ensembles 

using the extremely heavy rain event occurred on July 21, 2012 in Beijing. They found that 

perturbing model terrain could produce a spatial pattern of ensemble spread similar to those 

produced by either initial condition or physics perturbation ensembles; although the magnitude 

of spread is impactfully large but much smaller in the terrain-perturbing ensemble compared to 

those in the initial condition and physics perturbation ensembles (Fig. 3). However, that 

ensemble spread and probabilistic forecasts were improved by incorporating terrain uncertainty 

into initial condition perturbation ensemble, while the ensemble mean of precipitation forecasts 

remain similar (Fig. 3). Therefore, perturbing topography alone will not produce large enough 

ensemble spread. Instead terrain perturbation should be combined with initial condition and 

physics perturbation methods in constructing an ensemble. By the way, in this same research, the 

authors decomposed the ensemble spread into different spatial scales and concluded that the 

selection of perturbation methods in constructing an EPS is more important for small scale (< 

448km) and very short range forecasts (<12 h) than for larger scale and longer range forecasts. In 

other words, for larger synoptic scale and longer range (over a day) forecasts, the selection of 

perturbation methods are less critical, the impacts from either IC perturbations or physics 

perturbations or other types of perturbations are often similar to each other. This can be used as a 

general guideline to design an effective EPS.   

         For a regional EPS with a small domain, lateral boundary conditions (LBCs) could play a 

dominant role in defining the ensemble spread of atmospheric state variables (less so for 

precipitation) (Du and Tracton, 1999; Warner et al. 1997). Therefore, LBCs should also be 
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perturbed to ensure diverse ensemble solutions. At the same time, a sufficiently large model 

domain is recommended for a regional EPS. Currently, using different members from a global 

EPS as LBCs for different members in a regional EPS is a common practice, such as in the 

NCEP SREF (Du et. al., 2004). Nutter et al. (2004a and 2004b) suggested an approach to 

compensate for the ensemble spread loss due to LBC. 

Figure 3. Ensemble mean forecasts (contour) and spreads (color) of the 24h-accumulated precipitation during 
the 24-48h WRF model integration period for the four perturbation schemes (Upper left: terrain 
perturbation; upper right: IC perturbation; lower left: physics perturbation; and lower right: a combination 
of terrain and IC perturbations. Unit: mm). 

3. Methods to address uncertainty in model

        Model errors stem from two sources: (a) mathematical simplification and limitation of 

numerical calculations both spatially and temporally, such as finite grids including a limited 

domain for regional models and discrete time steps; and (b) imperfect treatment of physical 
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processes such as parameterization. As a consequence, any numerical forecast is bound to 

develop errors due to differences between the model tendencies and the real-world tendencies 

even if the ICs were perfect. Model errors could behave systematically or randomly. A properly 

designed, reliable EPS should aim at representing the random errors in the tendencies in order to 

estimate reliable uncertainties. Although much less is understood about the behavior of model 

uncertainty compared to that of IC uncertainty, the following three approaches are currently 

applied to address model-related uncertainties:  multi-model, multi-physics and stochastic 

physics. Prior to these methods being used to directly address model related uncertainty, inflation 

of the IC perturbation size was often used to count indirectly for model uncertainty.  

          (1) Multi-model and multi-physics (MM-MP). MM-MPs are ad hoc but effective 

approaches. Multi-model can represent uncertainties in both the physics and numerical schemes 

(dynamics), while multi-physics represents uncertainties only in the physics schemes. The 

advantages of these methods are relatively straightforward construction and effectiveness in 

capturing forecast uncertainties with a large ensemble spread. Potential bias cancelation in 

ensemble averaging is another benefit from the MM-MP methods, due to the different biases in 

different members which often results in a much improved ensemble mean forecast (Duan et al. 

2012). In contrast, an IC-perturbation-based or stochastic physics-based EPS can reduce random 

error but not systematic error in its ensemble averaging, due to similar biases in all the members. 

On other hand, the disadvantages of these methods might include the following: they simulate 

the uncertainty in model formulation but not in the subgrid processes; it is hard to achieve the 

statistical equal-likeliness of members’ performance due to differences in members’ quality; 

members are usually grouped by models or by physics schemes, which results in spurious 

ensemble spread caused by individual model or scheme biases; and it is costly for a single NWP 

center to maintain and develop multiple model or physics schemes. Based on favorable research 

results (Mullen et al. 1999; Tracton et al. 1998), NCEP implemented a MM-MP based short-

range ensemble forecast (SREF) system in operations (Du and Tracton, 2001; Du et al. 2003). 

The multi-model approach is widely accepted and used nowadays, e.g., the THORPEX 

Interactive Grand Global Ensemble TIGGE) and North American Ensemble Forecasting System 

(NAEFS). Note that an MM ensemble is really meant as an ensemble of ensembles on many 

occasions.  
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      Slightly altering the values of the physics parameters is one approach to stochastic physics. It 

can be viewed as multiple slightly-varied versions of the same physics or model. It is easier to 

configure: one normally doesn’t need to modify a physics scheme itself but just set different 

values in a model-controlling namelist file for the different members. The challenging part is that 

one needs to determine a reasonable range for a parameter to vary, which needs a lot of testing 

and experience. If the variation is too big it could push an atmospheric flow into an unrealistic 

regime. More sophisticated stochastic physics approaches are described in detail below. 

(2) Stochastically Perturbed Parameterization Tendency (SPPT) scheme. Schematically,

each ensemble forecast is defined by the time integration of model equations: 
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where the j-th suffix identifies the j-th ensemble member, xj(t) is the model state vector at time t, 

Fj is the full model tendency and xj(0) is the j-th member initial condition. The total tendency Fj 

includes an adiabatic term Aj, a diabatic term Pj, which depends on the physical parameterization 

scheme, a multiplicative (rjPj) and an additive (bj) model error term. At the ECMWF, these 

model error terms are defined by two schemes:  

• The multiplicative term is defined by the SPPT scheme (Buizza et al. 1999, Palmer et al.

2009);

• The additive term is defined by the Stochastic Kinetic Energy Backscatter (SKEB) scheme

(Shutts 2004 and 2005; Berner et al. 2009; Palmer et al. 2009).

These two schemes have been designed to both have a physical basis and to be as simple and 

effective as possible. Since the two schemes represent different possible sources of model error, 

they are both used, albeit in slightly different configurations, in the ECMWF ensembles (see 

Shutts et al. 2011 for more details on the settings of the operational schemes). The SPPT is 

described in this subsection and the SKEB will be described in the next subsection.  

       The rationale behind the SPPT scheme is that “There are certainly good grounds for 

believing that there is a significant source of random error associated with the parameterized 

physical processes … The sort of random error in parameterized forcing will be coherent 
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between the different parameterisation models, and will have a certain coherence on the space 

and time scales associated, for example, with organized convection. Moreover, the scheme 

assumes that the larger the parameterized tendencies, the larger the random error component will 

be. The notion of coherence between modules allows the stochastic perturbation to be based on 

the total tendency of all parameterized process.” (Buizza et al. 1999). The current SPPT scheme 

at the ECMWF is a revision of the original stochastic diabatic tendency scheme of Buizza et al. 

(1999) and perturbs the parameterized tendency of physical processes with multiplicative noise. 

It is based on the notion that, especially with increasing numerical resolution, the equilibrium 

assumption no longer holds and the subgrid-scale state should be sampled rather than represented 

by the equilibrium mean. Consequently, SPPT multiplies the accumulated physical tendencies at 

each gridpoint and time step with a random pattern that has spatial and temporal correlations. 

This concept can be schematically described by Eq. (37) for any model state variable X at 

forecast time t: 

                             Xt = Xt-1 + F + S = Xt-1 + F + μ*r*F,                 (37)                               

where S is an added stochastic term which is a product of a random number μ*r and tendency 

F. μ  is a vertical weight which decays with height from 1.0 at the surface to 0.0 in the 

stratosphere (100-50hPa). r is a random number ranging from -1.0 to 1.0 representing horizontal 

weights and has a pattern in space and time (e.g., a red noise process with a temporal timescale 

of 6 hours and an e-folding spatial scale of 500 km). SPPT uses same random pattern generator 

as SKEB but with a different normalization. The stochastic pattern evolves in spectral space as  

                                                         (38) 

where all variables are as defined above. The temporal correlations are given by the 

decorrelation time τ defining α=exp(-Δt/τ). The noise amplitudes are given as  

         ,                                                  (39) 

        ,                               (40) 
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where L is a horizontal length scale defining the spatial correlations and σ2 is the perturbation 

variance at each gridpoint. The normalization constant F0 is chosen so that the variance at any 

gridpoint, σ2, is given by the total variance in spectral space (Weaver and Courtier, 2001). The 

resulting stochastic pattern follows at each gridpoint a Gaussian with mean zero and the variance 

σ.         

        Using the NCEP global EPS, Whitaker et al. (2013, NCEP seminar) compared the SPPT 

with the control ensemble (no stochastic physics) for wind forecasts over the globe at day 5. 

They found that the overall impact on ensemble spread is small with a slight spread increase, 

mostly in the tropics, and ensemble mean forecast error remained unchanged. The SPPT method 

has been included in the NCEP global forecast system for EnKF-3DVAR hybrid data 

assimilation. Recently, SPPT has also been used experimentally to model diffusion processes 

(Qiao et al. 2017).  

(3) Stochastic Kinetic Energy Backscatter (SKEB) scheme. The rationale behind the SKEB

scheme is that due to its finite approximation, while numerical models simulate the energy 

cascade from the resolved to unresolved scales, they do not represent the upscale energy transfer 

from scales smaller than the model grid onto the scales resolved by the model. SKEB estimates 

the downscale energy transfer and simulates the energy backscatter from the unresolved to 

resolved scales. Therefore, the scheme aims to represent model uncertainty arising from 

unresolved subgrid-scale processes by introducing random perturbations to the streamfunction 

and, depending on the implementation, the potential temperature tendencies. Originally 

developed in the context of Large-Eddy-Simulations (Mason and Thompson, 1992) and applied 

to models of intermediate complexity (Frederiksen and Davies, 1997), it was adapted by Shutts 

(2004 and 2005) to NWP.  SKEB assumes that a small fraction of the model dissipated energy 

interacts with the resolved-scale flow and acts as a systematic forcing. Its impact on weather and 

climate forecasts are reported, e.g., in Berner et al. (2008, 2009, 2011, 2012), Bowler et al. 

(2008, 2009); Li et al. (2008); Palmer et al. (2009); Doblas-Reyes et al. (2009); Charron et al. 

(2010); Hacker et al. (2011); Tennant et al. (2011); and Weisheimer et al. (2011). Below is a 

technical description of the method. 

        Let f (ϕ,λ,t) be a 2D stochastic pattern expressed in a triangularly truncated spherical 

harmonics expansion:  
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                ,                  (41) 

where λ and Φ denote longitude and latitude in physical space and t time. In spherical harmonics 

space, m and n denote the zonal and total wave numbers, N is the truncation wavenumber of the 

numerical model and is the associated Legendre function of degree n and order m. The 

spherical harmonics form an orthogonal set of basis functions on the sphere. If the 

 are non-vanishing for at least one n<N and do not follow a white-noise spectrum, the pattern 

perturbations will be spatially correlated in physical space.  

       Since the physical processes mimicked by this forcing have finite correlation times, temporal 

correlations are introduced by evolving each spectral coefficient as a first-order autoregressive 

(AR1) process: 

                       ,                 (42)  

where α is the linear autoregressive parameter determining the temporal decorrelation time, gn 

the wavenumber-dependent noise amplitude and ε is a Gaussian white-noise process with mean 

zero and variance η.  The noise amplitude gn is chosen to have power-law behavior, , 

and to determine the variance spectrum of the forcing.  

The pattern is interpreted as the streamfunction tendency forcing. In cases of 

perturbed potential temperature, a second perturbation pattern is created analogously, but with a 

different power-law behavior and a potentially different temporal correlation. The adaption to 

2D-double periodic domains as used in regional models is straightforward and described, e.g., in 

Berner et al. (2011). 

The behavior of this scheme is determined by the following parameters: the exponent of 

the power law, p; the wavenumber perturbation range, n1-n2; and the amplitude of forcing 

energy, which determines the normalization constant b. 

In the ECMWF implementation of SKEB, the streamfunction pattern is subsequently 

weighted with the normalized total instantaneous dissipation rate from numerical dissipation, 

deep convection and gravity and mountain wave drag (Shutts, 2005; Berner et al. 2009).  A 
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simplified version of SKEB is available to the public as part of the Weather Research and 

Forecasting (WRF) Model with Advanced Research WRF dynamics solver (Skamarock et al. 

2008). This simplification no longer injects random perturbations proportional to the estimated 

total dissipation rate, but assumes a spatially and temporally constant dissipation, resulting in a 

state-independent stochastic forcing (Berner et al. 2011).  Instead it relies on the underlying 

model dynamics to determine which perturbations will grow and which ones will be damped. 

          The SKEB method is also compared to a control ensemble (no stochastic physics) using 

the NCEP global EPS for wind forecasts over the globe at day 5 in Whitaker et al. (2013, NCEP 

seminar). They found that the SKEB increased ensemble spread in mid-latitude jets where 

numerical dissipation is active but was less effective in the tropics due to convective dissipation 

not included in the scheme, although it did add spread in the lower tropics. The impact on 

ensemble mean forecast is neutral. The SKEB method has been included in the NCEP global 

forecast system for EnKF-3DVAR hybrid data assimilation. 

(4) Stochastic trigger of convection.  Since the SPPT only modulates the existing physics

tendency inside a parameterized physics scheme, it can only change convection intensity and 

cannot trigger new convection or eliminate present convection. To alter the area of convection, 

two methods have been used. One is the stochastic trigger of convection (STC, Li et al. 2015) 

which directly adds a stochastic term to the convection trigger function: 

Tlcl+（1+r）*△T > Tenv             （43） 

where Tlcl is the air parcel temperature at LCL (lifted condensation level), △T is the temperature 

change of the parcel, r a random number or pattern, and Tenv is the environmental temperature. 

When the resulting parcel temperature exceeds its environmental temperature, free convection is 

triggered.  

(5) Stochastic boundary-layer humidity (SHUM). Another method to trigger a convection is

an indirect method called stochastic boundary-layer humidity (SHUM, Whitaker et al. 2013, 

NCEP seminar). The rationale behind SHUM is that triggers in convection schemes are very 

sensitive to boundary-layer humidity. The specific humidity q in the boundary layer is 

stochastically perturbed at each time step as follows: 

 qp = (1+ r*μ)q             (44)



30 

where q and qp are the original and perturbed specific humidity, vertical weight μ decays 

exponentially from the surface, and random pattern r has the same horizontal/temporal scales as 

SPPT with a small amplitude of ~0.001. By comparing SHUM to a control ensemble (no 

stochastic physics) using the NCEP global EPS for wind forecasts over the globe at day 5, 

Whitaker et al. (2013, NCEP seminar) found that the SHUM notably improved spread-error 

consistency in the tropics, especially the upper tropics, e.g., the maximum forecast error near the 

tropopause was reproduced in the spread, but had little or no effect in the winter hemisphere 

poleward of 30 degrees latitude. As a result, the ensemble mean forecast error was reduced in the 

tropics, especially the upper tropics, and the summer hemisphere. The SHUM method has been 

included in the NCEP global forecast system for EnKF-3DVAR hybrid data assimilation.  

(6) Stochastic Total Tendency Perturbation (STTP) Scheme. In the previous SPPT scheme,

individual physics schemes are perturbed separately. Therefore, one needs to perturb all model 

physics schemes in order to sample the full physics uncertainties from all known sources. 

However, even if all physics schemes are perturbed, uncertainties related to model numerical 

structures and any unknown sources are still being missed. To overcome this weakness the 

model total tendency, instead of partial tendencies in individual physics, is perturbed. This 

scheme is called the Stochastic Total Tendency Perturbation (STTP) Scheme and was 

implemented in the NCEP global ensemble forecast system (GEFS) in February 2010 (Hou et al. 

2006, 2008). Although the general principle (adding a stochastic term to the tendency of state 

variables) is the same as the SPPT, the STTP is technically different from SPPT in two ways, i.e., 

using the perturbation tendency instead of full variable tendency and using a series of orthogonal 

weights to combine the perturbation tendencies from all members. The ensemble perturbation 

tendencies are first randomly combined following certain rules to form Stochastic Total 

Tendency Perturbations, which are then scaled to the appropriate size and used as stochastic 

forcing terms in the model equations. This method is based on the hypothesis that differences in 

the tendencies among ensemble perturbations provide a representative sample of the random 

total model errors associated with the formulation of the dynamic and physical processes, 

truncation and parameterizations. The detailed scheme is described below. 

   With subscript i identifying one of the N ensemble members, i=1,2,…,N, (0 is the control 

forecast) and t the time of the integration, the conventional model equations for an ensemble 

forecast system running with only initial perturbations can be written as:  
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where T is the total tendency, including dynamical and physical processes, calculated at the grid 

scale with parameterization of sub-grid scale effects. 

        Considering the uncertainty in the model formulation and numerical approximation, a 

stochastic forcing term Si should be added to each member, i.e., 
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∂
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The formulation of stochastic forcing with the SPPT approach generally relates S to the tendency 

increment due to a particular component of tendency T, i.e., representing the random error 

associated with a particular physical process. However, in the STTP S comes from the total 

tendency T. As the perturbations in ICs lead to a reasonably (though not perfectly) representative 

sample of the possible model states, one can assume that the conventional tendencies in the 

individual ensemble members collectively provide a representative sample of the unknown true 

value of the total tendency. By comparing the total tendency in each ensemble member against 

the control forecast, N tendency perturbations, i.e., 

                            )()()( 0 tTtTtP ii −=         for i=1,2, …,N                 (47) 

can be identified and they form a representative sample of the differences between the true 

tendency and that formulated in the model equation (45). Therefore, these tendency perturbations 

can be used as the basis in formulating the stochastic forcing S. 

       As in the SPPT approach, random numbers are introduced to address the uncertainty in the 

total tendency. Although each single Pi, if chosen randomly, can be a valid candidate, a random 

combination of all N tendency perturbations would be a better choice, in hopes that more 

directions in the phase space would be explored for the ensemble perturbations Xi-X0 to grow 

faster and the ensemble spread to be increased. Symbolically, we have: 
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∝        for i=1,2, … N                (48) 
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where the coefficients wi,j are random weights assigned for each P. The stochastic forcing for 

each ensemble member i corresponds to a different set of random weights wi,j, j=1,…N.  

      Using matrix notation and omitting the time t, the relation (48) can be rewritten as: 

NMNNNM PWS ~            (49) 

where the subscripts indicate the matrix dimensions and M is the number of grid points. Note 

that this formula is the same as the Ensemble Transform (ET) used in the generation of initial 

perturbations, if PNM are the perturbations of model states.  

      To determine the combination or weighting matrix W, one needs to consider the 

requirements for the stochastic forcing S. First, as (46) is to be applied to all model state 

variables with the same set of weights, the stochastic forcing S should be in approximate balance 

as are the tendency perturbations P. Second, the S vectors should be orthogonal to each other. 

Since the P vectors form an approximately orthogonal set, the orthogonality in S can be achieved 

if the W matrix is orthonormal, i.e., the w vectors are normalized and orthogonal to each other. 

Therefore, the problem is to specify a random but orthonormal matrix W as a function of time. 

The temporal variation of the W matrix is represented by random rotations from one application 

to the next, or mathematically as: 

       )()1()( tRtWtW NNNNNN −=         (50) 

where R is a random matrix only slightly different from the identity matrix I, representing a 

random and slight rotation of the N w vectors in an N-dimensional space.  The rotation at a 

particular time,  R(t), can be viewed as the combination of a steady rotation, which is represented 

by a random but temporally invariant Matrix R0, and a random rotation R1, which changes at 

every application of the scheme, i.e., 

)1()( 10 −= tRRtR NNNNNN                     (51) 

        James Purser of NCEP developed the methodology and software to generate a random 

orthonormal matrix and a random rotation matrix. Both procedures start with filling an N x N 

matrix A with independent random numbers from a Gaussian distribution. The 

orthonormalization is then realized by applying the Gram-Schmidt procedure (Golub and Van 
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Loan, 1996) to A. The rotation matrices R0 and R1 are generated by applying the same procedure 

to (I+α(A-AT)), where AT is the transpose of A, and α the “degree” of rotation. These algorithms 

are used to generate the temporally varying weighting matrix W via the following procedures: 

(1) Initializing W by generating a random orthonormal matrix W(t=0); (2) specifying the

fractional numbers α0 to prescribe the “degree” of rotation in the steady rotation and generate R0;

(3) specifying another fractional number α1 for the degree of random rotation to find R1; (4)

generate a random slight rotation matrix for each time that the stochastic perturbation scheme is

applied, using the same α1 but a different seed, and use (50) and (51) to update the W matrix.

       The temporal evolution of the weighting matrix W can be viewed as N vectors in the N-

dimensional space, changing their directions slightly with random vibrations (R1) imposed on a 

steady rotation (R0). Similarly, the evolution of each scalar weighting factor wi,j is seen as 

random increments (corresponding to R1) superimposed on a smooth trend in the form of a 

periodic function of time (corresponding to R0) with the level of noise (due to the random 

increment) and the period controlled by α1 and α0, respectively. α1 and α0 are the only two 

parameters required to specify W(t). While a higher value of α1 defines noisier curves, a larger 

α0 corresponds to shorter periods. Fig. 4 depicts some examples of these curves in a 10 member 

(N=10) ensemble system, showing the curves for i=10 and j=1, 2, .., 10, i.e., the temporal 

variation of weighting factors that determine the stochastic forcing for ensemble member 10. In 

this particular case with α0 = α1 = 0.05 and 6 hour intervals between applications, it can be seen 

from Fig. 3 that the period of the trend is about 6 days and the curves look fairly noisy. For 

reference, α1=0.005 defines smoother curves while α0 = 0.005 corresponds to a much longer 

period (>10 days). 
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Figure 4. Examples of combination coefficients wij as a function of forecast lead time, in a 10 member (N=10) 
ensemble system. Shown are 10 curves for j=1,2,...,10 (each of the 10 originating members) with fixed i=10 
(for the member 10) and α0= α1=0.05. 

      In principle, the stochastic perturbation scheme can be applied at every time step of the 

model integration. However, a less frequent application is preferable, to reduce the 

computational cost in practice. For this purpose, a finite difference version of Equation (46) is 

used in an operational implementation. With a specified time interval of the application 

designated as ∆t, the stochastic scheme can be implemented by integrating Equation (45) instead 

of (44) from t-∆t to t, and modifying the model state variables (X) by using:  

( ) ( )[ ] ( ) ( )[ ]{ }tttttjtj
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,
' )()(γ      (52)   

for i=1,2, …, N at t=∆t, t=2∆τ, … . ϒ(t) is a scaling factor that varies with time but is uniform 

across all ensemble members. Its values depend on the choice of time interval ∆t and its temporal 

variation is related to that of the size of the ensemble perturbations. The scaling factor is 

empirically determined for a fixed ∆t and factorized as a global rescaling factor ϒ0 and a regional 

rescaling factor ϒ1, i.e., 

)(),( 01 td γϕγγ =      (53) 

The global rescaling factor is a function of forecast lead time only and expressed as: 
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where p1, p2, p3 and p4 are empirical parameters, e.g., p1=0.100, p2=0.01, p3=0.11 and p4=252 

hours were used in the Feb 2010 GEFS implementation, and p1=0.105, p2=0.03, p3=0.12 and 

p4=252 hours were used in the Jan. 2012 GEFS implementation.  Experiments suggest that these 

empirical values generally work well, although fine tuning and optimization could be done. The 

regional rescaling factor, in its current form, changes with latitude and the day of a year: 

364
2cos)sin(2.00.1),(1

dd πϕϕγ += (55) 

Equation (55) indicates that the perturbation size in the winter hemisphere is larger than that in 

the summer hemisphere. As shown as an example in Fig.4, the stochastic forcing vectors have 

structures of random noise and the size, represented by a vector norm similar to total energy, 

shows a flow-dependent global distribution with the largest amplitudes associated with the mid-

latitude jets in both hemispheres. 

      The quantity defined by the summation in Eq. (52) is referred as a stochastic perturbation 

(SP) applied to the i-th ensemble member and it can be rewritten as: 

( ) ( )[ ] ( ) ( )[ ]{ }ttttjttj
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, )(  for i=1,2, …, N.       (56) 

As the weighting matrix W is orthonormal, the size of each SP is determined by the changes in 

all ensemble perturbations during the past ∆t time interval (the quantity in the curly brackets). 

The SPs generated by (56) are for all prognostic variables of the model state and they are in 

approximate balance. An example of SPs is shown in Fig. 5.    

        Its implementation is straightforward, with a periodic stopping of the N otherwise 

independent integrations (45), modifying each model state with information from all N model 

states using (52) and repeating the procedure every ∆t hours (6hrs is currently used at NCEP). 

This requires all N sets of model states at time level t and t-∆t to be available simultaneously, 

and can be easily realized if the N ensemble members concurrently run within a single 

executable. The values of the required parameters ∆t, α0, α1, p1, p2, p3 and p4 can be manipulated 

in a namelist. 
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       Using the NCEP GEFS, Whitaker et al. (2013, NCEP seminar) also compared the STTP to a 

control ensemble (no stochastic physics) for wind forecasts over the globe at day 5. They found 

that the STTP increased spread mainly in the winter hemisphere, less so in the summer 

hemisphere and very little in the tropics, and had little impact on the ensemble mean forecast, 

which is consistent with the design of this method.  

Figure 5. An example of stochastic perturbations (SPs) added to modify the model states of the 20-member 
NCEP GEFS.  Shown are (upper panel) the temperature perturbation (unit: K) associated with ensemble 
number 20, and (lower panel) the corresponding perturbation size defined as the square root of “total 
energy” norm of the perturbation vector (unit: ms-1), at 120h integration time starting from 00Z, Aug. 25, 
2008. 

(7) Vorticity confinement. This method was originally proposed by Steinhoff and Underhill

(1994; and Shutts and Allen 2007) and was first tested in an atmospheric general circulation 

model by Sanchez et al. (2013). They found that resolution-dependent biases grow when model 

resolution decreases as a result of the lack of transient eddy kinetic energy (TEKE). This might 

inhibit the development of mid-latitude variability phenomena such as synoptic cyclones and 

blocking events. To compensate for the loss of TEKE in a model, especially at low resolution, 
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they added a parameterized vorticity confinement (VC) term (the last term of Eq. 57) to the 

horizontal momentum equation to preserve vorticity features in dissipative numerical schemes as 

follows:   

           (57) 

In the last term of Eq. (57), nˆ is the normalized horizontal vorticity gradient, ε can be viewed as 

the tangential speed of the VC, ε nˆ acts as an advective velocity, |ζ|k^ is the vertical component 

of relative vorticity, nˆ is in the normal direction pointing to higher vorticity or the left of flow in 

northern hemisphere, and k^ is the direction vector pointing up. Therefore, the resulting VC 

force is always horizontal and along the direction of flow by adding back momentum to against 

model numerical diffusion, i.e., accelerating both cyclonic and anticyclonic flow in the mid-

latitudes. The magnitude of the VC force is proportional to the vorticity. The parameter ε 

controls the strength of the confinement term and acts as a type of anti-diffusive velocity. ε=0.6 

is used in the Sanchez et al. (2013)’s experiment. Some early tests, in which ε was proportional 

to the amount of kinetic energy dissipated, proved to be very unstable for the model. It is 

suggested that different formulations for ε, whose value is dependent on the local flow (Hahn 

and Iaccarino, 2009), need to be explored in future. A drawback of this method is that it might 

inadequately change the radial distribution of vorticity to potentially hurt a forecast. 

         Whitaker et al. (2013, NCEP seminar) applied this VC method (ε=0.6 is used) in an 

ensemble model (the NCEP global EPS) to simulate forecast uncertainty. They found that 

ensemble spread was increased mainly in the subtropics but not in the tropics, tropical cyclones 

became stronger, and the ensemble mean forecast error increased in a 5 day forecast. The VC 

method has been included in the NCEP global forecast system for EnKF-3DVAR hybrid data 

assimilation.  

(8) First order Markov chains - Generating space-time auto-correlated 2D random fields

on the sphere. Random fields with a specified space-time auto-correlation are often needed in 

ensemble forecasting and ensemble data assimilation, such as in the SPPT and SKEB, to control 

the noise characteristics of the random patterns. In the current implementations of the SKEB 
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scheme and SPPT or physical parameter perturbations at the Canadian Meteorological Center (Li 

et al. 2008; Berner et al. 2009; Charron et al. 2010), first-order Markov chains are employed to 

generate a random time series. This method is described below. Only the two-dimensional case is 

described, but an extension to three spatial dimensions is straightforward.  

       Markov processes can be used as spectral coefficients of an expansion on spherical 

harmonics (in the horizontal). A two-dimensional random function on the sphere f (λ,ϕ,t), 

correlated in space and time, with a probability density function (PDF) symmetric around the 

mean μ, can be defined as: 

 (58) 

with  (59) 

The independent variables λ, ϕ, and t are longitude, latitude and time, respectively. The Yl,m's are 

spherical harmonics, with l being the total horizontal wave number, and m the zonal wave 

number. The normalization convention is as follows: 

(60) 

The integer parameters Lmin ≥ 1 and Lmax ≥ Lmin define the spectral range of the random function. 

Their inverse can be interpreted in terms of spatial decorrelation length scales. The parameter τ is 

the decorrelation time scale of the spectral coefficients. For simplicity, it is defined here as a 

constant independent of l, although a generalization as τ = τ(l) might be useful. The parameter 

t is the time step of the numerical model. The complex Rl,m’s are uncorrelated random

processes with a mean of zero and a variance  of unity. The overbar denotes an ensemble 

mean or a time mean. The Rl,m’s can be, for example, Gaussian processes. The denominator in 

the square root of Eq. 60 has been chosen here to generate a white noise signal (in space) with a 

specified mean global variance σ2 (a modeler might want to impose another specified spatial 

spectrum by modifying this denominator). For real random fields, the condition 

 must apply. It can be shown that the correlation function is written 
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           (61)

Where s = nt, and n a positive integer. The upper panel of Fig. 6 depicts the power spectrum 

of al,m as a function of frequency. For time scales much larger than τ, al,m is white noise. For time 

scales smaller than τ, the spectrum has an approximate -2 slope. 

         One often needs to keep a perturbed physical parameter within some specified bounds. Eqs 

58 and 59 do not ensure that f (λ,ϕ,t) is bounded, say, between fmin and fmax. Moreover, the PDF 

of f is a Gaussian distribution when the Rl,m’s are Gaussian or when the sums over l and m in Eq. 

58 are made with a large enough number of components (Central Limit Theorem). A modeler 

might need a different PDF. These potential drawbacks can be fixed by applying a stretching to f 

to obtain F. For example, if one is interested in generating an F drawn from a uniform 

distribution, it can be shown that the stretching must be performed using the error function, 

provided that f is a Gaussian random field with mean μ and variance σ2: 

(62) 

The parameter γ allows the shaping of the PDF of the stretched random function F. When γ = 1, 

the PDF of F is uniform. The lower panel of Fig. 6 shows the impact of stretching on the PDF 

when γ = 1.5, fmin = 0.5 and fmax = 1.5, i.e., a broadening of the PDF due to stretching. 
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Figure 6. Upper panel: Power spectrum of a first-order Markov chain as a function of frequency (thick line) 
and a reference -2 slope (thin line). The arrow indicates the position of t/τ. Lower panel: The probability 
density function (PDF) of f with σ=0.135 (thin line) and F (thick line). 

         (9) Factor Separation Method. In a multi-physics-based EPS, an understanding of the 

relative impacts from different physics schemes as well as their interactions among schemes is 

desired. This could be done in different ways, such as a clustering technique (Johnson et al. 

2011) and decomposition (Jankov et al. 2005). Jankov et al. (2005) demonstrated a factor 

separation method and found that the information derived from the method is useful in 

constructing and calibrating an EPS (Jankov et al. 2007). In this subsection, the factor separation 

method is introduced. However, one needs to keep in mind that a complete separation of factors 

is impossible in a nonlinear environment where a nonlinear interaction term always present.          

        The factor separation method was formulated by Stein and Alpert (1993). The method is 

summarized as:  

xyyxxy fffffff ˆ)()( 000 +−+−=−             (63) 
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 fx̂y = fxy − ( fx + fy) + f0 (64)

where f0 represents the control forecast with standard physics schemes (say, convection x0 and 

microphysics y0), and  fxy the experimental forecast using two alternative physics schemes x and 

y (convection x and microphysics y). Therefore, the term fxy − f0 is the difference from the control 

forecast due to changes in the two physics schemes. Eq. (63) tells us that this difference can be 

attributed to three terms: the change in scheme x alone fx - f0, in scheme y alone fy - f0, and the 

nonlinear interaction of schemes x and y fx̂y.  fx̂y is called the synergistic term and can be 

estimated by Eq. (64). Assuming a continuum of physical schemes, Eq. (63) is then equivalent to 

Taylor’s series second-order expansion in two variables. The first two terms on the right hand 

side of Eq. (63) represent the contribution of the first-order derivatives, while the third term 

(synergistic term) is a mixed second-order derivative (the unmixed second-order derivatives are 

zero). If the synergistic term is equal to zero, no interaction occurs between the two alternative 

schemes, which is an additive linear system. 

         In the work of Jankov et al. (2005 and 2007), the impact of various physics schemes and 

their interactions on warm season precipitation caused by a continental Mesoscale Convective 

System (MCS), were evaluated using this method. Simulations of eight MCS events were 

performed using 18 WRF–ARW model configurations (members) consisting of three different 

convection treatments, three different microphysics schemes, two different PBL schemes and 

two different initializations over a 1500x1500km domain with 12-km grid spacing. They showed 

that this method is able to quantify the relative impacts of different physics schemes, e.g., a 

change in the convection scheme affects the rain rate the most, while both convection and 

microphysics are important for the rain volume depending on the initialization of the analysis. 

Information about the relative impacts and interactions were then used to construct four smaller 

ensembles. The performance of the four ensembles supported the results from the factor 

separation method, i.e., convection and microphysics have the largest impact on the simulated 

MCS rainfall. This demonstrated that the knowledge of which physics schemes exert the greatest 

impact on a forecast can allow for the design of smart ensembles that maximize forecast skill 

while minimizing the ensemble size. 

(10) Perturbing model dynamic core.  Since the local change of a model state variable is a

sum of physical and dynamical tendencies, the dynamical tendency can also be perturbed 

javascript:popRefFull('i1520-0434-20-6-1048-e6')
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separately as we did for the physical tendency. For example, Koo and Hong (2014) perturbed the 

dynamic tendency in a global model to improve seasonal prediction. They added a random 

number to the dynamic tendency term to account for the inherent uncertainties associated with 

computational representations of the underlying partial differential equations that govern the 

atmospheric motion (their equations 2a-c). Their stochastic forcing depends on forecast time and 

vertical layer. By making a comparison with the traditional approach of perturbing the physical 

tendency, they reported that the sensitivity of fluctuations in forecast variables to the magnitude 

of random forcing is found to be even greater in the case of a perturbed dynamical tendency. 

They also evaluated a simulated climate for a boreal summer. It demonstrates a significant 

enhancement in forecast skill in terms of the large-scale features and precipitation when both the 

dynamical and physical tendencies are simultaneously perturbed. This finding implies that model 

uncertainties can be addressed in terms of not only the physical parameterization but also the 

dynamical score. 

4. Virtual Ensembles

        Without enough computing resources to physically run a state-of-the-art EPS, some 

alternative virtual ensembles are proposed to quantitatively estimate forecast uncertainty. Five 

approaches are introduced in this section: a time-lagged ensemble, poor-man’s ensemble, dual-

resolution hybrid ensemble, neighborhood ensemble, and analog ensemble. A common 

advantage of all these methods is the minimal cost in constructing an ensemble of forecasts. 

(1) The time-lagged ensemble is proposed by Hoffman and Kalnay (1983). It pulls multiple

forecasts, initiated at different times but all verified at same time, together to form an ensemble 

(i.e., a mixture of older and newer forecasts). The degree of run-to-run consistency is presumably 

a measure of forecast confidence. The advantage of this method is the inclusion of past 

information as well as the ready availability of forecast data at one NWP center. With this 

approach any operational NWP center automatically has an ensemble system if it runs at least 

one single model. Such a single model can run at its highest possible spatial resolution since 

there is no actual EPS model competing with it for computing resources. A limitation is on the 

size of the ensemble, since there are not many “good” older forecasts available due to the rapid 

degradation of forecast quality with forecast lead time. The more frequently a model is initialized 

to run, the more time-lagged members can be created. Given the inequality in the members’ 
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quality, weights are normally assigned to different members based on their forecast age when 

producing ensemble products. The time-lagged approach has been used in operations and for 

research such as the NCEP operational seasonal ensemble forecast system (Saha et al. 2006) and 

aviation and high-resolution ensembles (Zhou et al. 2010; Du and Zhou 2017), as well as others 

(Lu et al. 2007; Brankovic et al. 2006; Mittermaier, 2007). 

(2) A poor-man’s ensemble is a collection of many single-model forecasts from various 

available sources since a “poor” man cannot afford to run his own model forecasts (Wobus and 

Kalnay, 1995; Ebert, 2001). It can be viewed as the simplest version of a multi-model ensemble. 

The advantage of this method is its comprehensive sampling of possible uncertainty sources 

including different ICs, data assimilation systems, physics and model dynamic cores, which 

often results in larger ensemble spread. A superb ensemble mean forecast is another advantage of 

this method, due to the apparent different biases in different members (Duan et al. 2012). As 

with the time-lagged ensemble, limited ensemble size and the inequality in members’ quality are 

two weaknesses of this method. Therefore, different weights are normally assigned to different 

members based on their past performance in producing final forecast products. For example, the 

so-called “super-ensemble” is actually a poor-man’s ensemble used to produce a deterministic 

forecast using a statistical linear regression technique (Krishnamurti, 1999). This multi-model-

based linear regression approach can significantly improve forecast accuracy over the original 

forecasts by correcting model biases.  

(3) The dual-resolution hybrid ensemble is proposed by Du (2004). If one desires to have a 

high-res ensemble but cannot afford to run it at his desired resolution, this approach is a way to 

go if a low-res ensemble and a high-res single model run are available. A synthetic downscaled 

high-res ensemble can be constructed using this hybrid ensembling approach, by combining the 

forecast variance from the low-res ensemble and single high-res forecast, as described below. At 

any grid point and forecast time, each low-res perturbed ensemble member (Lres_mem) is 

decomposed into a base forecast (low-res control forecast, Lres_ctl) and a forecast perturbation 

Fpert (Eq. 65):  

          Lres_mem = Lres_ctl + Fpert.                                   (65)  

Using the high-res single run (Hres_single) as a new base forecast to replace Lres_ctl in Eq. (65), 
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a new perturbed high-res ensemble member (Hres_mem_p) can be obtained as in Eq. (66):  

         Hres_mem_p = Hres_single + Fpert.                          (66)  

If Eq. (66) is the only way used to create new high-res members, it is referred as a one-sided 

approach (i.e., “addition” only) and the resulting ensemble is {Hres_single, Hres_mem_p}. The 

subscript p means “positive”. If “subtraction” is also used to obtain new members as in Eq. (67), 

it is referred as two-sided approach (i.e., both “addition” and “subtraction” are applied) and the 

resulting ensemble is {Hres_single, Hres_mem_n, Hres_mem_p}. The subscript n means 

“negative”. 

        Hres_mem_n = Hres_single - Fpert.                              (67)  

The ensemble size remains the same as the original in the one-sided approach, while it doubles in 

membership in the two-sided approach. Note that for precipitation and other humidity fields, a 

“positive value” constraint needs to be set during the calculations of Eq. (66-67) to keep their 

values physical. Since the high-res forecast Hres_single is often more accurate with detailed 

spatial structures than the original low-res control forecast Lres_ctl, especially in the short range, 

the new hybrid ensemble normally outperforms the original low-res ensemble, especially for 

heavy rain events (Du 2004; Tang et al. 2015). A potential danger from this approach is the 

possible spatial mismatch between the new base forecast (from the high-resolution model) and 

the old forecast perturbation (from the low-resolution model) because they come from two 

models of differing resolutions. To minimize this mismatch, hybrid ensembling should be 

applied within the same model and at short ranges such as 1-3 days. This approach has been 

applied to both regional and global ensembles at NCEP. In the regional ensemble, a 16km 

regional ensemble was combined with a 4km single run to produce a new storm-scale ensemble. 

Improvements in heavy precipitation and surface wind forecasts are observed. In the NCEP 

global ensemble, the 27km single high-res global model forecast was used with the 55km global 

ensemble. Considering the decrease in the superiority of high-res over low-res model forecasts 

with forecast lead time, a decaying weight function is used when combining high-res with low-

res forecasts: ranging from 1.0 (i.e., 100% using high-res model info) to 0.0 (100% using low-res 

model info) over a 5-day period. This hybrid step is proven to greatly boost the NCEP GEFS 

performance.  
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        (4) The neighborhood ensemble is proposed by Theis et al. (2005) and Roberts and Lean 

(2008) for single forecast, and by Schwartz et al. (2010) and Schwartz and Sobash (2017) for 

ensemble forecasts. As opposed to the downscaled hybrid ensemble, neighborhood ensemble is 

an upscaled ensemble. Although a very high resolution storm-scale model may well simulate the 

detailed spatial structures of weather elements such as convective cells and extreme precipitation 

maxima, there are considerable uncertainties associated with the predicted locations, due to 

limited predictability. Therefore, beyond a certain spatial scale (critical scale), only probabilistic 

skill (not deterministic) presents, or an area averaged value (rather than individual grid point 

values) is more representative of reality. Forecasts at scales below this critical scale should be 

expressed in probabilistic form. Fig. 7 demonstrates how this approach works: assume that a 

1km-resolution model has no deterministic prediction skill for precipitation at scales smaller than 

6km (i.e., the critical scale in this case). Therefore, all grid points within the 3km-radius circle 

can form an ensemble of forecasts, so that probabilistic and ensemble mean forecasts at location 

A can be calculated based on this ensemble. Thus, the neighborhood method can transform a 

single high-res deterministic forecast into a probabilistic forecast or have the effect of turning a 

small ensemble into a larger ensemble. By upscaling in space, the resulting probabilistic or 

ensemble mean forecast should be more reliable than the original forecasts from the individual 

points. In this method, properly estimating the critical scale to distinguish deterministic forecast 

skill is key, and depends on each model’s capability as well as the predictability of an event 

(spread). Given large variation of ensemble spread in space and time, Dey et al. (2014, 2016) 

proposed the “ensemble agreement scale” technique to estimate an ensemble-spread (similarity 

of members) dependent critical scale or impact radius on each grid point. Blake et al. (2018) 

applied this variable-radius (adaptive) technique to convection-allowing model ensemble and 

found that the resulting neighborhood probabilistic has been improved over the traditional fixed-

radius approach for heavy rain forecasts during the 2017 NCEP Flash Flood and Intense Rainfall 

Experiment. In their study, the critical scale (impact radius) size ranges from 10 km for member 

forecasts that are in good agreement, to 100 km when the members are more dissimilar. 

         Therefore, running a model even at a scale which might not have deterministic skill can 

still be justified in order to take advantage of more sophisticated physics or fine topography 

information, etc., as long as the model has probabilistic skill.  
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Figure 7. An illustration using the “Neighborhood Approach” (a) to create probabilistic and ensemble-mean 
precipitation forecasts at Point A (b) in a high-resolution (1km) model forecast. 

        (5) An analog ensemble is constructed by first matching up the current deterministic 

forecast or an ensemble of forecasts from an NWP model with similar past forecasts (e.g., a 

reforecast – single or ensemble) based on pre-determined criteria (Hamill and Whitaker 2006; 

Hamill et al. 2008 and 2015; Eckel and Delle Monache 2016). The verifying observation from 

each match is then used as an ensemble member. Therefore, the analog ensemble is really an 

ensemble of observations but not model forecasts. The degree of success in this approach 

obviously depends on how the analog is selected. Since an analog ensemble directly uses 

observations as members (and can be viewed as a model forecast with 100% error correction), 

the impact from the deficiencies of the IC and model, leading to an imperfect forecast, have 

automatically been corrected. In other words, the requirement for a high quality of IC and model 

may be eased. Besides this, another advantage of an analog ensemble over an NWP ensemble is 

little or no need for post-processing calibration of members (observations). Although an analog 

ensemble can capture flow-dependent error growth, it may miss the aspects of error growth that 

can be represented dynamically by multiple real-time model runs of an NWP ensemble. To 

combine the strengths of analog and NWP ensembles, a hybrid of the two has normally been 

used, i.e., finding m analogs for each member of a small n-member NWP ensemble, to produce a 

total of m × n members. Delle Monache et al. (2011, 2013) tested this hybrid approach in wind 

energy forecasting and compared the forecast skill between an analog ensemble, an NWP 



 47 

ensemble and a hybrid of the two calibrated using logistic regression. They found that the hybrid 

outperforms the other approaches for probabilistic 2-m temperature forecasts yet underperforms 

for 10-m wind speed. The mixed results reveal a dependence on the intrinsic skill of the NWP 

members employed. In their study, the NWP ensemble is under-dispersed for both 2-m 

temperature and 10-m winds, yet displays some ability to represent flow-dependent error for the 

former though not the latter. Therefore, they concluded that a hybrid of analog and NWP 

ensembles is a promising approach for efficient generation of high-quality probabilistic forecasts, 

but requires the use of a small, and at least partially functional NWP ensemble. The 2012 

Atmospheric River Experiment at NCEP’s Weather Prediction Center compared a reforecast-

based analog ensemble (also a hybrid version with 11 NWP ensemble members) and a multi-

model (ECMWF, NCEP and CMC global EPS) based NWP ensemble in predicting heavy 

precipitation events at the 3.5-5.5 day range over the United States. Their results show that the 

analog ensemble is apparently superior to the multi-model NWP ensemble in medium-range 

heavy rain forecasts (Figs. 8-9, Du and Li 2014). For short-range (0-3 day) forecasts, a regime 

dependent bias correction method was proposed and operationally implemented (but not 

activated) for the NCEP SREF (Du and DiMego, 2008). It is a method aligned with the same 

idea of an analog ensemble, which uses the analog forecasts’ errors within the prior 20 days to 

estimate bias error (weighted-mean) to calibrate the current forecasts. The spatial correlation of a 

forecast field between the current forecast and a past forecast is used to identify analogs. The 

results show that it works better than a simple (blind) equally-weighted running mean of all past 

forecast errors, especially for regime transition periods and fast-varying fields like wind. An 

advantage of this regime-dependent bias correction method is it is cheap and it’s also easy to 

handle the past forecast data (no need to access a long historical data archive), which is a critical 

factor in a real-time operational environment. The disadvantage is that no good analogs (but only 

relatively similar forecasts) might exist within such a short time period (20 days). This method is 

more in the post-processing arena rather than in creating an ensemble. 
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Figure 8. A comparison between the “Reforecasting Analog Ensemble” and “Multi-Model Ensemble” 
approaches for a U.S. west coast heavy rain case of 00z January 17, 2011 (one of the 8 cases examined during 
the 2012 NCEP Weather Prediction Center’s Atmospheric River Experiment). Truth (Stage IV precipitation 
analysis, the shaded area): 6 main heavy-rainfall centers exceeding 75mm/24h, scattered in the west of both 
Washington and Oregon. The 3.5-day probabilistic forecasts of rainfall exceeding 75mm/24h (the colored 
areas): NCEP GEFS (upper left), CMC CMCE (upper middle), ECMWF ECENS (upper right), a multi-
model GEFS/CMCE/ECENS combined grand ensemble ARENS (lower left), a reforecasting analog ensemble 
Reforecast (4-day forecast, lower middle) and a 7km regional ensemble HMT-ENS (lower right). Thanks to 
Mr. Thomas Workoff for plotting Figs. 8-9. 



 49 

 

Figure 9. Same as Fig. 8 but for the 5.5-day forecasts, as well as without the 7km regional ensemble HMT-
ENS. 

5. Ensemble Size 

 Due to limited computing resources available in real time operations, ensemble size and 

model spatial resolution must be balanced against each other. Therefore, a frequently asked 

question is how many members are needed in an EPS and what is the tradeoff between ensemble 

size and model resolution. Based on an early study by Du et al. (1997), approximately 10 

members is enough for an ensemble to achieve most (90%) of the available increment in forecast 

skill for a large-scale precipitation forecast in terms of both ensemble mean and probabilistic 

forecasts. This conclusion is confirmed by other studies such as Talagrand et al. (1997). 

However, the Du et al. (1997) study is based on a coarse resolution (80km) model with 

parameterized convection; will the same conclusion hold in a storm-scale convection-allowing 

model? A study by Clark et al. (2011) showed that 10 members seems also sufficient for a 

probabilistic precipitation forecast using a convection-allowing scale (4km) model; at the same 

time they pointed out that the required membership will likely need to increase to obtain the 

maximum available benefit from the ensemble when forecast lead time increases or model 
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resolution further increases. This agrees with the conclusion of Richardson (2001): more 

members are needed in an ensemble when the predictability of an event is lower. Richardson 

(2001) argued that probability scores such as the Brier score or Brier skill score have a 

theoretical cap or limit for a given ensemble size. The Brier skill score increases rapidly with the 

increase in ensemble size when the ensemble size is small (<=10 members) and becomes nearly 

saturated when the ensemble size is larger (>=50 members), which is particularly true for low-

probability events. It implies that a probabilistic forecast cannot reach its full skill if the 

ensemble size is too small, especially for low predictability events. Increasing the ensemble size 

should be greatly beneficial when ensemble size is small, while the ensemble size impact will 

become smaller when the ensemble size is larger. For example, in a fog prediction when the 

ensemble size is increased from 5 to 10, forecast performance is noticeably improved (Zhou and 

Du, 2010; Du and Zhou, 2017); on other hand, Roquelaure and Bergot (2008) also demonstrated 

that there is little improvement in fog forecasts when going from a 30-member to 54-member 

ensemble.       

       Based on the studies mentioned above, the general rule is that for short-range weather 

forecasts, increasing the model resolution and using more sophisticated physics schemes is more 

beneficial than increasing the ensemble size alone as long as ensemble size is large enough, such 

as more than 10 members. Clark et al. (2009 and 2010) have demonstrated that a 5 (10)-member 

small ensemble using a 4km convection-permitting model outperformed a 15 (30)-member large 

ensemble using a 20km parameterized convection model in precipitation (convection) forecasts. 

On other hand, for medium-range or longer range forecasts (with lower predictability), 

increasing the ensemble membership might be more beneficial than a resolution increase (Ma et 

al. 2012). Vertical resolution is also important to model performance (Aligo et al. 2009); it might 

be interesting to also study what the optimal tradeoff will be between vertical resolution and 

ensemble size (studies not yet seen).  

       In real world operations the actual ensemble size should depend on one’s purpose as well as 

other nonscientific factors. For example, the membership required might be less for 500hPa 

height than for convective precipitation forecasts, less for a coarse-resolution model than a high-

resolution model, less for an ensemble mean than a probabilistic forecast, and less for prediction 

than for data assimilation purposes, and so on. It is also possible that there might be a 

discrepancy between practice and theory, e.g., a finite size ensemble might work sufficiently 
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well in practice but a huge or even infinite size ensemble might be required in theory. Therefore, 

there must be a compromise between efficiency and elegance (Mullen and Buizza, 2002). 

Currently, the memberships of the NCEP and CMC ensembles (both global and regional) are 

around 20-25 members, while the ECMWF global EPS has 51 members. The ensemble data 

assimilation has normally around 80 members.  

6. Ending Remarks 

         In this paper, many methods for creating an ensemble of forecasts are introduced. In reality, 

one single EPS might not satisfy all needs but multiple EPS’s may be needed. These multiple 

supplementary EPS’s could work seamlessly over a wide range of weather, climate and water 

prediction problems. Each of these systems may be uniquely designed specifically to address 

unique problems. For example, an earth simulator-based climate EPS focuses on climate change 

due to human activity and natural variability. An atmosphere-ocean coupled climate model-based 

seasonal EPS focuses on monthly to yearly scales of a dominant weather mode (warm or cold, 

wet or dry, etc.) in particular in association with large-scale abnormal episodes like El Nino – 

Southern Oscillation (ENSO). A global atmospheric model-based medium-range EPS focuses on 

3-30 day large-scale flow patterns associated with baroclinic instability and serves as an early 

warming of weather events. A regional model-based short-range EPS focuses on 1-3 day detailed 

weather events with an emphasis on surface weather elements and sky conditions (clouds) 

associated with both baroclinic and convective instabilities. A cloud-resolving or convection-

allowing model-based storm-scale EPS focuses on 1-24h details of severe storms, including 

those associated with convective instability. A micro-scale ensemble with a model at a few 

meters of resolution focuses on in-cloud microphysics, turbulence and planet boundary layer 

structures. Specialized EPS’s might also be needed for applications such as hurricane, marine 

and ocean forecasts, dispersion modeling and air quality, and space weather. EPS’s at different 

scales (spatial and temporal) or for different missions need different strategies in perturbing the 

ICs and model. For example, in hurricane prediction both the environment and vortex (structure 

and intensity) need to be perturbed (Zhang and Krishnamurti, 1999; Cheung and Chan, 1999a 

and 1999b). Finally, an ensemble model for decision-making based on weather forecast 

uncertainties also needs to be developed to deal with this complex society. 
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