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Abstract  18 

Evidence of ocean acidification (OA) throughout the global ocean has galvanized some coastal 19 

communities to evaluate carbonate chemistry variations closer to home. An impediment to doing 20 

this effectively is that, often, only one carbonate system parameter is measured at a time, while 21 

two are required to fully constrain the inorganic carbon chemistry of seawater. In order to leverage 22 

the abundant single-carbonate-parameter datasets in Washington State for more rigorous OA 23 

research, we have characterized an empirical relationship between total alkalinity (TA) and salinity 24 

(TA = 47.7×S + 647; 1σ = ± 17 µmol kg-1) for regional surface waters (≤ 25 m) that is robust in 25 

the salinity range from 20-35 for all seasons. The relationship was evaluated using five years of 3-26 

hour, contemporaneous observations of salinity, carbon dioxide partial pressure (pCO2), and pH 27 

from a surface mooring on the outer coast of Washington. In situ pCO2 observations and salinity-28 

based estimates of TA were used to calculate pH for comparison with in situ pH measurements. 29 

On average, the calculated pH values were 0.02 units lower than the measured pH values across 30 

multiple pH sensor deployments, and showed extremely high fidelity in tracking the measured 31 

high-frequency pH variations. Our results indicate that the TA-salinity relationship will be a useful 32 
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tool for expanding single-carbonate-parameter datasets in Washington State and quality 33 

controlling dual pCO2-pH time series. 34 

 35 
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1. Introduction  39 

Ocean acidification (OA) is the long-term decline in surface ocean pH resulting from the 40 

dissolution of anthropogenic carbon dioxide (CO2) into seawater with subsequent hydration and 41 

deprotonation (Caldeira and Wickett 2003; Feely et al. 2004; Orr et al. 2005; Doney et al. 2009). 42 

OA has been observed widely throughout the open ocean   (e.g., Rhein et al. 2013; Bates et al. 43 

2014; Sutton et al. 2014; Lauvset et al. 2015); however, detecting pH declines in the coastal zone 44 

remains a challenge due to the high-magnitude, high-frequency, and irregular pH variations caused 45 

by natural and anthropogenic processes (Borges 2011; Hofmann et al. 2011; Takeshita et al. 2015). 46 

Recently OA in the natural environment has been linked to negative biological and economic 47 

impacts along the northwest coast of the United States (Adelsman and Binder 2012; Barton et al. 48 

2012; Waldbusser et al. 2014; Barton et al. 2015). In this and other near-shore regions where local 49 

management strategies could be employed to address OA impacts (Kelly et al. 2011; Alin et al. 50 

2015), more information is needed to identify where, why, and how fast seawater chemistry is 51 

changing so that effective adaptation and mitigation can be achieved (Boehm et al. 2015). 52 

Developing this type of modern baseline information often requires continuous and/or targeted 53 

sampling; however, in most coastal regions where carbonate system observations do exist, the data 54 

have been collected monthly or seasonally and provide only low temporal resolution information 55 
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in dynamically fluctuating environments. In addition, the carbonate system is complex and can 56 

vary in unpredictable ways in the coastal zone (Waldbusser and Salisbury 2014; Fassbender, 57 

Sabine, and Feifel 2016), which means that two parameters must be measured simultaneously to 58 

fully characterize the inorganic carbon chemistry of seawater (Millero 2007). Nevertheless, it is 59 

often the case that only one carbonate system parameter is measured at a time. 60 

 61 

The carbonate system is commonly described by four principal components: dissolved 62 

inorganic carbon (DIC), total alkalinity (TA), pH, and carbon dioxide partial pressure (pCO2). DIC 63 

is the sum of aqueous CO2, carbonic acid, bicarbonate ion, and carbonate ion, which are the 64 

molecular species that result from the dissolution of CO2 gas. TA is the excess of proton acceptors 65 

over proton donors in seawater with dissociation constants at 25 °C and zero ionic strength that are 66 

below and above 10-4.5 respectively (Dickson 1981). Solution pH is the negative log10 of the 67 

hydrogen ion concentration, and pCO2 is the partial pressure of CO2 gas in equilibrium with 68 

seawater (Millero 2007). Measurement of any two of these parameters in addition to temperature, 69 

pressure, and salinity (as well as minor bases such as phosphate and silicate) makes it possible to 70 

fully constrain and calculate all other carbonate system components (Millero 2007; Dickson 71 

2010a; Byrne 2014). This is necessary because different seawater carbonate chemistry conditions 72 

can result in identical values of pCO2 or pH.  73 

 74 

Techniques for laboratory determination of carbonate system parameters are somewhat mature 75 

(Dickson et al. 2007; Dickson 2010a; Dickson 2010b; Liu et al. 2011); however, autonomous 76 

observing capabilities are still developing. Within the past decade, autonomous pH and pCO2 77 

sensors have become commercially available (Martz et al. 2015). Although the strong negative 78 
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correlation between pH and pCO2 renders this a challenging pair for constraining the carbonate 79 

system (Dickson and Riley 1978; Millero 2007; Gray et al. 2011; Fassbender et al. 2015), due to 80 

their availability, pH and pCO2 sensors are providing the bulk of autonomous carbonate system 81 

observations for the ocean carbon and acidification communities. In addition to fully autonomous 82 

instrumentation, shipboard sensors for underway, continuous sampling have been increasingly 83 

utilized over the past few decades (Feely et al. 1998; Pierrot et al. 2009; Sabine and Ducklow 2010; 84 

Sabine et al. 2013) and measurements of surface ocean pCO2 have grown exponentially (Pfeil et 85 

al. 2013; Bakker et al. 2014). Isolated autonomous and shipboard measurements of pH or pCO2 86 

are often capable of providing important information about spatial and temporal trends and 87 

variability (e.g., Hofmann et al., 2011; Sutton et al., 2014a, 2014b), but lack the information needed 88 

for comprehensive characterization of the carbonate system.  89 

 90 

A common way to leverage single-carbonate-system-parameter datasets, or make use of less-91 

than-ideal pH-pCO2 measurement pairings, has been development of empirical relationships 92 

between TA and salinity  (e.g., Lee et al., 2006; Gray et al., 2011; Juranek et al., 2011; Fassbender, 93 

2014; Takahashi et al., 2014; Fassbender et al., 2016; Xue et al., 2016). This approach is useful 94 

due to dominance of TA variations driven by hydrologic cycles. In many open-ocean settings, TA 95 

is a quasi-conservative property that scales linearly with salinity. In addition to the hydrologic 96 

balance, TA in the surface ocean can be influenced by organic carbon transformations and, more 97 

significantly, by calcium carbonate production and dissolution (Millero 2007; Fry et al. 2015). 98 

With these considerations in mind, TA can be estimated from empirical relationships in near-shore 99 

environments and used with in situ pH and/or pCO2 observations to constrain and study the 100 
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carbonate system, provided that care is taken to account for the additional, and sometimes 101 

complex, influence of rivers.  102 

 103 

Off the coast of Washington State and within the Salish Sea, research-cruise and platform-104 

based time series (http://www.nanoos.org/) have been implemented to monitor the health of these 105 

marine waters (Feely et al. 2008; Feely et al. 2010; Alin et al. 2015). As a result, this region has a 106 

relatively large database of high-quality, ship-based, dual-carbonate-system-parameter data as 107 

well as an even larger database of single-carbonate-system-parameter data from moorings and 108 

underway measurement systems. Here we compile available high-quality hydrographic carbon 109 

data to develop a TA-S relationship within Washington’s coastal marine surface waters and 110 

compare it to previous relationships developed for surface waters along the west coast of the 111 

United States (Lee et al. 2006; Gray et al. 2011; Wootton and Pfister 2012). Relying on in situ pH 112 

and pCO2 observations from a mooring on the outer coast of Washington, we evaluate the 113 

performance of the TA-S relationship over a five year period. Finally, for pairing with pCO2 or pH 114 

observations of varying accuracy, we evaluate how well TA must be determined to meet recently 115 

proposed data-quality objectives for ocean acidification monitoring in the coastal zone (Newton et 116 

al. 2014; McLaughlin et al. 2015). 117 

 118 

2. Data Sources 119 

2.1. Calibration Data: Cruise Observations 120 

Discrete seawater samples for TA and salinity measurements collected at depths ≤ 25 m during 121 

Pacific Coast Ocean Observing System (PacOOS) cruises, National Oceanic and Atmospheric 122 

Administration (NOAA) Ocean Acidification Program (OAP) West Coast Ocean Acidification 123 

http://www.nanoos.org/
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(WCOA) cruises, and University of Washington (UW) cruises associated with the Puget Sound 124 

Regional Synthesis Model (PRISM) program, Washington Ocean Acidification Center (WOAC), 125 

and Northwest Association of Networked Ocean Observing Systems (NANOOS) and its Chá bă 126 

mooring were compiled for use as a calibration dataset in this analysis (Figure 1, Table 1). Full 127 

data and metadata for the four WCOA cruises are publically available on the Carbon Dioxide 128 

Information Analysis Center website (CDIAC: http://cdiac.ornl.gov; Feely and Sabine, 2011; 129 

Feely et al., 2014a, 2014b, 2015). PacOOS, PRISM, WOAC, and recent NANOOS data are 130 

currently being prepared for submission and will soon be publically available on the CDIAC and 131 

NANOOS (http://nvs.nanoos.org) websites.  132 

 133 

The accuracy of discrete DIC and TA measurements (relative to Certified Reference Materials) 134 

during the WCOA cruises is reported as ±0.1% of the measurement value and the precision is 135 

reported as <±0.1% for TA and ~±1 µmol kg-1 for DIC. On average, the 0.1% accuracy level is 136 

equivalent to 2 µmol kg-1 (1σ = ±0.1 µmol kg-1) for both DIC and TA throughout WA surface (<25 137 

m) waters. PacOOS, PRISM, WOAC, and NANOOS carbon data used herein were analyzed at 138 

NOAA’s Pacific Marine Environmental Laboratory and have similar accuracies and precisions. 139 

For simplicity we use ±2 µmol kg-1 as the total measurement uncertainty for all DIC and TA 140 

measurements. Discrete total-scale pH measurements were also made during the 2011 and 2013 141 

WCOA cruises with measurement accuracies of ~±0.01 and precisions of ±0.0004. Cruise data 142 

with quality control flags of 2 or 6 (2=good data, 6=replicate samples) were used for the analysis.  143 

 144 

Carbonate system calculations based on these data were made using the program CO2SYS 145 

(Lewis and Wallace 1998; van Heuven et al. 2011) applying the constants of Lueker et al., (2000) 146 

http://cdiac.ornl.gov/
http://nvs.nanoos.org/CruisePrism
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and Dickson, (1990) and the boron-to-chlorinity ratio of Uppstrom (1974). Approximately 20% of 147 

the PRISM data do not include nutrient observations, so silicate and phosphate concentrations were 148 

set to zero in CO2SYS calculations for these samples. To estimate how missing nutrient 149 

observations influence the accuracy of computed parameters, we calculated pH, pCO2, and the 150 

saturation state of aragonite (ΩAr) from DIC and TA using in situ nutrient concentrations and again 151 

setting the nutrient concentrations to zero. pH and ΩAr values were lower by 0.009 and 0.02, 152 

respectively, and pCO2 values were higher by 17 µatm when nutrients were included in the PRISM 153 

cruise calculations. Repeating the analysis using data from cruises other than PRISM yielded pH 154 

and ΩAr values that were lower by 0.004 and 0.012, respectively, and pCO2 values that were higher 155 

by 6 µatm when nutrients were included. The PRISM calculations are approximately twice as 156 

sensitive to nutrient input as the other cruises because most PRISM samples are collected within 157 

Puget Sound and have nutrient concentrations nearly double those observed during other cruises, 158 

on average. We will return to the discussion of these errors in Sections 3.4.2 and 3.5. 159 

 160 

Of the 1,203 discrete TA bottle samples collected within the top 25 m of seawater at the stations 161 

shown in Figure 1, only 10 have salinity values below 20. In addition, there are only a few 162 

observations linking these low salinity values to the bulk of the samples, which lie above salinity 163 

27 (~97%). As a result, we excluded these samples and have limited our analysis to the salinity 164 

range of 20–35 to avoid curve fitting in undersampled regions of the TA-S domain. Average 165 

monthly TA concentrations determined from the remaining 1,193 samples, as well as the sample 166 

distribution by month, are shown in Figure 2. Based on these data, TA values appear to be highest 167 

in summer and lowest in winter, with a notable exception in July due to a low salinity event within 168 

the Strait of Juan de Fuca in 2008. Most of the TA samples were collected during the late summer 169 
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and early fall, with no observations from December or March and very few from January and June. 170 

Only during the months of May, August, September, and October have samples been collected in 171 

multiple years. 172 

 173 

2.2. Validation Data: Mooring Observations 174 

To validate the empirical relationship determined from cruise data, we used approximately five 175 

years of 3-hour surface water (~1 m) observations from the joint NANOOS-OAP Chá bă mooring 176 

located at 47.97°N, 124.95°W, offshore of La Push, Washington (Figure 1; Sutton et al., 2011). 177 

These include measurements of seawater temperature and salinity from a Sea-Bird Electronics 178 

(SBE) 16 conductivity-temperature-depth sensor, total-scale pH from a Sunburst Sensors SAMI2 179 

pH sensor, and sea surface and atmospheric boundary layer pCO2 from a Battelle Memorial 180 

Institute Seaology® pCO2 monitoring system (analogous to NOAA’s MAPCO2 system). All 181 

mooring data and metadata, excluding for pH, are accessible from the CDIAC and National 182 

Centers for Environmental Information (NCEI) websites. The pH observations from the Chá bă 183 

mooring are currently being prepared for submission to data archive centers for public access. The 184 

overall uncertainty of mooring pCO2 measurements from the Seaology® system is ±2 µatm 185 

(Sutton, Sabine, et al. 2014). The accuracy of SBE 16 temperature and salinity values is <0.01 °C 186 

and <0.05, respectively. Quality control of Chá bă mooring pH measurements used herein will be 187 

addressed in Section 3.4.1. Carbonate system calculations based on these data were also made 188 

using the program CO2SYS (Lewis and Wallace 1998; van Heuven et al. 2011) applying the 189 

previously mentioned constants. The concentrations of silicate and phosphate were set to zero for 190 

all of the CO2SYS calculations performed using the validation dataset, which will be discussed 191 

further in Section 3.5. 192 
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 193 

3. Results and Discussion 194 

3.1. Assessment of Organic Alkalinity  195 

The commonly used definition for TA (Dickson 1981; Wolf-Gladrow et al. 2007) is largely 196 

governed by carbonate alkalinity with smaller contributions from borate and nutrients: 197 

 198 

   TA = [HCO3
-] + 2[CO3

2-] + [OH-] - [H+] + [B(OH)4
-] + [HPO4

2-]  199 

+ 2[PO4
3-] – [H3PO4] + [SiO(OH)3

-] + …   (1) 200 

 201 

In the coastal zone, organic acids originating from terrestrial runoff and/or phytoplankton blooms 202 

can contribute additional alkalinity (Org-Alk; Cai et al., 1998), complicating the interpretation of 203 

TA measurements (Kim et al. 2006; Hernandez-Ayon et al. 2007; Muller and Bleie 2008; Hunt et 204 

al. 2011; Yang et al. 2015). Software packages for seawater carbonate system chemical equilibria, 205 

such as CO2SYS (Lewis and Wallace 1998; van Heuven et al. 2011) account for carbonate, 206 

hydroxide, borate, and nutrient contributions to TA, assuming Org-Alk is negligible. Therefore, 207 

quantifying the Org-Alk contribution to TA in coastal regions is needed to determine whether 208 

parameters calculated from measured TA may be artificially affected by alkalinity contributions 209 

that have not be accounted for in CO2SYS (e.g., Kuliński et al. 2014; Yang et al. 2015). 210 

Compounding the issue, inorganic alkalinity and Org-Alk can be unique to specific rivers or 211 

regions (Hunt et al. 2011; Abril et al. 2015; Yang et al. 2015), vary both seasonally and 212 

interannually (e.g., Figure 2 in Evans et al., 2013), and be influenced by land use or climatic 213 

changes on decadal timescales (Raymond and Cole 2003; Raymond et al. 2008; Hu et al. 2015). 214 

This means that a single TA-salinity (TA-S) relationship may not be appropriate indefinitely or for 215 
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a broader coastal region, as discussed by Friis et al. (2003) at the ocean-basin scale. While this 216 

poses challenges for the empirical TA-S approach in near-shore environments, the potential utility 217 

of coastal TA estimates for investigators working with limited, single-carbonate-system-parameter 218 

datasets to address OA is significant.  219 

 220 

Prior to evaluating regional TA-S relationships, the influence of Org-Alk on TA measurements 221 

must be considered. During the 2011 and 2013 WCOA cruises, the carbonate system was over-222 

constrained through the redundant measurement of TA in addition to DIC and total-scale pH 223 

(Feely and Sabine 2011; Feely et al. 2015). Following Hunt et al. (2011) and Yang et al., (2015), 224 

we assessed the Org-Alk contribution to TA by subtracting the alkalinity calculated from DIC and 225 

pH  from direct measurements of TA: 226 

 227 

Org-Alk = TAM – TAC     (2) 228 

 229 

Direct measurement of TA (TAM) includes all alkalinity contributions, while calculations of TA 230 

(TAC) only account for carbonate, hydroxide, borate, and nutrient alkalinity. Therefore, the 231 

difference between the two represents the Org-Alk contribution. This approach for estimating Org-232 

Alk is only feasible due to the compatibility of pH measurements and Lueker et al., (2000) 233 

carbonate system equilibrium constants, which both use total-scale pH.  234 

 235 

After removing the largest single outlier from each cruise estimate, the average Org-Alk and 236 

1σ values for the outer coast samples are 5 ± 5 µmol kg-1 (2011, n = 64) and 3 ± 6 µmol kg-1 (2013, 237 

n = 72), and Org-Alk was not strongly correlated with salinity (R2<0.09). Propagating DIC and pH 238 
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measurement uncertainties (see Section 2.1) through the CO2SYS calculations of TA using a 239 

Monte Carlo approach yields a 1σ TAC uncertainty of ±4.4 µmol kg-1. Coupling this with a ±2 240 

µmol kg-1 measurement uncertainty for TAM gives an Org-Alk computational uncertainty of ~±5 241 

µmol kg-1. This indicates that, on average, Org-Alk concentrations are not statistically 242 

distinguishable from zero.  243 

 244 

At present, our analysis of Org-Alk is notably constrained to two cruises along the outer coast 245 

of Washington, since it is very rare that three carbonate system parameters are measured 246 

simultaneously. In addition, all of the samples used to determine Org-Alk were collected during 247 

the month of August after peak Columbia River discharge, which occurs in June. The Columbia 248 

River is the second largest river in the continental United States and dominates freshwater input 249 

along the outer coast of Washington (Hickey et al. 2005; Hickey and Banas 2008). TA in the 250 

Columbia River varies seasonally with an average summer concentration of ~1000 µmol kg-1 251 

(Evans et al. 2013). The average salinity of samples used in the Org-Alk analysis is ~32 ± 1, 252 

indicating that river input was almost negligible during each of the WCOA cruises - limiting our 253 

ability to assess the importance of river-derived Org-Alk in the region. Therefore, further work is 254 

needed to quantify the temporal and spatial variability of Org-Alk throughout Washington, 255 

including the Salish Sea where numerous rivers drain.  256 

 257 

3.2. Regression Analysis 258 

Linear-least-squares regressions were performed on the calibration data using the Matlab 259 

robustfit function. The measured TA (TAM - simply referred to as TA from here on) was initially 260 

regressed against temperature and salinity using a multiple linear regression (MLR) analysis; 261 
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however, direct regression with salinity yielded the lowest residuals and highest correlation 262 

coefficient. Following the MLR approach, Analysis of Covariance (Matlab aoctool function) was 263 

used to identify more targeted spatial and temporal relationships between TA and salinity. TA-S 264 

relationships were evaluated by season and for the following geographical regions: Outer Coast, 265 

Hood Canal, South Sound, Whidbey Basin, Central Sound, and Strait of Juan de Fuca (Figure 1). 266 

Two distinct seasonal regressions were observed; one for the May to October period, overlapping 267 

with seasonal upwelling (e.g., Feely et al., 2008, 2010), and one for the November to April period. 268 

At the time of this analysis, however, no data were available for the months of March and 269 

December, and there are significantly more observations between May and October than between 270 

November and April (Table 2). The regional evaluation also resulted in two distinct relationships 271 

in which the South Sound was grouped with the Outer Coast rather than a neighboring region, 272 

likely due to data sparsity. While acknowledging that additional data may lead to tighter seasonal 273 

or regional regressions in the future, due to the skewed spread in observations, seasonally and by 274 

basin (Figure 2; Table 2), we have conservatively elected to use a single regression for the entire 275 

region. 276 

 277 

To ensure internal consistency of the WA TA-S relationship we used a Cross-Validation 278 

approach in which a Monte Carlo loop was constructed to randomly select 90% of the calibration 279 

data for regression development and 10% for validation over 1,000 computational repetitions. This 280 

yielded a mean, statistically significant regression (r2 = 0.95, p<0.001):  281 

 282 

TA = 47.7(±0.2) × S + 647(±6)     (3) 283 

 284 
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with a mean residual and 1σ variation of 1 ± 17 µmol kg-1 (Figure 3; coefficient standard errors 285 

given in (3)). The 2σ uncertainty (95% confidence limit) in the TA-S regression is ±34 µmol kg-1, 286 

which reflects TA variations caused by processes other than dilution and evaporation, such as 287 

photosynthesis and respiration, calcium carbonate precipitation and dissolution, mixing, and Org-288 

Alk contributions to TA. The slope of the WA regression line deviates significantly from the slope 289 

of the dilution line (∂TA ∂S-1 ~68 µmol kg-1), which is the TA-S relationship that would result if 290 

seawater were diluted with freshwater containing 0 µmol kg-1 TA. This observation, along with 291 

the regression y-intercept of 647 µmol kg-1, indicates that regional rivers add substantial alkalinity 292 

to near-shore ocean waters. To test the depth dependence of the TA-S relationship, we repeated 293 

the regression analysis using data from the top 5 m of water and found a statistically 294 

indistinguishable relationship that had a larger mean residual and 1σ variation (2 ± 43 µmol kg-1) 295 

due to the smaller sample size (n = 396). This indicates that the 25 m TA-S relationship is 296 

representative of near-surface conditions within the stated level of uncertainty. 297 

 298 

3.3. Comparison of Regional TA-S Relationships 299 

Comparison of the WA TA regression with other TA-S relationships from the broader region 300 

reveals notable differences in the slopes and intercepts (Table 3, Figure 4). Using the same 301 

discrete TA and salinity samples from which the WA TA-S relationship was constructed, we 302 

calculate TA from the other empirical relationships and compare their accuracies (Table 3). The 303 

regressions from Lee et al. (2006) and Gray et al. (2011) (referred to as KL and CG hereafter) yield 304 

TA estimates that are biased slightly low; however, the estimates are not statistically different from 305 

the observations. The Wootton and Pfister, (2012) regression (referred to as TW hereafter) gives 306 

TA estimates that are biased high and that are significantly different from the observations. This 307 
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is noteworthy because the KL and CG algorithms are for the broader North Pacific Ocean and the 308 

central California coast near Monterey, respectively, while the TW regression was developed using 309 

data from Washington waters off the Strait of Juan de Fuca. The TW regression was based on the 310 

fewest samples (n = 36), and may therefore be data-limited or seasonally biased; however, it is 311 

also possible that a different, local TA-S relationship exists near the northernmost tip of the 312 

Washington outer coast. 313 

314 
Results from the comparison analysis suggest that, in the salinity range of 20–35, the WA 315 

specific TA-salinity relationship is not statistically different from the CG and KL relationships; 316 

although, the 1σ magnitude of the TA residuals is ~75% larger for the KL relationship than for the 317 

WA and CG relationships. Importantly, most of the samples used for this comparison have 318 

salinities above 27 (Figure 3), which does not capture the large positive bias of the KL algorithm 319 

and smaller negative bias of the CG algorithm below salinity ~27 (Figure 4). In light of these 320 

biases in the lower range of the salinity domain, in the absence of a location-specific TA-S 321 

relationship the WA TA-salinity relationship should be used for samples collected within the 20–322 

35 salinity range from Washington waters.  323 

 324 

3.4. Testing the WA TA-S Relationship at the Chá bă Mooring 325 

The NANOOS-OAP Chá bă mooring provides a unique opportunity to validate the WA TA-S 326 

relationship identified herein. This dual-carbonate-system-parameter (pH and pCO2) time series 327 

makes it possible to estimate TA using the WA TA-S relationship and, with the in situ pCO2 328 

measurements, calculate pH as well as ΩAr. The calculated pH values can be directly compared 329 

with in situ measurements of pH from the mooring to determine how well the WA TA-S 330 

relationship holds at a specific site for an extended period of time. In addition, discrete DIC and 331 
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TA bottle samples collected near the Chá bă mooring throughout the time series are used to 332 

calculate pH and ΩAr for comparison with the calculated and measured mooring values.   333 

 334 

3.4.1. Quality Control of in situ pH Data  335 

While quality control (QC) procedures have been standardized for autonomous pCO2 336 

measurements made by the Seaology® system (Sutton et al. 2014) used on the Chá bă mooring, 337 

QC procedures for the Sunburst SAMI2 pH sensor have not yet been developed for community-338 

wide, end-user application beyond the basic sensor component failure recognition provided by the 339 

manufacturer. To develop this QC procedure, pH observations were converted to hydrogen ion 340 

concentrations [H+] and plotted against pCO2, revealing their strong correlation (Figure 5A; 341 

Dickson and Riley, 1978). Because these parameters are influenced by all of the same processes 342 

(e.g., respiration, CO2 gas exchange, photosynthesis, calcification, dilution, etc.), any change in 343 

pCO2 should be accompanied by a coordinated change in [H+], making this a strategic way to 344 

identify outliers. By viewing the data in this way, a negative bias in the 2012–2013 SAMI2 pH 345 

measurements (positive bias in [H+] space) was revealed (Figure 5A). To correct the bias, we fit 346 

a linear, least-squares regression to data collected during the other deployment years and 347 

determined the mean offset between the fit and the 2012–2013 deployment [H+] values. The biased 348 

data were then adjusted by the [H+] offset to fall in line with the observed [H+]-pCO2 relationship 349 

(Figure 5B). After accounting for sensor biases, the strong covariance between [H+] and pCO2 350 

was used to further identify outliers in the dataset. A linear, least-squares regression was fit to the 351 

corrected dataset and a conservative ±3σ window around the fit (1σ = ±0.22 nmol kg-1) was used 352 

to flag data outside of the window as outliers, which were removed from the analysis (Figure 5C). 353 

Figure 5D shows both the corrected and final pH datasets vs. pCO2.  354 
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 355 

By using [H+] instead of pH during the determination of outliers the y-axis is symmetric, which 356 

would not be the case in logarithmic space. For example, consider using a pH window of ±0.06 357 

around the observed pH-pCO2 relationship. At any pH level, the [H+] change associated with  358 

+0.06 pH will be a smaller in magnitude than the [H+] change associated with -0.06 pH. In addition, 359 

the [H+] change associated with -0.06 (and +0.06) pH will be a larger magnitude at low-pH values 360 

relative to high-pH values, which would result in a relaxation of the outlier window in the lower-361 

pH range. Therefore, to avoid biasing datasets towards the inclusion of more outliers in the lower-362 

pH range than higher-pH range, it is advised to perform this type of quality control in [H+] space. 363 

 364 

While this may appear to be a convenient way to QC in situ pH data that are collected alongside 365 

in situ pCO2 observations, our analysis benefits from two very important characteristics. At this 366 

location, we have five years of in situ observations with which to constrain the [H+]-pCO2 367 

relationship. This data density allows us to capture variability in the slope of [H+]-pCO2 368 

relationship caused by various processes that may occur at different times of year (e.g., Figure 3 369 

in Gray et al., 2011). These processes broaden the extent of the [H+]-pCO2 relationship, such that 370 

we don’t accidently exclude viable data when trying to identify outliers. In the absence of a long 371 

time series, this type of QC analysis may still be applied by dividing data into deployment 372 

segments and relying on well calibrated or validated portions of the dataset as well as auxiliary 373 

information (e.g., oxygen, nutrients, chlorophyll, and turbidity) to discern various processes that 374 

may be influencing the [H+]-pCO2 relationship. In addition to a long time series, one of the primary 375 

reasons this analysis is feasible is due to the high quality of pCO2 data achievable from the 376 

Seaology® system, even during extended duration deployments. Perhaps the most unique and, 377 
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arguably, critical feature of the Seaology® system is its ability to resist biofouling: a copper-nickel 378 

pipe is the only component that touches the seawater (Sutton et al. 2014). If pH and pCO2 sensors 379 

at a given site are influenced by biofouling, and more importantly and likely, if the influence is 380 

dissimilar between sensors, the pH-pCO2 relationship may be heavily biased or even indiscernible. 381 

Therefore, the method presented here should be applied with caution and only to appropriate 382 

datasets with well-validated pCO2 observations or where high-quality discrete samples can be used 383 

to supplement in situ observations. Although we have focused this discussion using pCO2 as the 384 

confirmed parameter, this approach could work equally well using pH measurements of known 385 

quality, converted to [H+], as the confirmed parameter to assess the accuracy of contemporaneous 386 

pCO2 measurements.  387 

 388 

3.4.2. Comparing Calculated and Measured pH at the Chá bă Mooring 389 

The WA TA-S relationship was applied to salinity observations (Figure 6A) from the Chá bă 390 

mooring to calculate a time series of TA (TAS; Figure 6B) that was used with in situ pCO2 391 

observations (Figure 6C) to calculate ΩAr and pH (pHC). In addition, 13 discrete TA and DIC 392 

bottle samples collected from the top 5 m of water within ±0.05° longitude and ±0.07° latitude of 393 

the buoy and 12 hours of an in situ mooring observation were used for comparison. On average, 394 

salinity values from the discrete bottle samples are ~0.40 units higher than the mooring salinity 395 

observations, and bottle TA values are ~15 µmol kg-1 higher than the TAS estimates. Most of the 396 

discrete samples were collected ~1 nautical mile from the buoy location and within 2 hours of a 397 

mooring observation, so differences between sensor measurements and bottle samples may reflect 398 

spatial and/or temporal variability in surface waters. In addition, the mooring sensor measurements 399 

occur at ~1 m, while bottle sample depths ranged from ~1 to 5 m with a mean depth of ~3 m, which 400 
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means that vertical stratification may also contribute to the observed offset. Assuming that 401 

differences in salinity between the mooring and bottle samples were caused by conservative 402 

processes (evaporation and precipitation or conservative mixing), we can calculate the expected 403 

TA offset. Using the average TA/S ratio for the discrete samples (68.6) and multiplying by the 404 

mean 0.40 salinity difference gives an expected TA difference of 27 µmol kg-1. Thus, the ~15 µmol 405 

kg-1 offset between discrete TA samples and TAS estimates is close to what could be expected, and 406 

is within the 1σ TA-S regression uncertainty (1σ = ±17). 407 

 408 

ΩAr values calculated from TAS and in situ pCO2 remain above 1 for the entire observational 409 

period, with values ranging from ~1 to 4.5 (Figure 6D). The range and seasonality of ΩAr values 410 

agree with a recent, independent assessment of the ΩAr monthly climatology determined using in 411 

situ pCO2 and pH measurements from the Chá bă mooring (Sutton et al. 2016). Calculations of 412 

ΩAr from the discrete bottle samples are 0.13 units lower than the mooring estimates on average. 413 

With higher TA and lower ΩAr values for the discrete bottle samples relative to the mooring values, 414 

bottle derived pH values are expected to be lower than the mooring values, as is observed. Discrete 415 

pH values calculated from the DIC and TA bottle samples are 0.06 pH units lower than the 416 

measured values after quality control (pHM QC) and 0.03 pH units lower than the calculated (pHC) 417 

values (Figure 7A). The discrete pH values have a calculation uncertainty of ±0.007 and pHC 418 

values calculated from TAS (1σ = ±17 µmol kg-1) and pCO2 (uncertainty = ±2 µatm) have a 419 

calculation uncertainty of ~±0.005. The manufacturer stated accuracy of the SAMI2 pH sensor is 420 

±0.003 and the absence of nutrient data in CO2SYS calculations from the DIC-TA pair can lead to 421 

pH biases of up to ~-0.009 (Section 2.1). All of these errors combined cannot account for the 0.06 422 

and 0.03 pH differences between moored and discrete observations. This is not surprising since 423 
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the nearby bottle samples did not perfectly reflect seawater conditions at the exact time, location, 424 

and depth of the mooring sensor (as evidenced by the 0.4 salinity difference). Therefore, it is likely 425 

that the sensor values more accurately represent conditions at the mooring, particularly in the 426 

patchy and rapidly changing chemical environment of the coastal ocean.  427 

 428 

Figure 7B shows the difference between calculated and measured pH values at the Chá bă 429 

mooring, before and after quality control of the pH measurements. The pHM QC values are 430 

consistently ~0.02 pH units higher than pHC values across seasons and deployments. This pH 431 

difference also cannot be accounted for by the pH errors mentioned in the previous paragraph. 432 

Consistency in this bias across all SAMI2 pH sensor deployments would suggest that it is not 433 

caused by the sensors and instead either reflects an error in TAS or pCO2 that is greater than what 434 

we have accounted for (e.g., ±17 µmol kg-1 and ±2 µatm, respectively), or is caused by a 435 

discrepancy in sample depths. In order to attain a pH offset of 0.02, there would need to be a pCO2 436 

measurement bias on the order of 10–15 µatm, a TAS bias on the order of -100 µmol kg-1, or a 437 

combination of biases in both parameters. Alternatively, the WA TA-S relationship is based on 438 

samples collected within the top 25 m of the water column while the moored sensor samples at ~1 439 

m. Although we did not find a significant depth bias in the overall WA TA-S relationship (Section 440 

3.2), differences in sample depth may contribute to a bias in TAS and, thus, in pHC near the Chá 441 

bă mooring.  442 

 443 

Perhaps most importantly, the calculated and measured pH values show nearly identical 444 

temporal variability throughout the time series. A zoom in of the summer 2012 Chá bă mooring 445 

deployment shows this clearly (Figure 7C). This means that high-frequency (3-hour intervals in 446 
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this case) carbonate chemistry information can be reproduced precisely when using the TA-S 447 

relationship with high-quality and –frequency pCO2 observations. Additionally, the high fidelity 448 

of calculated pH suggests that another application of the TA-S relationship is the quality control 449 

of in situ pH observations at other time-series locations in Washington: particularly since the TA-450 

S relationship is not affected by biofouling. 451 

 452 

For this application, sensor pH data were QC’d using contemporaneous pCO2 observations and 453 

then compared with calculated pH values in Section 3.4.2. This was done to avoid circularity since 454 

we were evaluating how well calculated pH values compared with in situ observations. For future 455 

data QC purposes, however, pH should first be calculated from TAS and pCO2 and directly 456 

compared with the measured pH values to identify biases that may be more challenging to see in 457 

[H+] vs. pCO2 space (e.g., Figure 7B gray symbols vs. Figure 5A). Once the biased data are 458 

adjusted, then the [H+] values should be plotted against pCO2 for more rigorous QC (e.g., Figure 459 

5C).  460 

 461 

3.5. Accuracy Requirements to Meet Specified OA Monitoring Needs 462 

Recently, the California Current Acidification Network (C-CAN) held a series of workshops 463 

on OA that resulted in the recommendation to use aragonite saturation state (ΩAr) as a common 464 

carbonate system currency to compare data from OA monitoring efforts throughout the California 465 

Current System (CCS; McLaughlin et al., 2015). Aragonite is a metastable form of the mineral 466 

calcium carbonate (CaCO3) used by many marine organisms to make their shells (e.g., Fabry et 467 

al., 2008, 2009). Aragonite saturation state (ΩAr) is a commonly used parameter to describe the 468 

thermodynamic potential of this mineral to dissolve, and is defined as:  469 
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 470 

Ω Ar =  
[Ca2+] [CO3

2−]

𝐾𝑠𝑝′
     (4) 471 

 472 

where the temperature, pressure, and salinity dependence of the apparent solubility product (Ksp’) 473 

is taken from Mucci (1983), and [Ca2+] and [CO3
2-] are seawater concentrations of calcium and 474 

carbonate ions. ΩAr values < 1 indicate that aragonite is thermodynamically unstable and will begin 475 

to dissolve, while values ≥ 1 indicate that aragonite is thermodynamically stable in the 476 

environment.  477 

 478 

While ΩAr cannot be measured directly at present, McLaughlin et al., (2015) suggest that 479 

computational accuracies of ±0.2 for ΩAr and measurement accuracies of ±0.02 for pH may be 480 

“technologically achievable and biologically meaningful goals” for OA monitoring in the CCS. 481 

These goals are equivalent to the Global Ocean Acidification Observing Network (GOA-ON) data-482 

quality objectives for carbonate system “weather,” which refers to relative spatial patterns in 483 

carbonate chemistry as well as short-term responses to local OA dynamics (Newton et al. 2014). 484 

In addition to “weather,” GOA-ON also defined “climate” data-quality objectives, where “climate” 485 

refers to long-term trends in carbonate-system parameters, and particularly OA. The “climate” 486 

objectives include measuring pH with an accuracy of 0.003 and calculating ΩAr with a relative 487 

uncertainty of 1%. In consideration of these recommendations, we explored the utility of the WA 488 

TA-S relationship for computing ΩAr, pCO2, and pH when paired with pH and pCO2 observations 489 

of differing accuracies. 490 

 491 
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Observations from the NANOOS-OAP Chá bă mooring (Figure 1) collected between June 492 

2010 and June 2014 are used for this analysis. Approximately 6,900 samples were recorded over 493 

this time period with salinities ranging from 22.7 to 32.6, temperatures from 7.0 to 18.8 °C, and 494 

pCO2 from 100 to 640 µatm. ΩAr, pCO2, and pH were calculated from TAS and in situ pH and 495 

pCO2 measurements taking a Monte Carlo approach in which six ascending, hypothetical errors 496 

for TA, pH, and pCO2 were propagated through the calculations. Input errors ranged from 0 to 100 497 

µmol kg-1 for TA, from 0 to 0.02 for pH, and from 1 to 10 µatm for pCO2. The errors for each 498 

parameter were varied independently and at random (in a Gaussian distribution) within ~±3 times 499 

the error magnitude, before being added to the TA, pH, and pCO2 values used to calculate ΩAr, 500 

pCO2, and pH. This process was completed 250 times for each parameter pairing and the standard 501 

deviation of the 250 resultant estimates of ΩAr, pCO2, and pH for each of the ~6,900 observations 502 

was determined. These ~6,900 standard deviations were then averaged for each parameter, giving 503 

an estimate of the accuracy achievable from the input TA and pH or pCO2 values (and their 504 

associated errors) within the temperature and salinity range of the observations (Figure 8).  505 

 506 

The results indicate that GOA-ON and C-CAN “weather” data-quality objectives can be 507 

achieved for pH and ΩAr in Washington waters. For pH, this requires using TA values with an 508 

uncertainty ≤ 100 µmol kg-1 paired with pCO2 observations with an uncertainty ≤ 5 µatm (Figure 509 

8A). For ΩAr, this requires using TA values with an uncertainty ≤ 100 µmol kg-1 paired with pCO2 510 

observations with an uncertainty ≤ 10 µatm (Figure 8C). Similarly, the ΩAr “weather” data-quality 511 

objective can be achieved when calculated from pH and pCO2 values that have measurement 512 

uncertainties of ≤ 0.015 and ≤ 5 µatm, respectively (Figure 8D). In order to achieve the GOA-ON 513 

“climate” data-quality objectives for pH and ΩAr, TA must be known to 10 µmol kg-1 or better and 514 
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paired with pCO2 observations that have uncertainties ≤ ~2 µatm (Figure 8C). With a 2σ of ±34 515 

µmol kg-1, the WA TA-S relationship is not sensitive enough to achieve this data-quality objective, 516 

even when paired with high-quality pCO2 measurements. Finally, Figure 8B shows the uncertainty 517 

in pCO2 when calculated from TA and pH in Washington’s coastal waters using a range of 518 

uncertainties for these parameters.  519 

 520 

Calculations of pH and ΩAr are more sensitive to the input pCO2 errors than TA errors and 521 

calculations of pCO2 are more sensitive to the input pH errors than TA errors (Figure 8). This 522 

means that the accuracy of in situ pCO2 and pH measurements will be critical for achieving high-523 

quality estimates of pH, pCO2, and ΩAr when using the TA-S relationship. Furthermore, in order 524 

to compete with ΩAr values calculated from TAS and mid-quality pCO2 measurements (uncertainty 525 

~±10 µatm), pH must be measured to an accuracy ≤ 0.01 and paired with pCO2 observations with 526 

an accuracy ≤ 5 µatm. The requirement of higher-accuracy pH and pCO2 measurements for the 527 

ΩAr calculation exemplifies the challenge when using this pair to constrain the carbonate system. 528 

To summarize, even low accuracy TA estimates will be useful for leveraging pCO2 (pH) 529 

observations to calculate pH (pCO2) or ΩAr in Washington’s coastal waters with salinities above 530 

20, even when pCO2 and pH have been measured simultaneously. 531 

 532 

Nutrient concentrations were set to zero for all CO2SYS calculations made using Chá bă 533 

mooring data, since 3-hour, in situ measurements of phosphate and silicate are not taken at the 534 

mooring. The sensitivity of CO2SYS calculations to nutrient input was evaluated in Section 2.1, 535 

and findings suggest that the absence of nutrients data can result in pH, ΩAr, and pCO2 biases of 536 

~0.009, ~0.02, and -17 µatm in nutrient rich areas (e.g., Puget Sound). However, these sensitivity 537 
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estimates were made using DIC and TA as the calculation input parameters and our analysis of 538 

errors in Section 3.5 is conducted using TA-pCO2 and TA-pH pairs of input parameters. To 539 

evaluate the sensitivity of CO2SYS calculations to nutrient input for the TA-pH pair, we used 540 

discrete TA, pH, and nutrient observations from the 2011 and 2013 WCOA cruises. Results yielded 541 

ΩAr and pCO2 values that were lower by 0.0005 and <1 µatm when nutrients were included. For 542 

reference, the DIC-TA input pair yielded differences in ΩAr, pH, and pCO2 of -0.004, -0.011 and 543 

7 µatm, respectively, when nutrients were included for the same cruises. Although we do not have 544 

independent pCO2 observations from these cruises to test the TA-pCO2 pair, due to the tight 545 

correlation between pH and pCO2, we expect similar results. Therefore, the influence of absent 546 

nutrient data on carbonate system calculations made with TA-pCO2 and TA-pH pairs of input 547 

parameters is negligible relative to measurement uncertainties at this location.  548 

 549 

Our results indicate that the C-CAN and GOA-ON pH “weather” data-quality objective of 550 

±0.02 for pH can be attained when calculated using the WA TA-S relationship and high-quality, 551 

in situ measurements of pCO2. Being able to accurately replicate the frequency and magnitude of 552 

pH fluctuations in Washington waters using the TA-S relationship with the vast number of pCO2 553 

observations from moorings and volunteer observing ships will make it possible to characterize 554 

regional and temporal pH variability. This baseline information can then be used to design strategic 555 

monitoring efforts that will increase our understanding of the system and allow us to determine 556 

when and where the OA signal may be discernable. In addition, information of this type will be 557 

particularly valuable to scientists studying the effects of OA on organisms, since it will provide 558 

additional context for the range and duration of pH exposure organisms already endure.  559 

 560 
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4. Conclusions 561 

Using high-quality, dual-carbonate-system-parameter datasets, we have identified an empirical 562 

relationship between total alkalinity (TA) and salinity for surface waters (≤ 25 m) near Washington 563 

State. The TA-salinity (TA-S) relationship appears robust for all seasons in the salinity range from 564 

20–35. Estimates of TA derived from this relationship can be used to calculate pH and ΩAr and 565 

meet the GOA-ON and C-CAN proposed carbonate system “weather” data-quality objectives 566 

(Newton et al. 2014; McLaughlin et al. 2015) when paired with pCO2 observations that have an 567 

uncertainty of up to 10 µatm (and higher). Due to the abundance of high-accuracy, single-568 

carbonate-system-parameter data that exists in Washington, as well as other coastal states, this 569 

approach provides a pragmatic mechanism to produce a second parameter for full determinations 570 

of seawater carbonate chemistry.  571 

 572 

Although the WA TA-S relationship will be an important tool for expanding the quantity of 573 

data available for regional OA research, a few important caveats and considerations should be 574 

reiterated here. The regression captures the mean TA-S relationship for the region in both time and 575 

space; however, at various times of year, processes that are independent of the hydrologic cycle 576 

can influence TA without influencing salinity. These processes include photosynthesis and 577 

respiration as well as calcium carbonate precipitation and dissolution. Careful consideration of 578 

how these biological processes may influence the interpretation of a small or seasonally-biased 579 

dataset relying on the TA-S relationship is needed. In addition to biological considerations, 580 

changes in riverine TA (organic or other forms of alkalinity) on seasonal, annual, or decadal time 581 

scales could lead to unexpected changes in the TA-S relationship both temporally and spatially 582 

(e.g., Raymond and Cole 2003; Raymond et al. 2008; Hu et al. 2015). Due to the complexity of 583 
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carbonate chemistry near river mouths (Waldbusser and Salisbury 2014) more investigations are 584 

needed in these regions. Specifically, observations spanning the full dynamic range of variability 585 

throughout the year will be required to determine the reliability of the TA-S approach in river-586 

influenced contexts. Finally, the method used herein relies on having a significant number of high-587 

quality, calibration samples (n=1,993) that span all seasons, which may not be easily obtained in 588 

all regions of investigation. Local environmental characteristics, data quality, validation 589 

capabilities, and accuracy goals should be taken into account when developing this type of method 590 

to leverage single-carbonate-system-parameter data in the coastal zone. 591 

 592 
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Tables:  894 

 895 
Table 1. Cruise names, dates, and number of observations (#Obs.) used in this analysis. 896 

 897 

Cruise Name WA Sampling Dates #Obs 

NOAA WCOA May 2007 18 

UW PRISM February 2008 150 

UW PRISM/EPA August 2008 154 

PacOOS August 2009 23 

UW PRISM September 2009 146 

PacOOS May 2010 26 

PacOOS August 2010 43 

UW PRISM November 2010 72 

UW/Chá bă  May 2011 2 

UW/Chá bă  August 2011 1 

NOAA WCOA August 2011 64 

UW PRISM October 2011 112 

UW/NANOOS May 2012 9 

NOAA WCOA September 2012 93 

UW/Chá bă  January 2013 4 

UW/NANOOS April 2013 31 

NOAA WCOA August 2013 61 

UW/NANOOS September 2013 37 

UW/NSF/SFSU June 2014 11 

WOAC July 2014 136 

Cruise details: 898 
UW/Chá bă: cruises from Seattle to Chá bă mooring 899 
UW/NANOOS: cruises from Seattle to Chá bă mooring with stations in between 900 
UW/PRISM: Puget Sound cruises 901 
UW/PRISM/EPA: Puget Sound and Strait of Juan de Fuca cruise  902 
WOAC: Puget Sound cruise 903 
UW/NSF/SFSU: UW assisted, National Science Foundation supported, San Francisco State University cruise 904 

 905 

Table 2. Distribution of samples used in this analysis by geographic region and by month.  906 
 907 

 Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Sum 

Outer Coast 4 0 0 15 53 4 0 205 93 9 0 0 383 

South Sound 0 17 0 0 0 0 16 12 0 21 0 0 66 

Hood Canal 0 43 0 0 0 0 48 34 4 95 45 0 269 

Juan de Fuca 0 24 0 16 2 5 12 39 10 40 12 0 160 

Whidbey Basin 0 13 0 0 0 0 12 13 12 0 0 0 50 

Central Sound 0 53 0 0 0 2 48 43 65 39 15 0 265 

Sum 4 150 0 31 55 11 136 346 184 204 72 0 1193 

 908 
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Table 3. Empirical TA relationships near Washington State where N is the number of observations 909 

used to define the relationship, SR is the salinity range of those observations, 1σ is the residual of 910 

the regional fit, and Ref. designates the corresponding reference listed below the table. These 911 

relationships were tested against the 1,193 discrete TA bottle samples collected in Washington 912 

from the top 25 m of water (Figure 1). The resulting mean offsets (Δ) and standard deviations (1σ) 913 

are given.  914 

 915 

Regression Relationship N SR 1σ Region Ref. Δ 1σ 

TA = 47.7(±0.2) × S + 647(±6) 1,193 20–35 17 WA AF -1 17 

TA = 50.8 × S + 543.5 ~24,000 - 20 
Central 

CA 
CG -8 18 

TA = 2305 + 53.23×(S-35) + 1.85×(S-35)2 - 14.72×(T-

20) - 0.158×(T-20)2 + 0.062×(T-20)×(Lon) 
258 31–35 8.7 

North 

Pacific 
KL -8 30 

TA = 40.49 × S + 894.17 36 27–35 - WA TW 28 20 

S = salinity, T = temperature, Lon = Longitude. 916 
AF: This study.  917 
CG: (Gray et al. 2011) 918 
KL: (Lee et al. 2006):  919 
TW: (Wootton and Pfister 2012)920 
 921 
 922 
 923 
 924 
 925 
 926 
 927 
 928 
 929 
 930 
 931 
 932 
 933 
 934 
 935 
 936 
 937 
 938 
 939 
 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 
 948 
 949 
 950 
 951 
 952 
 953 
 954 
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Figures: 955 
 956 

 957 
Figure 1. Sample stations where high-quality, dual-parameter carbon data were collected near 958 

Washington State during coastal survey cruises. Symbols signify the six geographical regions 959 

samples were collected from, including: Hood Canal, South Sound, Central Sound, Whidbey 960 

Basin, Strait of Juan de Fuca, and the Outer Coast. The location of the NANOOS-OAP Chá bă 961 

surface mooring is also shown with a yellow circle.  962 

 963 

 964 

 965 

Figure 2. (A) Mean TA (± 1σ) and (B) the total number of observations per month for samples 966 

collected within the top 25 m of water at the stations shown in Figure 1. The number of unique 967 

years in which samples were collected for each month is shown at the top of the plot.  968 
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 969 

 970 
Figure 3. (A) Linear-least-squares regression of TA and salinity using samples collected from the 971 

top 25 m of water at stations shown in Figure 1. Dashed lines show the 95% confidence limits 972 

(±2σ). (B) Residuals of the empirical regression fit versus salinity.  973 

 974 

 975 

 976 

 977 
Figure 4. Regional empirical TA-salinity relationship curves in the salinity range of 20–35 using 978 

a temperature of 11 °C (average temperature of calibration dataset) and longitude of 125 °W for 979 

the KL fit. References and equations for the different curves are given in Table 3. 980 

 981 

 982 
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 983 
Figure 5. (A) Raw SAMI2 pH data converted to total scale hydrogen ion concentration ([H+]) in 984 

units of nmol kg-1 from the NANOOS-OAP Chá bă mooring (n=6,467). Values from the 2012–985 

2013 deployment are highlighted in black to display the measurement bias. A fit to the unbiased 986 

data is shown in red. (B) Same as (A) without the fit line and showing the adjusted data. (C) 987 

Corrected [H+] with final fit ([H+] = 0.0201× (pCO2) + 0.8606) and ±3σ window shown in red. 988 

Data outside of the ±3σ window (n=275, ~4% of data) are considered outliers and are excluded 989 

from the analysis. The final [H+] dataset is plotted in cyan. (C) Corrected and final data shown in 990 

pH space. 991 

 992 
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 993 
Figure 6. Chá bă mooring (A) salinity, (B) Total Alkalinity estimated from salinity (TAS), (C) 994 

atmospheric boundary layer and sea surface pCO2, and (D) ΩAr. Red circles in each plot are from 995 

discrete bottle samples collected within the top 5 m of water at stations near the mooring. In 996 

subplots C and D the discrete values were calculated from measurements of DIC and TA.  997 

 998 
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 999 
Figure 7. (A) Measured pH values, before (pHM) and after quality control (pHM QC), as well as 1000 

calculated pH values (pHC). (B) The difference between measured and calculated pH values before 1001 

and after quality control. The mean difference and ±1σ is given for pHM QC - pHC. Gray shading in 1002 

A and B highlights the data shown in C for the summer 2012 Chá bă mooring deployment. Red 1003 

circles in A and C were calculated from discrete measurements of DIC and TA collected within 1004 

the top 5 m of water at stations near the mooring.  1005 



 

41 

 

 1006 
Figure 8. Calculation sensitivities of (A) pH (B) pCO2 and (C-D) aragonite saturation state (ΩAr) 1007 

to errors in estimated TA (TAS) and in situ pH and pCO2. Hypothetical input errors for TAS, pH, 1008 

and pCO2 are shown on the x-axes and in the legends. The legend in D also applies to A and C. 1009 

Horizontal blue lines display the C-CAN and GOA-ON “weather” and “climate” data-quality 1010 

objectives. These objectives are defined as uncertainties of 2.5% and 0.5% for pCO2, and 10% and 1011 

1% for ΩAr, respectively. Values of 400 µatm for pCO2 and 2 for ΩAr were used to compute the 1012 

percentile objectives. Vertical blue lines indicate the 95% confidence limit (2σ TAS) for the WA 1013 

TA-S relationship. 1014 

 1015 


