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ABSTRACT

The land surface model (LSM) described in this manuscript was originally developed as part of the NOAA

Rapid Update Cycle (RUC) model development effort; with ongoing modifications, it is now used as an

option for the WRF community model. The RUC model and its WRF-based NOAA successor, the Rapid

Refresh (RAP), are hourly updated and have an emphasis on short-range, near-surface forecasts including

aviation-impact variables and preconvective environment. Therefore, coupling to this LSM (hereafter the

RUC LSM) has been critical to provide more accurate lower boundary conditions. This paper describes

changes made to the RUC LSM since earlier descriptions, including extension from six to nine levels, im-

proved snow treatment, and new land-use data from MODIS.

TheRUCLSMbecame operational at the NOAA/National Centers for Environmental Prediction (NCEP)

as part of the RUC from 1998–2012 and as part of the RAP from 2012 through the present. The simple

treatments of basic land surface processes in the RUC LSM have proven to be physically robust and capable

of realistically representing the evolution of soil moisture, soil temperature, and snow in cycled models.

Extension of the RAP domain to encompass all of North America and adjacent high-latitude ocean areas

necessitated further development of the RUCLSM for application in the tundra permafrost regions and over

Arctic sea ice. Othermodifications include refinements in the snowmodel and amore accurate specification of

albedo, roughness length, and other surface properties. These recent modifications in the RUC LSM are

described and evaluated in this paper.

1. Introduction

The context of this work is an ongoing effort within

the NOAA/Earth System Research Laboratory to im-

prove prediction of land surface and hydrological

properties in NOAA models. The land surface model

(LSM) described in this paper was originally developed

to provide more accurate lower boundary conditions

for the hourly updated NOAA Rapid Update Cycle

(RUC) model focusing on short-range aviation and

severe weather prediction (Benjamin et al. 2004a) but

has now been extended to wider geographical appli-

cation. These recent applications include the Weather

Research and Forecasting (WRF) Model (Skamarock

et al. 2008) and the NOAA hourly updated Rapid

Refresh (RAP; Benjamin et al. 2016) and High-

Resolution Rapid Refresh (HRRR; Smith et al. 2008)

models. The goal of this study is to describe and
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validate the modifications to the RUC LSM that are

motivated by these new applications.

A previous six-level version of a land surface soil–

vegetation scheme (Smirnova et al. 1997) was in-

corporated into the cycled RUC model to improve its

predictions of surface fluxes and atmospheric boundary

layer properties by explicitly predicting soil moisture

and temperature using full soil-condition cycling as part

of ongoing short-range prediction and frequent data

assimilation. This provided an alternative to use of cli-

matological soil values that can result in significant er-

rors during and after dry or rainy periods. Later, this

surface model, referred to as the RUC LSM, was en-

hanced to include a snow model and frozen soil pro-

cesses (Smirnova et al. 2000). The parameterizations in

the RUC LSM describe complicated atmosphere–land

surface interactions in an intentionally simplified fash-

ion to avoid excessive sensitivity to multiple uncertain

surface parameters. Nevertheless, the RUC LSM, when

coupled with the hourly-assimilating RUC atmospheric

model, demonstrated over years of ongoing cycling

(Benjamin et al. 2004a,b; Berbery et al. 1999) that it can

produce a realistic evolution of hydrologic and time-varying

soil fields (i.e., soil moisture and temperature) that cannot

be directly observed over large areas. This result is pos-

sible only if the soil–vegetation–snow component of the

coupled model, constrained only by atmospheric bound-

ary conditions and the specification of surface character-

istics, has sufficient skill to avoid long-term drift.

To validate physical parameterizations, land surface

models are customarily tested offline and forced with

observed atmospheric conditions, thereby providing a

controlled environment so model behavior can be

assessed. A set of more recent RUC LSMmodifications

(Table 1) have been developed and evaluated through

such offline testing and coupled numerical weather

prediction (NWP) testing, as described in this paper.

International projects for intercomparison of land sur-

face and snow parameterization schemes were essential

in providing this testing environment and afforded an

excellent opportunity to evaluate the RUC LSM with

different land use and soil types and within a variety of

climates. The RUC LSM was included in phase 2(d) of

the Project for the Intercomparison of Land Surface

Prediction Schemes [PILPS-2(d)], in which tested

models performed 18-yr simulations of the land surface

state (Schlosser et al. 1997; Slater et al. 2001; Luo et al.

2003). The RUC LSM was also tested during the

Snow Models Intercomparison Project (SnowMIP and

SnowMIP2), with emphasis on snow parameterizations for

both grassland and forest locations (Etchevers et al.

2002, 2004; Essery et al. 2009; Rutter et al. 2009). Se-

lected results from these offline experiments will be

presented in this paper.

In 1998, the initial RUC LSMwas implemented in the

operational RUC at NCEP; it then became available

worldwide in 2002 as an LSM option through the WRF

community model (http://wrf-model.org; Skamarock et al.

2008). The RAP model (Benjamin et al. 2007, 2016), im-

plemented atNCEP inMay 2012 (and replacing theRUC),

uses the Advanced Research WRF (ARW) dynamical

core as the prognostic atmospheric model component

and the RUC LSM option as its land surface component.

With the RAP domain extending into the Arctic region

(Fig. 1), the RUC LSM needed further development to

improve an interactive coupling of the atmosphere with

the underlying surface where it is ice covered.

As a first step, a simple sea ice treatment and further

snow component enhancements were added to theRUC

LSM. Later, vertical resolution in the soil domain was

TABLE 1. Modifications to the RUCLSM implemented in theWRF version 3.6 model (2014) compared to its predecessor 2000 version.

Abbreviations: MODIS 5 Moderate Resolution Imaging Spectroradiometer; FPAR 5 fractional photosynthetically active radiation;

IGBP 5 International Geosphere–Biosphere Programme; AVHRR 5 Advanced Very High Resolution Radiometer; LAI 5 leaf area

index; DMSP 5 Defense Meteorological Satellite Program.

RUC LSM characteristics Smirnova et al. (2000) WRF version 3.6, 2014

Prognostic vertical levels Soil 5 6 levels (0, 5, 20, 40, 160, 300 cm),

snow 5 2 levels

Soil 5 9 levels (0, 1, 4, 10, 30, 60, 100, 160, 300 cm),

snow 5 2 levels

Sea ice model None Heat diffusion; snow on ice

Snow model Two-layer snow model, snow area trimming Two-layer snow model with improvements in snow

melting algorithm, snow area trimming/building

Snow melting Single-iteration energy budget Two-iteration energy budget

Snow albedo Constant value (0.75) Clear-sky maximum surface albedo of snow-covered

land computed from DMSP imagery, temperature

dependence

Land-use classification USGS categories MODIS IGBP-modified categories

Vegetation fraction, LAI 0.1448 resolution AVHRR vegetation

fraction, no LAI

1-km resolution MODIS FPAR/LAI data;

Surface parameters Look-up tables for dominant category Subgrid-scale heterogeneity, includes seasonal variations
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increased to have nine levels instead of six to improve

the diurnal cycle near the surface. These enhancements

to RUC LSM (Table 1), along with test results from

stand-alone, one-dimensional experiments, and within

the coupled RAP framework, are described in section 2.

All of these enhancements are available inWRF using the

RUC LSM option. Section 3 describes the new Moderate

Resolution Imaging Spectroradiometer (MODIS)-derived

classification of land surface properties available in WRF

and used in the RAP and HRRR, providing more up-

to-date land surface cover over its predecessor, the USGS

land-use classification scheme used in the RUC. The im-

proved RUC LSM also utilizes higher-resolution MODIS

fractional photosynthetically active radiation (FPAR)

and leaf area index (LAI) datasets to specify vegetation

fraction and leaf area index (applied in RAP and

HRRR). Section 3 also describes the new capability of

the RUC LSM to specify land surface parameters as

area-weighted averages in the grid box. Concluding re-

marks are presented in section 4.

2. Description of sea ice parameterization and
modifications to the snow model

The RUC LSM contains heat and moisture transfer

equations, together with energy and moisture budget

equations for the ground surface, and uses an implicit

scheme for computing the surface fluxes (Smirnova et al.

1997). The energy and moisture budgets are applied to a

thin layer spanning the ground surface and consider the

heat capacities and densities of both the soil/snow and

the atmosphere. The version of this model, tested in 1D

offline tests and implemented in the first version of the

RAP model, had six prognostic soil levels, ranging from

the soil surface to 300 cm in depth (0, 5, 20, 40, 160, and

300 cm). The version in the WRF repository (version

3.4.1 since 2012; Table 1) used in the operational RAPv2

(Benjamin et al. 2016) uses nine prognostic soil levels (0,

1, 4, 10, 30, 60, 100, 160, and 300 cm), with highest ver-

tical resolution near the surface (top layer of 1 cm). The

thinner top soil layer with nine levels provides a stronger

diurnal cycle as shown in a parallel RAP experiment

(Fig. 2). The smaller cold bias in daytime andwarmbias at

nighttime results from use of the nine-level LSM com-

pared to that with the six-level LSM. TheRUCLSMhas a

snow model with one or two additional snow levels de-

pending on snow depth and a simple parameterization of

the processes in frozen soil (Smirnova et al. 2000). Recent

enhancements to the RUC LSM in all of these areas are

addressed below and summarized in Table 1.

a. Parameterization of processes in sea ice

Treatment of processes in sea ice has been added to

the RUC LSM parameterizations. This was deemed

FIG. 1. Topography image (elevation in meters) of the North America RAP domain with

embedded RUC domain also shown [assumed to be equal to the conterminous United States

(CONUS) in this paper].
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necessary due to RAP domain coverage in high-latitude

ocean areas. The ice model accounts for thermodynamic

processes by solving the vertical heat diffusion equation:
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where Ti is the temperature, and ni, ci, and ri are sea ice

thermal conductivity, specific heat capacity, and density,

respectively (a list of symbols is provided in the appen-

dix). Sea ice properties are assumed to be those of pure

ice. To limit computational expense for short-range

weather prediction applications, the adjustment for

ice salinity is disregarded for now. This parameteri-

zation is applied equally to sea ice and lake ice. The

specific heat capacity for pure ice is computed from an

empirical formula for temperatures from228 to2408C
(Zubov 1963):
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where r0 is pure ice density at 08C (917.6 kgm23).

The energy budget at the sea ice surface is written as
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where Dza is the height of the middle of the first atmo-

spheric layer, Dzi is the depth of the middle of the top

layer of sea ice, Tsk is the mean temperature of a thin

layer spanning the atmosphere–ice interface, Rn is the

net radiative flux into the surface layer,H is the sensible

heat flux into the atmosphere, Ls is the latent heat of

sublimation, E is the sublimation rate, andGi is the heat

flux into the sea ice. With Tsk constrained to stay below

the sea ice freezing point, the energy budget may

produce a positive residualMi that could be used to melt

sea ice. However, currently the RUC LSM does not

provide treatment of melted sea ice. Sea ice coverage in

RAP is updated daily from the operational IMS (In-

teractive Multisensor Snow and Ice Mapping System)

Northern Hemisphere Snow and Ice Analysis at 4-km

resolution (Helfrich et al. 2007).

When snow falls on a sea ice surface, a two-layer

snow model is applied to the snow accumulated on

sea ice in a manner similar to snow accumulation on

land (Smirnova et al. 2000). In this case, the energy

budget equation is applied to the atmosphere–snow

interface:
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where Msn is an energy budget residual when snow-

surface temperature is constrained not to exceed the

freezing point, and this residual energy is used to melt

snow. Application of the snow model in areas covered

with sea ice has been found to be helpful in producing

realistic surface conditions, aided further by the hourly

cycling of snow depths and snow temperatures in the

RAP. This cycling of LSM conditions, including snow,

allows the RAP (or HRRR) to maintain physically re-

alistic vertical air–surface temperature differences (ei-

ther positive or negative or near zero) at each grid point.

In the simplified approach previously used in the RUC

LSM, snow did not accumulate on the sea ice surface and

sea ice skin temperature was equated to that at the first

atmospheric level. Now, the solution of the energy

budget in (6) takes into account the insolating effects of

the snow cover and may produce warmer skin temper-

atures in snow-covered sea ice regions during the day-

time. This is demonstrated in a case study comparison

(Fig. 3a, off the northern coast of Alaska), and also in

FIG. 2. The 2-m temperature bias (forecast2 observations) from

the RAP 12-h forecasts using 6-level (red) and 9-level (blue) ver-

sions of the RUC LSM over the entire RUC domain (Fig. 1).
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warmer surface-layer temperatures from the positive

upward sensible heat fluxes (Fig. 3b). The case study

presented in Fig. 3 demonstrates that during the day

positive downward heat fluxes from the surface of sea ice

into its deeper layers (Fig. 3c) store heat inside sea ice,

precluding the unrealistically cold nighttime 2-m tem-

peratures resulting from the previous approach in

this case.

This more sophisticated sea ice treatment has been

important for Arctic applications in the WRF Rapid

Refresh. For example, weather predictions over land in

such regions as Alaska can be significantly improved

frommore realistic surface conditions, where nearby sea

ice may be present in adjacent waters for much of the

year. Figure 4a presents an example of a common syn-

optic situation for the Alaska region, where onshore

winds bring air inland from the nearby ice-covered

Bristol Bay. With the previous approach without

RAP-cycled snow temperatures on sea ice, unrealisti-

cally cold temperatures over sea ice led to significant

2-m cold biases over inland regions of Alaska (circled

region, Fig. 4b). With the new treatment of snow on sea

ice in the RUC LSM, warmer near-surface layers over

sea ice were produced and transported inland, signifi-

cantly reducing RAP inland cold biases in southwestern

Alaska for this case (circled region, Fig. 4c).

FIG. 3. Comparison of Rapid Refresh 12-h forecasts, valid at 0000 UTC 14 May 2009, of (a) skin temperature,

(b) sensible heat flux, and (c) flux into snow/sea ice in the Arctic region of RAP, for the RUC LSM (left) without

and (right) with sea ice parameterization.
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b. Modifications to the RUC LSM snow model

1) SNOW MELTING ALGORITHM

Previous monitoring of RUC LSM behavior during

the cold season revealed weaknesses in its snow model.

Excessive snow melting rates associated with warm ad-

vection over snow were one such deficiency. During

these events, sensible heat fluxes from the warm atmo-

sphere toward the cold snow surface could become very

large. As a result, energy budget residuals [Eq. (6), term

Msn] used for snowmelt could also become very large,

causing large amounts of snowmelt during a single time

step. However, field experiments have demonstrated

that melting rates are physically limited and depend on

vertical temperature gradients just above the surface

(Eggleston et al. 1971). When energy residuals from the

model energy budget solution exceed a maximum

threshold for realistic snowmelt, the excess energy can

be assumed to warm the air nearest the snow surface.

As a result, skin temperatures can rise to above freezing,

even with snow on the ground. The 2-m air temperature

can also warm, but with a corresponding reduction in

snowmelting rates and an overall prolonged presence of

snowpack.

This strategy of limiting melting rates has now been

implemented in the RUC LSM via a two-iteration so-

lution of the energy budget [Eq. (6)]. At the first itera-

tion, the skin temperature is limited to 273.15K (with

the full snow coverage of the grid cell), and the residual

energy [Eq. (6), term Msn] is computed. After con-

straints on melting rates for given conditions (Eggleston

et al. 1971) are applied, an updated maximum possible

energy for snowmelt is determined. If this updatedMsn is

less than that from the first iteration, the updatedMsn is

retained in the overall solution, providing more realistic

(slower) snow melting rates and warmer (above freez-

ing) skin temperatures.

Offline testing of modified snowmelt physics in the

RUC LSM using SnowMIP2 data over multiple years

and for different locations confirmed that the two-

iteration algorithm helps to produce more realistic

snow melting rates in spring season. The new algorithm

was also tested in the coupled model (RAP) in winter

for a 10-day period, 1–10 January 2015. This period

featured several snow storms passing through the U.S.

southern plains, Midwest, and North Atlantic states.

One particular snow storm over Arizona, New Mexico,

and Texas on 2–3 January 2015, with rapid snowmelt

expedited by warm advection from nearby snow-free

areas, provided a good case to see the benefits from

changes to the snow melting algorithm. As anticipated,

the control run with the old approach was melting snow

too fast, causing underestimation of its snow cover on

the next day after the passage of the snowstorm. De-

ficient snow cover in the control run on 4 January 2015

contributed toward its larger warm biases (Fig. 5a) and

higher 2-m temperature RMS errors (Fig. 5b) averaged

over the entire continental U.S. (CONUS) domain

compared to the test run with the new two-iteration al-

gorithm. Other days of the 10-day period featured slow

melting processes and did not show any significant dif-

ferences between the two runs. Also, excessive melting

in the control run was mitigated by using IMS snow–sea

FIG. 4. (a) RAP 12-h forecast over Alaska for 850-hPa temperature (colors, 8C), height (contours, m), and wind barbs (knots; 1 kt 5
0.51m s21). Also 2-m temperature errors (8C, forecast2 observation, red for1 and blue for2) with (b) old and (c) new treatment of sea

ice. Circled regions are affected by the air mass formed over sea ice. Valid time 1200 UTC 30 Mar 2009.
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ice data (Helfrich et al. 2007) to update the horizontal

snow coverage once daily.

The snow updating procedure (Benjamin et al. 2016,

their section 4) conducted once daily at 0000 UTC

includes trimming of horizontal model snow coverage

if there is no snow in the IMS snow/sea ice data for the

given grid point and only if there is no snow pre-

cipitation in the model. The algorithm keeps track of

trimmed snow water equivalent and adds it to existing

neighboring points with missing snow compensating for

possible shifts in model snow precipitation placement.

For grid points with missing snow that do not have

neighbors with trimmed snow, the value of built snow

water equivalent is computed as an average from the

neighboring snow points or, in case this is a standalone

grid point with missing snow, is set to a minimum value

of 1 kgm22. A similar procedure is used to decrease

skin and soil temperatures (three levels in soil with a

six-level configuration and five levels with a nine-level

configuration) if they exceed 273K for the points with

built snow.

While both runs applied the daily snow-updating

procedure, the control run received larger benefits from

the snow-building component that helped to correct

significant underestimation of cycled snow in this run.

When the snow-updating procedure was applied at

0000 UTC 4 January, the number of points with built

snow was 26% higher in the control run, and the overall

number of grid points with corrected snow cover was 8%

higher. This indicates that the two-iteration snow-melting

algorithm produced more realistic melting rates and

more accurate snow cover on the ground. Both RAP runs

(Figs. 6a,b) were compared to the National Operational

Hydrologic Remote Sensing Center (NOHRSC) daily

snow analyses valid at 0600 UTC (Fig. 6c). This compari-

son shows that even after snow updating, the control run

still has underestimated snow-water equivalent values and

less accurate location of the snowband across Arizona,

New Mexico, and Texas (Fig. 6a; see area inside the red

oval) than the experimental run (Fig. 6b). In the next snow

update on 5 January 2015, the number of points with built

snow in the control run was 33% higher, meaning that

excessive melting rates in this run persisted. This example

illustrates that both snow updating from the IMS snow

product and improvements in the snow-melting algorithm

contribute to a correct coverage of cycled snow in RAP.

2) SNOW ALBEDO

Further efforts were undertaken to achieve a more

accurate representation of snow-surface properties,

such as albedo, that strongly influence the energy bud-

get. As a first step, a climatological, area-weighted,

clear-sky maximum surface albedo in snow-covered

areas, computed from Defense Meteorological Satel-

lite Program (DMSP) imagery brightness in 18 latitude–
longitude cells (Robinson and Kukla 1985), has been

included in the RAP version of the RUC LSM. This

dataset, available in WRF, depicts highest values of

surface albedo (;0.80) in snow-covered high-latitude

tundra and open shrubland regions, minimum values

(;0.35) within the 568–608N zonal region, where snow

albedo is affected by the prevalent boreal forest cover,

and more typical values for snow albedo (;0.70) over

the U.S. Great Plains, where crop and grassland vege-

tation types are dominant (Fig. 7). These values of

surface albedo are interpolated to the RAP grid and

FIG. 5. RAP forecast error vs METAR surface observations. (a) Biases (forecast 2 observation) and (b) RMS

errors for 12-h forecasts of 2-m temperature averaged over the CONUS domain (Fig. 1) for 1–10 Jan 2015. Control

run (red line) uses old snow melting algorithm; test run (blue line) utilizes two-iteration snow melting approach.
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provide vegetation-dependent spatial variability in the

surface albedo in areas of snow cover instead of the

constant value of snow albedo (0.75) used previously.

Several modeling studies have found that use of this

dataset can have a large impact on the surface energy

budget and near-surface temperatures (e.g., Viterbo and

Betts 1999), affecting the timing of spring snowmelt and

subsequent streamflow peaks (Thomas and Rowntree

1992). Similar impacts were monitored in the RAP ap-

plication, especially pronounced in snow-covered for-

ested regions of Canada, Alaska, and the eastern part of

the continental U.S. domain with lower values of max-

imum surface albedo (Fig. 7).

The RAP control simulation with constant value of

fresh snow albedo equal to 0.75 and experimental sim-

ulation with the use of this maximum surface albedo

dataset were performed for the same 10-day period in

January 2015 as described in section 2b(1). During and

after passages of several snowstorms, more accurate spec-

ification of surface albedo in the experimental configura-

tion showed improved performance near the surface. In

particular, daytime cold biases in 6-h forecasts of 2-m

temperature averaged over the eastern U.S. region were

smaller in the experimental simulation due to increased

amount of solar energy absorbed by the surface layer

(Fig. 8a). Also, average 2-m temperature STDerrors were

reduced during the day, while at night, when surface al-

bedo has no influence on model performance, errors re-

main at the same level (Fig. 8b). Figure 8 demonstrates

that daytime improvements in surface temperature pre-

dictions from better representation of surface albedo, and

consequently a more accurate surface energy budget, can

FIG. 6. Cycled RAP snow depth over the CONUS domain valid at 0600 UTC 4 Jan 2015 from (a) the control run

with the old snow melting algorithm and (b) the test run with the two-iteration snow-melting approach. (c) Snow

depth from the NOHRSC snow analyses valid at 0600 UTC 4 Jan 2015. Red oval indicates the area with improved

snow cover from the new snow melting approach.
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be substantial. Therefore, to further improve near-surface

predictions in snow-covered regions of RAP and HRRR,

our future plans include testing a recently developed

higher-resolution 0.058 dataset of maximum surface al-

bedo of the snow-covered land generated from several

MODIS sensors (Barlage et al. 2005).

In addition to its dependence on vegetation type,

snow albedo in theRUCLSM (as implemented in RAP)

varies as a function of snow age, snow depth, and also

snow temperature (when it approaches the melting

point of 08C). The temperature dependence of snow

albedo is such that higher temperatures lower the albedo

due to meltwater pockets on the surface and changes to

the ice crystal structure (Robock 1980; Petzold 1977).

Following Robock (1980), snow and ice albedos are as-

sumed to vary linearly from a maximum surface value

for a snow-covered area at T#2108C to a ‘‘meltwater’’

value at T $ 08C, where the meltwater value equals 0.4

for flat surfaces (cropland, grassland, sea ice, etc.) and

0.3 for forests.

The temperature dependence of RUC LSM snow al-

bedo was tested offline using observed atmospheric

conditions from SnowMIP2 over multiple years and for

several grassland and forest locations in Canada, the

United States, and Europe (Essery et al. 2009; Rutter

et al. 2009). Figure 9a (http://xweb.geos.ed.ac.uk/

;ressery/SnowMIP2/results.html) shows, as an exam-

ple, snow-water equivalent simulations at a grassland

location in the Swiss Alps from all LSMs participat-

ing in SnowMIP2 for the 2003/04 winter season. The

spread among the models is substantial, especially during

the snow melting season. Many models melted snow too

rapidly, whereas others were too slow, including the RUC

LSM. The standalone result from the RUC LSM for the

same location demonstrates that the RUCLSM captures

well the observed variations of snow cover on the

ground during the first half of the winter season (Fig. 9b,

red curve). But in spring, the RUC LSM is among the

models that maintain snowpack for too long. The

FIG. 7.Maximum surface albedo of snow-covered landmeasured

from DMSP imagery in 18 3 18 latitude–longitude cells (Robinson

and Kukla 1985) for the 13-km RAP domain.

FIG. 8. RAP 6-h forecast error of 2-m temperature vs METAR surface observations. (a) Biases (forecast 2
observation) and (b) STD errors averaged over the eastern part of the CONUS domain (Fig. 1) for 1–10 Jan 2015.

Control run (red line) uses constant value of fresh snow albedo equal to 0.75; test run (blue line) utilizes clear-sky

maximum surface albedo of snow-covered land, computed fromDMSP imagery brightness in 18 latitude–longitude
cells (Robinson and Kukla 1985); test minus control (black line).
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constant snow albedo (0.75) previously used in the RUC

LSM is the primary reason for this snowpack mainte-

nance, a value too high for the spring melting season.

Implementing the albedo temperature dependence de-

scribed previously has helped to achieve a more realistic

solution of surface energy budget during the springtime,

while not degrading model performance at other times

(Fig. 9b, green curve).

After extensive offline testing in SnowMIP2, this snow

albedo refinement was implemented in the coupled

Rapid Refresh. An example for a spring day with active

snow melting in the Arctic (Fig. 10) shows that with this

new approach, the portion of the domain covered by

snow or ice exhibits albedos ranging from 0.5 to 0.8

(Fig. 10b), compared to the constant albedo values of

0.55 for sea ice and 0.75 for snow (Fig. 10a) with the old

approach. Based on offline testing, reduced albedos near

the melting point can also produce more realistic snow

melting rates in the coupled RAP. The pattern of spatial

variability also varies with time following the diurnal

cycle of snow and sea ice temperature. Together with the

new treatment of sea ice and snow cover and tempera-

ture cycling in RAP (see section 2a, above), spatial and

temporal variabilities of snow albedo in the Arctic have

the potential to improve estimated net radiation and

available melting energy for better prediction of surface

conditions in this area.

3. Switch to MODIS land-use classification and
FPAR–LAI data to specify surface parameters
in Rapid Refresh

Surface parameters such as aerodynamic-roughness

length, leaf area index, and emissivity are specified

based on the dominant vegetation category for the

model grid box, as gridded by the WRF Preprocessing

FIG. 9. Snow-water equivalent during the winter season of 2003/04 at a grassland location in Alptal, Switzerland (478N, 88E, elevation
1220m), (data provided by Swiss Federal Institute for Forest, Snow and Landscape Research WSL): (a) simulation from all 27 models

participating in SnowMIP2 experiment (red 5 average over 27 models, large green dots 5 observed) and (b) snow-water equivalent

observed (blue triangles) and from the RUCLSMwith the constant snow albedo5 0.75 (red curve) and with albedo dependent on surface

temperature (green curve).

FIG. 10. Snow–ice albedo in the Arctic region of Rapid Refresh domain (Lambert conformal projection) for 13 May 2009: (a) before and

(b) after implementation of snow–ice albedo temperature dependence.
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System (WPS). WPS extracts the dominant land-use

category and fractional land-use data on specific model

grids from a global dataset with 3000 horizontal resolu-
tion. By default, the WPS program uses AVHRR-based

USGS data, and these data were also utilized during the

early stages of RAP model development and in the first

version of the operational RAP at NCEP. However,

later an alternative dataset was added to WPS options,

based on the MODIS land-cover classification of the

International Geosphere–Biosphere Programme, and

modified for the Noah land surface model (Wang et al.

2014). Several studies have demonstrated improved

spatial and spectral characteristics in the MODIS data

compared to older AVHRR data (Hansen et al. 2000,

2002a,b). This suggests that the MODIS-derived vegeta-

tionmapsmore accurately represent the global land-cover

distribution, and could be well suited for use in RAP.

The MODIS-based dataset contains 20 categories of

land use, which are not a subset of the 24USGS categories

(cf. Figs. 11 and 12). Therefore, additional tables speci-

fying surface parameters for the MODIS classification

were provided for the RUCLSM starting with version 3.3

(released in 2011) of the WRF model. In addition to the

new MODIS land-use classification, alternative datasets

were added to WPS to specify vegetation fraction and

leaf area index from 1-km resolution MODIS fractional

FIG. 11. USGS dominant land-use categories for Rapid Refresh domain.

FIG. 12. MODIS dominant land-use categories for Rapid Refresh domain.
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photosynthetically active radiation and leaf area index

datasets (Tian et al. 2000). These new datasets were also

introduced into the second operational version of RAP.

Differences between the two classifications in several

regions of the RAP domain can lead to substantial dif-

ferences in such important land surface parameters as

roughness length (Fig. 13a). For example, inland from

the western coast of Hudson Bay use of open shrubland

in MODIS (Fig. 12) instead of mixed forest in USGS

(Fig. 11) reduces the roughness length by as much as

0.6m (Fig. 13a). Similarly, use of the cropland category

in MODIS (Fig. 12) instead of the cropland/woodland

mosaic in USGS (Fig. 11) for the midwestern United

States reduces roughness length by 0.132m (Fig. 13a).

Other regions of the RAP domain may have slightly

higher or even slightly lower values of roughness length

with the MODIS classification. Changes in this param-

eter certainly affect local wind speeds in the surface

layer and the overall structure of the boundary layer.

However, the overall statistical verification of surface

variables for the RAP model has not been strongly af-

fected by the transition to the MODIS land-use classi-

fication, implemented in RAPv2 (Benjamin et al. 2016).

A pronounced improvement in RAP low-level wind

forecast skill was achieved by considering vegetation-

based subgrid heterogeneity (Fig. 14). This method

subdivides the surface within a RAPmodel grid box into

several categories using MODIS or USGS land-use in-

formation. The effective values of surface parameters

are then computed as weighted averages of parame-

ters from each of the represented categories. With this

approach, surface characteristics exhibit smoother transi-

tions between grid points with different dominant land-use

categories, and also reflect local variabilitieswithin the grid

cell. Including subgrid heterogeneity also tends to reduce

differences in surface roughness between the USGS and

MODIS classifications (Fig. 13b), such that the switch to

the MODIS classification appears to have less impact on

surface predictions.

The capability of representing subgrid heterogeneity in

RUC LSM was tested over a 10-day period in May 2013

in comparison to the control run of the model that used

the dominant land-use category in each grid cell (Fig. 14).

Both control and test configurations usedWRF version 3.6

with the same suite of physics options including MYNN

surface-layer andboundary layer schemes. The test version

showed consistent improvement over the control configu-

ration in the 12-h forecasts of 10-m wind for CONUS

(Fig. 14), with mean positive wind speed biases reduction

of about 0.02ms21 at night up to 0.1ms21 in daytime.

Positive impacts from including subgrid heterogeneity on

surface-wind predictions justified using this capability in

the operational configuration of the RAP model.

4. Conclusions

Enhancements to the RUC LSM since 2000, partly

motivated by NOAA’s transition from the RUC model

FIG. 13. Roughness length specified fromUSGS land-use classification minus roughness length fromMODIS classification (a) with the

use of dominant category approach and (b) with subgrid heterogeneity taken into account. Black numbers plotted on the figures indicate

roughness lengths in meters.
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to the larger-domain RAP model, are summarized in

Table 1. These enhancements focus on treatment for

snow over land and ice and on the use of high-resolution

MODIS land-use parameters. They have been tested

within a stand-alone, one-dimensional framework and

also coupled within the hourly-cycled RAP model, with

improvement evident from individual components in-

cluding in the Arctic region. Nevertheless, real-time

RAP forecast performance metrics provide evidence

that some RUC LSM parameterizations warrant fur-

ther improvement. For example, the second version of

the operational RAP (RAPv2) has revealed daytime

warm or dry near-surface biases during the 2014 sum-

mer season, and cold 2-m temperature biases over

snow during the 2014/15 cold season. Subsequent

modifications in the RAP model physics suite, in-

cluding RUC LSM, will become a part of the third

version of operational RAP (RAPv3) at NCEP in 2016

(Benjamin et al. 2016).

Several very recent RUC LSM changes (not pre-

sented here) have been found to reduce the warm or

dry bias in lower-tropospheric, daytime, warm-season

RAP forecasts over land. These RUC LSM modifi-

cations are slated for inclusion in the next upgrade of

the operational RAP. The modifications include tun-

ing of several soil parameters to increase evapotrans-

piration, along with a simple representation of irrigation

within cropland regions during the growing season.

Including a seasonally varying roughness length over

cropland, and MODIS-based leaf area index (LAI)

climatology within deciduous vegetation, has also

contributed to improved RAP performance during the

warm season.

In the cold season, further RUC LSM improvements

could be achieved through implementing the mosaic

approach for grid cells partially covered with snow. In

this approach, the surface energy budget of the snow-

covered and non-snow-covered portions of a grid cell

are considered independently, and then these in-

dependently determined surface fluxes are aggregated

to feed back into the surface-layer scheme. The ben-

efits of the new approach will be assessed from the

traditional methods of LSM evaluation referred to in

the introduction and also from recently developed

techniques for benchmarking intercomparisons (Best

et al. 2015).

These very recent RUC LSM capabilities, along with

the modifications detailed in this paper, have beenmade

available in the version 3.7 (2015) release of the WRF

model. Further work is in progress to make the RUC

LSM available in the Land Information System (LIS)

developed at NASA (Kumar et al. 2006). These recent

(and continuing) improvements to the RUC land sur-

face model improve its suitability for use within the

WRF user community and for potential global applica-

tions. Inclusion of the RUC LSM within LIS will allow

contributions to LIS applications within NASA

and NOAA.
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APPENDIX

List of Symbols

ci: Sea ice specific heat capacity (JK21)

csn: Snow specific heat capacity (JK21)

cp: Air specific heat capacity (JK21)

E: Sublimation rate (kgm22 s23)

Gi: Heat flux into sea ice (Wm22)

Gsn: Heat flux into snow (Wm22)

H: Sensible heat flux (Wm22)

Ls: Latent heat of sublimation (J kg21)

Mi: Energy budget residual spent on sea ice melt

(Wm22)

Msn: Energy budget residual spent on snowmelt

(Wm22)

Rn: Net radiation flux (Wm22)

FIG. 14. RAP 10-m wind speed bias vs METAR observations for

12-h forecasts averaged over entire RUC domain (Fig. 1) for 16–

25 May 2013 for the control run, which utilizes the dominant cat-

egory approach (red), the test run, which takes into account subgrid

heterogeneity (blue), and test minus control (black).
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Ti: Ice temperature (K)

Tsk: Temperature of atmosphere–surface interface (K)

ni: Sea ice thermal conductivity (Wm21K21)

ra: Air density (kgm23)

rsn: Snow density (kgm23)

ri: Sea ice density (kgm23)

r0: Sea ice density at 08C (kgm23)

Dza: Depth of atmospheric surface layer (m)

Dzi: Depth of ice surface layer (m)

Dzsn: Depth of snow surface layer
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