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ABSTRACT

Because of limitations of variational and ensemble data assimilation schemes, resulting analysis fields ex-

hibit some noise from imbalance in subsequent model forecasts. Controlling finescale noise is desirable in the

NOAA’s Rapid Refresh (RAP) assimilation/forecast system, which uses an hourly data assimilation cycle.

Hence, a digital filter initialization (DFI) capability has been introduced into the Weather Research and

Forecasting Model and applied operationally in the RAP, for which hourly intermittent assimilation makes

DFI essential. A brief overview of the DFI approach, its implementation, and some of its advantages are

discussed. Results from a 1-week impact test with and without DFI demonstrate that DFI is effective at

reducing high-frequency noise in short-term operational forecasts as well as providing evidence of reduced

errors in the 1-h mass and momentum fields. However, DFI is also shown to reduce the strength of param-

eterized deep moist convection during the first hour of the forecast.

1. Introduction

Atmospheric model initialization refers to the process

by which 3D meteorological analyses are modified to

minimize initial mass/wind imbalance and subsequent

inertia–gravity waves (IGW) in model integrations. By

modifying condensation and precipitation processes,

IGWs can seriously contaminate the model forecast

during the first few hours resulting in numerical in-

stabilities, forecast degradation, unrealistic precipita-

tion, and contamination by spurious features in the

short-term forecasts used as the background in sub-

sequent data assimilation cycles degrading the analyses.

Digital filter initialization (DFI) is one of the available

methods to remove or reduce these initial imbalances

(Lynch and Huang 1992).

DFI reduces and/or eliminates high-frequency fea-

tures, including IGW noise, from the model’s initial

state by filtering in time. A time series of model states

produced through integration either forward or back-

ward is used as input to the digital filter. Providing this

time series as input to a low-pass digital filter produces,

at the output time of the digital filter, a numerical state

where high-frequency components are significantly re-

duced. Some challenges are faced when using this ini-

tialization methodology. The first challenge lies in

selecting the filter’s cutoff frequency such that high-

frequency noise is removed but meteorologically sig-

nificant features remain. The optimal cutoff frequency

provides a model state in which spurious high-frequency

perturbations have been removed and the initial model

state is balanced. Another challenge is determining the

optimal time filtering interval. A longer time interval

results in a sharper filter, but also usurps the computa-

tional time otherwise available for the operational

forecast.

A backward–forward two-pass DFI application was

developed for the NOAA Rapid Update Cycle (RUC)

model/assimilation system (Benjamin et al. 2004) where

it was found to be essential to reduce accumulating

analysis imbalances for an hourly updated intermittent

assimilation cycle. Application of the DFI to the RUC

model was extended to improve hydrometeor/moisture

assimilation in 2006 and subsequently to improve radar

reflectivity assimilation (Weygandt and Benjamin 2007;

Weygandt et al. 2008).
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In the Weather Research and Forecasting (WRF)

Model (Skamarock and Klemp 2008), the DFI is im-

plemented following Huang and Yang (2002) and

Weygandt and Benjamin (2007). The WRF DFI im-

plementation supports several different low-pass filter

options, including digital filter launching (Lynch and

Huang 1994), diabatic DFI (Huang and Lynch 1993),

and twice DFI (Lynch 1997; Lynch et al. 1997). The

twice DFI (two pass) methodology begins with a back-

ward integration of the model under adiabatic, inviscid

conditions from time t5 0 to t522T, where T is 10min

as in Fig. 1 to produce a time series of the model states.

These backward integrated fields are filtered (the first

DFI pass) to reduce the amplitude of high-frequency

modes and produce a model state valid at t 5 2T. The

filter is a simple weighted average following Lynch et al.

(1997). The filter weights for theDolphwindow (Table 1)

have the form of a shallow parabola in the interior with

the values ranging from approximately 0.011 toward

the edge to roughly 0.013 at the center. The filter

weights at the edges are much larger; values of ap-

proximately 0.318 for the experiments described in this

paper.

Next, using this filtered state, the samemodel with full

diabatic and viscid physics enabled is integrated forward

producing a second time series from t 5 2T to t 5 T.

This second time series is filtered using the same filter

weights to produce the final DFI model state valid at the

analysis time T 5 0. Previous studies have shown that

DFI results in initial meteorological fields that are more

consistently balanced within the context of the forecast

model’s dynamics, including the elimination of sudden

adjustments at the initial time to the cloud water content

and vertical velocity, than would otherwise be the case if

the analysis were used without modification (Huang and

Lynch 1993; Huang and Sundqvist 1993; Chen and

Huang 2006).

Several journal articles briefly discuss the use of the

WRF DFI (Pan et al. 2014; Zhu et al. 2013, etc.). The

goal of this paper is to report on the DFI development in

the Rapid Refresh (RAP) model (http://rapidrefresh.

noaa.gov; Benjamin et al. 2007, 2015, manuscript sub-

mitted to Mon. Wea. Rev., hereafter BEN) as well as its

state when originally released to the community. The

following section describes the development of the DFI

in relationship to the operational RAP. Metrics re-

garding the DFI performance will be used to provide

evidence of the overall effectiveness of the DFI in this

application. Finally, a discussion on some of the issues

with the DFI in operational forecasting, along with a

potential solution to the problems, will be presented.

2. DFI development in the RAP and WRF

A two-pass DFI was implemented in the RUC model

run at NCEP in 1998 (Benjamin et al. 2004), and used

since then, with several modifications, in the operational

RUC at NCEP. No special modifications were necessary

to apply the DFI to the hydrostatic, hybrid-isentropic

vertical coordinate used in the RUC model. Beginning

around 2002, NOAA discussions started about the

possible transition of the NOAA operational hourly

FIG. 1. Schematic diagram illustrating the methodology by which

the digital filter initialization (DFI) was implemented within the

RAP model. The blue arrow represents the adiabatic backward

model integration, the red arrow represents the diabatic forward

model integration, and the green arrow represents the forward in-

tegration of the RAP using the initial filtered state from the DFI.

TABLE 1. Filter coefficients, or weights, defining the Dolph filter

used in the RAP DFI. The positive coefficient numbers are pre-

sented with the understanding that they are symmetric about zero.

Coef No. Filter weight value

0 0.013 060 60

1 0.013 053 20

2 0.013 030 36

3 0.012 992 31

4 0.012 939 42

5 0.012 871 04

6 0.012 788 47

7 0.012 691 12

8 0.012 579 16

9 0.012 453 53

10 0.012 313 45

11 0.012 160 90

12 0.011 994 43

13 0.011 815 80

14 0.011 624 23

15 0.318 162 60
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updated forecast model suite from theRUC to theRAP.

This new operational forecast suite would be based upon

the WRF community model and the Gridpoint Statisti-

cal Interpolation analysis system (GSI). Some RUC

techniques, however, including the DFI, were consid-

ered requirements to be added to the WRF modeling

framework to support the RAP.

An early adaptation of DFI in the WRF Model

implemented at NCAR (Huang et al. 2007) required the

output of a restart data file at the end of each DFI in-

tegration period, as well as separate executions for each

phase of theDFI application. This methodology allowed

for flexibility in the DFI runtime procedure, as well as

several choices in DFI filter window options. Retro-

spective simulations using GSI data assimilation along

with this DFI configuration on a 30-km mesh were

conducted for 96 h beginning on 25 January 2000. Re-

sults showed reasonable reduction of noise and simula-

tion spinup time, as well as improvement to conventional

observation verification scores (e.g., temperature RMS

error relative to radiosondes reduced by approximately

0.1K at 6h).

Around the same time, the DFI was also being

implemented in the Advanced Research version of

WRF at the Global Systems Division of the Earth Sys-

tem Research Laboratory (ESRL; Peckham et al. 2008;

Smirnova et al. 2009) for use in the RAP. Compared to

theNCARversion ofDFI, theESRL version ofDFIwas

better suited for use in real time or operational fore-

casting since the filtered states remained in computer

memory during the two integration periods, thus re-

quiring no additional output data and significantly de-

creasing the computational runtime of the initialization

process.

During collaborative discussions between ESRL and

NCAR it became evident that the two different DFI

implementations contained very similar components

that could be combined for the benefit of all users. At

this point the two groups created a single merged exe-

cutable DFI system that maximized both the flexibility

in the DFI runtime options along with the time series

filter choices, and, in addition, eliminated the use of

intermediate data output. The results of the combined

efforts have since then been made available to the user

community through the WRF Model releases.

3. Methodology

The RAP numerical model code used in the simula-

tions shown here is originally based upon the WRF

version 3.5.1 release. The simulations are conducted

using the standard operational RAP configuration;

employing a 7593 568 horizontal gridpoint domain with

approximately 13.5-km grid spacing and 51 vertically

stretched levels (BEN). The suite of physical parame-

terizations used in these simulations are from an early

implementation of the RAP (BEN): the RUC land

surface model (Smirnova et al. 1997, 2000), the Mellor–

Yamada–Nakanishi–Niino (MYNN) boundary layer

(Nakanishi and Niino 2006), the Grell–Freitas cumulus

scheme (Grell and Freitas 2013), the Rapid Radiative

Transfer Model for GCM (RRTMG) shortwave and

longwave radiation (Iacono et al. 2008), and the

Thompson microphysics (Thompson et al. 2004)

parameterizations.

To examine the impact of the DFI on the RAP

forecasts, a series of 1-h cycled retrospective simulations

for the 7-day period from 0000UTC 16May to 0000UTC

23 May 2013 were conducted with and without the DFI.

In both retrospective tests, the RAP was initialized

hourly and integrated to 18 h. Prior to each initialization,

the GSI data assimilation package was utilized to

produce a model analysis using the 1-h output forecast

from the previous filtered analysis as the background

(BEN). Atmospheric variables were partially cycled,

wherein a ‘‘new’’ atmospheric state was introduced ev-

ery 12h at 0900 and 2100 UTC following a 6-h offline

RAP cycling initialized from operational Global Fore-

cast System (GFS) 3-h forecasts valid at 0300 and

1500 UTC, respectively. Within the DFI-initialized

retrospective simulations, the DFI was run for a cycle

period of 40min with a 40-s time step, consisting of a

20-min backward integration (inviscid, adiabatic, and

thermodynamically reversible) while applying a Dolph

filter weighting over the period. Then, starting with the

filtered fields valid 10min prior to analysis time, a

20-min forward integration with full physics including

the mixing/dissipation terms is integrated and all

prognostic variables are subsequently filtered. The

20-min integration period stems from Eq. (6) in Lynch

(1997) that estimates the minimum time span to reduce

the maximum amplitudes in the stop band, which here

is also frequencies greater than 1 h21, to less than 10%

their original value. The forward process results in a

set of filtered model fields at the analysis time (Fig. 1).

The observed relative humidity and hydrometeor

variables are preserved at the initialization time. The

unfiltered relative humidity and filtered temperature

are used in combination to calculate the initialized

water vapor mixing ratios after the final filtered states

are computed. Thus, a total of 168 RAP model ini-

tializations and retrospective simulations using the

operational configuration (BEN) were made for both

test sets during this 7-day study window.

An improvement to this methodology has been sug-

gested in which the background states provided to the
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GSI are also filtered. Then the final initialized analysis

fields calculated as the sum of the background and dif-

ference between the filtered analysis and the filtered

background could potentially reduce imbalances due to

the analysis while maintaining the dynamically consis-

tent small scales generated by the forecast model. This

new procedure is a topic of future research and will not

be addressed in this manuscript.

4. Test results

To demonstrate how theDFI reduces the overall high-

frequency pressure perturbations (or IGW noise) in the

model initial state, plots of 500-hPa geopotential height

for the 0000 UTC 22 May 2013 initial conditions are

shown in Fig. 2. In the non-DFI initialization (i.e., the

GSI analysis; Fig. 2b), small-scale geopotential height

perturbations are evident. The DFI clearly reduces

these perturbations (Fig. 2a), especially in regions away

from complex topography. As a result, the excitation of

spurious gravity waves at the outset of the model in-

tegration is significantly reduced, allowing a more re-

alistic depiction of large-scale cloud and precipitation

structures early in the simulation. This is in agreement

with previous studies that reported that the DFI pro-

duces consistent cloud fields and vertical motions at

initialization that were not analyzed, as well as reducing

spinup issues (e.g., Chen and Huang 2006; Huang and

Sundqvist 1993).

The DFI-initialized retrospective test generally

exhibited reduced forecast errors compared to those in

the non-DFI test. Figure 3 shows the 1-h forecast root-

mean-square error (RMSE) vertical profiles of tem-

perature, relative humidity, and horizontal wind speed,

averaged over the contiguous United States (CONUS)

at both 0000 and 1200 UTC, as verified against radio-

sonde measurements (RAOBs). Compared to the non-

DFI simulations, the DFI-initialized test shows that the

RMSEs are reduced for temperature by (;0.1K) and

wind velocity by (;0.25m s21) over most of the tropo-

sphere. Although cycling in the RAP allows forecast

outcomes to influence subsequent runs, Fig. 3 provides

strong evidence that the DFI can improve short-term

forecasts of mass and momentum fields, in addition to

noise reduction (as seen in Fig. 2) at the outset of a run.

This improvement is partly from the direct effect of DFI

on the analysis and partly from the improvement on

subsequent backgrounds (1-h forecasts) in the data

assimilation.

Figure 4 shows simulated radar composite reflectivity

over the eastern two-thirds of CONUS at 0000 UTC

22 May 2013 from 1-h simulations of both retrospective

tests. Comparing with the observed composite re-

flectivity mosaic suggests that both runs are able to

capture many of the observed regions of precipitation.

For example, the zones of precipitation across the

northern Great Plains and over New England are cap-

tured well by both simulations. In addition, both simu-

lations depict north–south-oriented bands of convective

precipitation in the southeastern United States. How-

ever, the intensity of the deep convective elements is

much stronger in the simulations that were conducted

without DFI, which more closely matches the radar

observations. While the previous figures demonstrate

the effectiveness of the DFI at reducing the initial noise,

the DFI unfortunately also reduces the intensity and

affects morphology of parameterized convective pre-

cipitation early on in the retrospective simulations. For

example, the radar-observed convection from Texas to

Tennessee (zoomed-in panel in Fig. 4c) has peak re-

flectivity values from 45 to 50dBZ. The reflectivity

values derived from the simulations without DFI

(zoomed-in panel in Fig. 4b) are also in the 45–50-dBZ

FIG. 2. The 500-hPa geopotential height (solid, m) contours at

0000 UTC 22 May 2013, as produced by the WRF Model both

(a) with and (b) without the DFI.
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range with the structure and location in close approxi-

mation to the observed precipitation. In contrast, the

simulations with DFI (zoomed-in panel in Fig. 4a) have

peak reflectivity values in the 40–45-dBZ range with the

location and computed reflectivity structure suggesting a

weaker cold pool and slower propagation speed. Hence,

while using the DFI has not noticeably changed the re-

gions of simulated stratiform precipitation, the param-

eterized deep moist convection, which relies on

simulated small-scale triggering mechanisms, can be

impacted.

To further explore the impact of DFI on RAP pre-

cipitation forecasts, the 6-h critical success index (CSI)

and frequency bias (Wilks 1995) for the ‘‘with DFI’’ (red

lines) and ‘‘without DFI’’ (blue lines) retrospective

simulations for the time period of 16–23 May 2013 are

examined (Fig. 5). In these plots, higher values of CSI

and frequency bias values of 1 are preferred. These

scores show that the retrospective simulations that in-

clude DFI have negligibly lower forecast skill and

higher-frequency bias for light precipitation amounts

(i.e., 6-h accumulations , 1 in.). Also Fig. 5 exem-

plifies that for heavy precipitation amounts (i.e., 6-h

accumulations. 1 in.), the forecast skill is better for the

simulations including DFI and they are biased closer to

unity compared to the simulations without DFI. These

precipitation skill scores indicate that simulations with

DFI have reduced heavy precipitation errors often as-

sociated with over prediction of convective rainfall

rates, but this comes at the expense of increased errors

for light-to-moderate precipitation.

A previously mentioned constraint of the twice

DFI option is the adiabatic backward integration. The

absence of diabatic processes from the backward

integration may be detrimental to mesoscale and storm-

scale forecasting applications, including the pre-

cipitation processes, and could lead to critical errors in

real-time forecasts (Zhu et al. 2013; Pan et al. 2014). This

is due to the DFI data filtering significantly attenuating

modes with frequencies higher than the filter cutoff. For

the RAP, the cutoff frequency was chosen to be 1 h and

so the DFI is significantly reducing the amplitude of

shorter-lived mesoscale components that are potential

triggers for parameterized deep moist convection, while

preserving the synoptic-scale components. However,

these mesoscale components may be vital to forecast

accuracy during the warm season, because simulated

deep moist convection could organize upscale into

long-lived mesoscale convective systems that induce

synoptic-scale mass and momentum adjustments. Thus,

while theDFImethodology in theRAP forecast benefits

the generation of short-term forecasts by removing

noise from the initial fields and reducing the errors in the

momentum and mass fields, it also could remove the

high-frequency perturbations that aid the model pa-

rameterizations in producing the observed deep moist

convection. It is for this reason that radar and lightning

assimilation in the DFI (BEN; Weygandt and Benjamin

2007; Weygandt et al. 2008) remain topics of research

and model development.

5. Summary and conclusions

Imbalances in the model analysis fields may be caused

by data interpolation and analysis assimilation methods.

A DFI capability has been implemented in the WRF

Model and is presently utilized by the real-time RAP.

To examine the impact of the DFI on RAP model

FIG. 3. Mean vertical profiles of root-mean-square error (RMSE) in RAP retrospective simulations vs RAOBs for (a) temperature,

(b) relative humidity, and (c) wind speed across CONUS. The lines depict the 1-h forecast average results from the period 16–23May 2013

for experiments using DFI (red lines) and the experiments without DFI (blue lines) period, as well as the no-DFI less the DFI experiment

differences (black lines).
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FIG. 4. Composite reflectivity for the section of CONUS domain east of 1098Wlongitude for a 1-h forecast ending

at 0000 UTC 22 May 2013. The panels are produced from the retrospective simulations run (top) [(A) and the

corresponding zoomed-in (a)] with DFI and (middle) [(B) and the corresponding zoom-in (b)] without DFI ini-

tialized at 2300 UTC 21May 2013. The computed composite reflectivity values (dBZ) for (A) and (B) are provided

by the color bar at the base of the image. (bottom) [(C) and the zoomed-in (c)] The observed composite radar for

0015 UTC 22 May 2013 is provided with the color bar providing the observed reflectivity values (dBZ).
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performance, 7-day RAP retrospective tests, with hourly

model runs to 18h were performed with DFI and non-

DFI initializations. Results from the simulations suggest

that the DFI has reduced numerical noise at the outset of

model integration. Moreover, short-term forecast per-

formance for some variables in our tests has been im-

proved by the DFI. However, despite the improvements

to the initial state and short-term forecast fields, there still

remains a need for additional improvements to better

capture deep moist convective precipitation fields. Im-

proved procedures, such as radar reflectivity and light-

ning assimilation, for initializing diabatic processes

central to short-range forecast models like the RAP will

be discussed in a future manuscript.
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