
A Survey Design Performance 
Analysis Examining Linkages 
between Reef Fish Assemblages and 
Benthic Morphologies in the Main 
Hawaiian Islands 
Kelvin D. Gorospe 
Tomoko S. Acoba 

U.S. DEPARTMENT OF COMMERCE 
National Oceanic and Atmospheric Administration 
National Marine Fisheries Service 
Pacific Islands Fisheries Science Center 
NOAA Technical Memorandum NMFS-PIFSC-64 
https://doi.org/10.7289/V5/TM-PIFSC-64 

November 2017

https://doi.org/10.7289/V5/TM-PIFSC-64


2 



A Survey Design Performance 
Analysis Examining Linkages 
between Reef Fish Assemblages 
and Benthic Morphologies in the 
Main Hawaiian Islands 
Kelvin D. Gorospe 
Tomoko S. Acoba 

Joint Institute for Marine and Atmospheric Research 
University of Hawaii 
1000 Pope Road 
Honolulu, Hawaii 96822 

NOAA Technical Memorandum NMFS-PIFSC-64 

November 2017 

U.S. Department of Commerce 
Wilbur L. Ross, Jr., Secretary 

National Oceanic and Atmospheric Administration 
RDML Tim Gallaudet, Ph.D., USN Ret., Acting NOAA Administrator 

National Marine Fisheries Service 
Chris Oliver, Assistant Administrator for Fisheries 



ii 

Recommended citation: 
Gorospe, K.D., and T. Acoba. 2017. A survey design performance analysis examining linkages 
between reef fish assemblages and benthic morphologies in the main Hawaiian Islands. NOAA 
Tech. Memo. NMFS-PIFSC-64, 35 p. https://doi.org/10.7289/V5/TM-PIFSC-64.

Copies of this report are available from: 
Science Operations Division 
Pacific Islands Fisheries Science Center 
National Marine Fisheries Service 
National Oceanic and Atmospheric Administration 
1845 Wasp Boulevard, Building #176 
Honolulu, Hawaii 96818 

Or online at: 
https://www.pifsc.noaa.gov/library/ 

Cover: Photo courtesy of NOAA Fisheries 

https://www.pifsc.noaa.gov/library/
https://doi.org/10.7289/V5/TM-PIFSC-64


iii 

Table of Contents 

List of Tables ................................................................................................................................. iv 

List of Figures ................................................................................................................................. v 

Introduction ..................................................................................................................................... 1 

Materials and Methods .................................................................................................................... 2 

Geomorphologic Benthic Characteristics ................................................................................... 2 

Fish Variables ............................................................................................................................. 6 

Design Performance .................................................................................................................... 6 

Results ............................................................................................................................................. 8 

Discussion ..................................................................................................................................... 13 

Acknowledgements ....................................................................................................................... 14 

References ..................................................................................................................................... 15 



iv 

List of Tables 

Table 1. List of benthic geomorphology variables derived from LiDAR. The base imagery shows 
Kaneohe Bay, Oahu ............................................................................................................ 3 

Table 2. List of all combinations of geomorphological metrics, spatial scales, and summary 
metrics tested as potential stratification variables. ............................................................. 5 

Table 3. Strata boundaries for various geomorphology metrics based on inspection of loess 
curves. ................................................................................................................................. 9 

Table 4. A comparison of n* (CV = 20%) for depth only vs. depth and standard deviation of 
profile curvature at 50 m for various fish biomass indicators and four main Hawaiian 
Island complexes. .............................................................................................................. 12 

Table 5. A list of geomorphology metrics and spatial scales found to produce the greatest total 
sample reduction across all islands for individual fish biomass indicators. ..................... 12 

 



v 

List of Figures 

Figure 1. Fish biomass for total reef fish biomass vs. slope of slope (A) and aspect (B) for sites in 
the main Hawaiian Islands. ................................................................................................. 9 

Figure 2. Slope, as an example of how for a given geomorphology, the assignment of strata 
bounds (green line) was consistent across different spatial scales. .................................. 10 

Figure 3. Slope at the 50-m scale shown as an example of how, for a given geomorphology, the 
assignment of strata bounds (green line) was consistent across different fish indicators. 11 

Figure 4. Top row: Illustration of profile curvature; Bottom row: Illustration of plan curvature. 13 
  



 

 



1 

Introduction 

Coral reefs are structurally complex and heterogeneous marine ecosystems whose physical 
structure is known to influence ecological processes such as predation, competition, and 
recruitment (Hixon and Beets, 1993). Many species of reef fish depend on coral reefs for food, 
shelter, and habitat and are thus behaviorally influenced by the geomorphological structure of 
coral reefs (Sutton, 1985). A number of studies have demonstrated associations between fish 
assemblages and geomorphological benthic structure (e.g., Friedlander and Parrish, 1998; 
Richards et al., 2012; Williams et al., 2015), however these relationships appear to vary widely 
across studies, likely due to biogeographical differences and the different spatial scales being 
considered (Mellin et al., 2009).  

Understanding the relationships that link reef fish assemblages with their underlying habitats is 
important to conservation practitioners and managers. For example, it can also be used in 
assessing the relative importance of environmental features and provide insight as to which 
habitat areas should be prioritized for conservation purposes (i.e., marine spatial planning, 
Pittman and Brown, 2011). From a fisheries management perspective, developing an improved 
understanding of linkages between fishes and their habitat is important for identifying 
legislatively defined ‘essential fish habitat’ and for reducing habitat-related uncertainty in stock 
assessments (National Marine Fisheries Service, 2010). Furthermore, habitat-biota relationships 
are important for informing the design of stratified random surveys, whereby the environment 
(i.e., survey domain) is partitioned into discreet strata, and the amount of survey effort (e.g., the 
number of surveys) allocated to each stratum is based on its area and variance.   

The latter is most related to the Coral Reef Ecosystem Program (CREP) and its implementation 
of the Pacific Reef Assessment and Monitoring Program (Pacific-RAMP). CREP uses a stratified 
random survey design, but currently, only depth and reef zone are typically used as 
environmental correlates. Here, we derive several geomorphologic characteristics from 
bathymetric LiDAR data and investigate their relationship to different fish assemblage summary 
metrics collected from underwater visual census surveys. Specifically, we explore the possibility 
of adding geomorphological strata to the CREP reef fish survey design. We do this by comparing 
survey design efficiency of depth-only stratification vs. depth and geomorphology stratification. 
Overall, our goal is to use this enhanced understanding of habitat-biota relationships to improve 
future reef fish survey designs.   



 

Materials and Methods 

Geomorphologic Benthic Characteristics 

Two bathymetric data sets were initially considered for deriving the geomorphologic benthic 
habitat characteristics. A synthesis of bathymetric data gridded at 5-m spatial resolution was 
provided by the University of Hawaii, Hawaii Mapping Research Group (HMRG). Geometric 
distortions were observed across these bathymetric data. These distortions were likely generated 
due to spatial interpolation of multiple sources of data points at various spatial resolution 
producing local extrema at data points (Appendix A). The distortions were exacerbated on 
derivation of the geomorphologic features. Therefore, the 5-m bathymetric synthesis was 
excluded from our analysis. 

The aerial topographic and bathymetric LiDAR collected in 2013 by Joint Airborne LiDAR 
Bathymetry Technical Center of Expertise with funding provided by the US Army Corps of 
Engineers (USACE) National Coastal Mapping Program (NCMP) (USACE NCMP, 2016) 
around most of the main Hawaiian Islands was used to derive geomorphologic benthic 
characteristics. The data were adjusted to the local mean sea level (LMSL). The bathymetric 
LiDAR points were gridded at 2-m pixel resolution. The cell values in this data set represent the 
minimum depth measurement found within each cell, or if there were no values in the cell, a 
value have been interpolated from surrounding cells with data values using Inverse Distance 
Weighting method. 

We derived a series of benthic geomorphology variables for the nearshore environment of Kauai, 
Oahu, Molokai, Lanai, Maui and Hawaii Islands where the 2013 bathymetric LiDAR is 
available. The open source GIS software, System for Automated Geoscientific Analysis (SAGA) 
version 2.1.4 (Conrad et al., 2015) was used for the processing. A total of nine geomorphology 
variables were derived for this study: depth, aspect, rugosity, plan curvature, profile curvature, 
slope, slope of slope, real surface area, and terrain surface convexity. Each variable and tools to 
derive them is described in Table 1. Watkins (2015) describes further details on calculating each 
of these benthic geomorphology variables. 
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Table 1. List of benthic geomorphology variables derived from LiDAR. The base imagery 
shows Kaneohe Bay, Oahu 

Geomorphology Variables Description 
Depth (m) 

 

Depth is distance from the sea surface to the bottom 
of the ocean. The bathymetric LiDAR data collected 
around the main Hawaiian Islands in 2013 were 
used in the analysis. The data were adjusted to local 
mean sea level, and gridded at 2-m pixel resolution. 
The cell values in the data represent the minimum 
depth measurement found in each cell.  

Aspect (°) 

 

Aspect shows the compass direction that the surface 
faces at a cell. It can be thought of as slope 
direction. It is derived with the Slope, Aspect, 
Curvature tool using the nine parameter second-
order polynomial method (Zevenbergen and Thorne, 
1987). Values range from 0 to 360 degrees. 

Plan Curvature 

 

Plan curvature is perpendicular to the direction of 
the maximum slope. A positive value indicates the 
surface is horizontally convex at that cell, while a 
negative value indicates horizontally concave at that 
cell. A value of zero indicates the surface is linear. It 
is derived with the Slope, Aspect, Curvature tool 
using the nine parameter second-order polynomial 
method (Zevenbergen and Thorne, 1987).  

Profile Curvature 

 

Profile curvature is parallel to the direction of the 
maximum slope. A negative value indicates that the 
surface is upwardly convex; a positive value, 
concave. Zero indicates a linear surface. It is derived 
with the Slope, Aspect, Curvature tool using the 
nine parameter second-order polynomial method 
(Zevenbergen and Thorne, 1987). 

Slope (°) 

 

Slope is the maximum change in depth over distance 
between the cell and its neighboring cells. It is 
derived with the Slope, Aspect, Curvature tool using 
the nine parameter second-order polynomial method 
(Zevenbergen and Thorne, 1987). Values range 
from 0 to 90 degrees. 



 

Geomorphology Variables Description 
Slope of Slope 

 

Slope of slope is maximum rate of maximum slope 
change between the cell and its neighboring cells 
(Pittman et al., 2009). It is a second derivative of 
bathymetry. Unit is degrees of degrees. It is derived 
with the Slope, Aspect, Curvature tool using the 
nine parameter second-order polynomial method 
(Zevenbergen and Thorne, 1987). 
 

Surface Area (m2) 

 

Real surface area (Grohmann et al., 2009) is derived 
using Real Surface Area tool. This is a measure of 
surface roughness. Rougher surfaces have greater 
surface areas. 
 
 
 

Rugosity 

 

Rugosity (or surface area ratio) is derived by 
dividing real surface area by the geometric surface 
area (or planimetric area). This is a unitless measure 
of surface roughness. The minimum value is 1 and 
indicates flat surface. 

Terrain Surface Convexity 

 

Terrain surface convexity is measured as the 
percentage of convex-upward cells within a constant 
radius of ten cells (Iwahashi and Pike, 2007). It is 
derived using Terrain Surface Convexity tool. 

Sources: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, 
Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. The scale bar for each image 
shows the range of values within the extent of the map. 

For each of the benthic geomorphology variables described above, site-specific values were 
extracted for each fish survey location in the main Hawaiian Islands using ESRI’s ArcToolbox. 
In addition, it has long been recognized that different metrics of fish communities respond to 
different scales of their environment (Mellin et al., 2009). Since we do not know the specific 
spatial scale that would be most important for our study, we employ a multi-scale approach and 
calculate the average and standard deviation of all geomorphology values within radii of 15, 25, 
and 50 m (i.e., diameters of 30, 50, and 100 m) of each input cell location and extract this 
information for each GPS location of fish survey. This was conducted to characterize the 
geomorphology of each survey location at four spatial scales: one that is based on the site-
specific geomorphology value for each fish survey (0 m), and three that are based on averaging 
all cells within 15, 25, and 50 m of the survey site. Thus, this framework allowed us to 
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investigate linkages between fish biomass and multiple scales of benthic structure. A list of all 
geomorphological variables tested here can be found in Table 2.  

Table 2. List of all combinations of geomorphological metrics, spatial scales, and 
summary metrics tested as potential stratification variables. 

Geomorphological Variable Spatial Scale Summary metric 
Aspect 0 Point-value 

30 Mean 
Standard Deviation 

50 Mean 
Standard Deviation 

100 Mean 
Standard Deviation 

Plan Curvature 0 Point-value 
30 Mean 

Standard Deviation 
50 Mean 

Standard Deviation 
100 Mean 

Standard Deviation 
Profile Curvature 0 Point-value 

30 Mean 
Standard Deviation 

50 Mean 
Standard Deviation 

100 Mean 
Standard Deviation 

Rugosity 0 Point-value 
30 Mean 

Standard Deviation 
50 Mean 

Standard Deviation 
100 Mean 

Standard Deviation 
Slope 0 Point-value 

30 Mean 
Standard Deviation 

50 Mean 
Standard Deviation 

100 Mean 
Standard Deviation 

Slope of Slope 0 Point-value 
30 Mean 

Standard Deviation 
50 Mean 

Standard Deviation 
100 Mean 

Standard Deviation 



 

Geomorphological Variable Spatial Scale Summary metric 
Surface Area 0 Point-value 

30 Mean 
Standard Deviation 

50 Mean 
Standard Deviation 

100 Mean 
Standard Deviation 

Terrain Surface Convexity 0 Point-value 
30 Mean 

Standard Deviation 
50 Mean 

Standard Deviation 
100 Mean 

Standard Deviation 

Fish Variables 

Fish data were collected around islands in main Hawaiian Islands in the years 2010, 2012, 2013, 
2015, and 2016 using identical methods as part of Pacific RAMP. Prior to each field season, fish 
survey sites were randomly selected at hard-bottom depths between 0 and 30 m, with effort (i.e., 
the number of survey sites) allocated proportionally to the amount of reef area found at 3 depth 
strata (shallow or 0–6 m; mid-depth or > 6–18 m; and deep or > 18–30 m). At each survey site, 
paired divers collected replicate data on fish sizes and counts using a stationary point count 
(SPC) method. The surveys consisted of: (i) a 5-min enumeration period when divers recorded 
all fish species that passed through a visually estimated cylinder of 7.5-m radius and (ii) a 
tallying period when divers recorded all sizes and counts of all fish species listed during the 
enumeration period. For more information of fish survey methodology, details are available at 
Ayotte et al. 2011. Count and size data were then converted to fish biomass (g m-2). Fish biomass 
were summarized at an island-level spatial scale by first pooling across sites within strata, and 
then summing across strata weighted by reef area. For this project, we used a total of 9 fish 
biomass indicators, including 4 trophic groups (primary consumers, secondary consumers, 
planktivores, piscivores), three size classes (0–20 cm; 20–50 cm; and 50+ cm), as well as 
parrotfishes and total fish biomass. All fish biomass indicators are deemed priority indicators by 
the NOAA National Coral Reef Monitoring Plan (NOAA Coral Program, 2014; Heenan et al., 
2015; McCoy et al., 2017; McCoy et al., 2016). 

Design Performance 

A total of 803 fish surveys with benthic geomorphology data were used in this analysis (195 
deep strata, 387 mid-depth strata, and 221 shallow strata surveys). The first step was to look for 
trends between each of the 9 fish biomass indicators and each of the 8 geomorphological metrics 
(each of which was listed in Table 1. For each fish-geomorphological pairing, we calculated the 
mean biomass of all fish surveys in the data set, and used local polynomial regression fitting 
(loess, α = 1.5) to fit a smoothed curve and 95% confidence intervals (estimated using standard 
error) to the data. The loess model works by fitting a low-degree polynomial using weighted 
least squares, meaning that when fitting the curve, the amount of weight given to any point is 
inversely proportional to its distance from the point being estimated (Cleveland et al., 1992). 
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This was done for all geomorphological variables (e.g., slope, aspect, convexity, etc.) and for all 
moving averages and standard deviations (e.g., 0-, 30-, 50-, and 100-m spatial scale). The 
purpose of these loess curves is to help in determining potential strata boundaries in a 
stratification scheme. Once potential strata boundaries were decided, all fish sites were assigned 
to new strata that were now based on geomorphology and depth (i.e., post-stratification), thus 
allowing us to compare each new stratification design to the original design based only on depth.  

Finally, our framework for evaluating design performance is based on examining the trade-off 
between enhancing the precision of fish biomass estimates and increasing the overall survey 
effort (i.e., cost) by adding additional sample sizes (Smith et al., 2011; Ault and Smith, 2008). To 
do this, we calculated for each data set, n*, or the number of primary units (i.e., survey sites) 
required to achieve a specified coefficient of variation, CV (here, we use a CV of 20%; Equation 
1 below). The resulting n* for each sampling scheme assumes that the allocation of survey sites 
among strata places more surveys in more variable strata and fewer surveys in less variable 
strata.  

Equation 1:   n*    

whereby  

  =   , 

and wh is the stratum h weighting factor, or the proportion of the stratum area relative to the 
total survey area 

sh is the stratum h standard deviation in fish biomass, 

 is the target variance for future surveys of fish biomass 

 is the target coefficient of variation for future surveys of fish biomass 

 is the domain-wide estimate of biomass, 

N is the total number of primary unit samples, and 

sh2 is the stratum h variance in fish biomass. 

Due to gaps in the geomorphological layers described above, the number of fish survey sites with 
associated geomorphological data varies across the different spatial scales of averaging buffers. 
Thus, in order to accurately compare n* for the various data sets, we only include fish survey 
sites that had geomorphological data for all spatial scales. Luckily, the Pacific RAMP reef fish 
dataset is relatively large with 1185 sites surveys conducted between 2010 and 2016; even after 
filtering out fish surveys with incomplete geomorphological metrics, a total of 804 fish surveys 
were retained for our analysis. 



 

Finally, a separate synthesis bathymetric data set available from HMRG (from here on, 
“synthesis maps”) was used to derive the same geomorphology metrics at a coarser spatial scale. 
These synthesis maps are integrated into CREP’s current survey design, which stratifies effort 
based only on depth. The advantage of these maps is they have greater spatial coverage of our 
target domain (hard-bottom habitats between 0 and 30 m). The disadvantage, however, is that 
they are much coarser (50-m × 50-m resolution). The purpose of this final step was to 
demonstrate whether this approach of stratifying based on depth and geomorphology could be 
put into practice, even for areas of the Pacific where we do not have high-resolution LiDAR data.   

Results 

Based on visually inspecting the loess curves of all geomorphological metrics, we determined 
that mean rugosity, mean slope, mean slope of slope, and standard deviation of profile curvature 
showed the most promise for improving fish survey design. For each of their loess curves, we see 
that low measures of the geomorphology metric are significantly less than (based on 95% 
confidence intervals) the global mean for fish biomass, while high measures of the 
geomorphology metric are significantly greater than the global mean. In other words, the loess 
curves for each of these geomorphologies displayed clear trends with total reef fish biomass 
(e.g., Figure 1A; Appendix B), as well as with several other indicator groups of fish biomass as 
opposed to a flat line (Figure 1B).  

Conversely, the following metrics were not considered further, either because their loess curve 
showed no trend with fish biomass (i.e., displayed a flat line; Appendix C), or if the metric’s 
distribution was overly skewed (e.g., mean surface area; Appendix C): mean aspect, mean 
convexity, mean planar curvature, mean profile curvature, and mean surface area, as well as all 
standard deviation metrics except that for profile curvature.  

The remaining analyses focused on these four candidate geomorphology metrics: mean rugosity, 
mean slope, mean slope of slope, and standard deviation of profile curvature. Furthermore, in 
terms of spatial scale, we found increasing correlations between fish biomass at larger scales (50 
and 100 m) as opposed to smaller scales. The difference in correlation between spatial scales was 
relatively small (e.g., for slope of slope, correlation with total reef fish biomass increased from 
0.15 at 0 m to 0.28 at 100 m), however, this pattern of increasing correlation for larger scales was 
consistent for all four candidate geomorphology metrics. One possible explanation is that large, 
roving predators, which tend to add stochastic noise to reef fish data, are correlated more with 
these larger scale geomorphologies, thus driving this pattern of increased correlation at larger 
scales. Others have suggested that the home range of a fish species is an important factor in 
determining to what environmental spatial scale the species will respond, but it is difficult to 
generalize across species due to the limited number of species with information on home-ranging 
behavior (Pittman and Brown, 2011). Since the final step in our analysis was to compare 
LiDAR-derived metrics with metrics derived from the coarser 50-m × 50-m synthesis maps, we 
focused our analysis of LiDAR metrics at the 50-m spatial scale.  

To determine the strata boundaries for each geomorphological metric, we looked for regions in 
the loess curve that tended to be less than, equal to, or greater than the mean biomass. For 
example, for slope of slope, total fish biomass is generally below the mean for lower slope of 
slope values and above the mean for higher slope of slope values, corresponding to two strata. 
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The point at which the loess curve intersects the mean biomass line was used to identify strata 
boundaries (Figure 1A; green line).  

 

Figure 1. Fish biomass for total reef fish biomass vs. slope of slope (A) and aspect (B) for 
sites in the main Hawaiian Islands. 

Displayed on each graph are the site-level survey data (points), global mean (black dotted line), loess 
curve (red solid line), and 95% confidence intervals (red dotted line). Total reef fish biomass appears to 
trend with slope of slope, justifying the delineation of strata with regards to slope of slope. The green line 
represents the boundary between low and high slope of slope. On the other hand, total reef fish biomass 
appears to have no relationship with aspect.  

For a given geomorphology metric, we found relatively broad agreement in strata boundaries 
across different spatial scales as well as across fish biomass indicators. For example, for slope, 
the strata boundary between low slope and high slope was similar across all spatial scales (Figure 
2) as well as for various fish biomass indicators (Figure 3). Strata boundaries for mean rugosity, 
mean slope, mean slope of slope, and standard deviation of profile curvature can be found in 
Table 3. 

Table 3. Strata boundaries for various geomorphology metrics based on inspection of 
loess curves. 

Geomorphology Strata Boundary 
Mean Rugosity 1.025 
Mean Slope 8 
Mean Slope of Slope 50 
Profile Curvature Standard Deviation 0.1 



 

Loess curves for the geomorphology metrics that displayed a trend with total reef fish biomass 
based on visual inspection of loess curves as described above (i.e., mean rugosity, mean slope, 
mean slope of slope, standard deviation of profile curvature) can be found in Appendix B. A total 
of 640 loess curves were created for this study, each displaying patterns between each variable in 
Table 1 and each of the 9 fish biomass indicators. Because of the sheer number of graphs, we 
only show the mean metric of each geomorphology variable at 50-m spatial scales as examples 
in Appendix B. Examples of geomorphology metrics that did not display clear trends with fish 
biomass can be found in Appendix C. 

 

Figure 2. Slope, as an example of how for a given geomorphology, the assignment of 
strata bounds (green line) was consistent across different spatial scales. 

Clockwise from top left: 0 m, 30 m, 100 m, and 50 m. 
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Figure 3. Slope at the 50-m scale shown as an example of how, for a given 
geomorphology, the assignment of strata bounds (green line) was consistent across 
different fish indicators. 

Based on these strata boundaries, each fish survey site was assigned to a stratum based on its 
depth and geomorphology characteristic (i.e., post-stratification). For each stratification scheme, 
the number of samples (n*) required in a future survey to achieve a CV of 20% was calculated. 
Next, n* for depth only vs. depth and geomorphology stratification were compared. Overall, the 
geomorphology metric that resulted in the greatest reduction in n* (i.e., the stratification scheme 
with the most efficient sampling) across all fish biomass indicators and across all islands was 
standard deviation of profile curvature at the 50-m scale (Table 4). Finally, the most efficient 
sampling scheme for each fish biomass indicator is listed in Table 5. 



 

Table 4. A comparison of n* (CV = 20%) for depth only vs. depth and standard deviation 
of profile curvature at 50 m for various fish biomass indicators and four main Hawaiian 
Island complexes.  

Total sample reduction was calculated as the difference in n* between depth only vs. depth and profile 
curvature summed across all islands. 

Indicator Stratification Scheme Hawaii Kauai 
Maui 
Nui Oahu 

Total Sample 
Reduction 

Total Fish 
Depth Only 11.82 26.96 30.39 26.73 

12.62 
Depth + Profile Curvature 11.56 21.00 29.25 21.46 

Primary 
Depth Only 14.70 25.10 34.65 39.52 

19.37 
Depth + Profile Curvature 13.75 18.21 30.11 32.54 

Secondary 
Depth Only 21.44 20.73 32.34 23.17 

21.09 
Depth + Profile Curvature 18.97 16.39 24.13 17.10 

Planktivore 
Depth Only 44.17 52.22 111.79 86.93 

27.36 
Depth + Profile Curvature 43.34 45.43 108.93 70.05 

Piscivore 
Depth Only 47.56 38.77 52.22 74.64 

17.45 
Depth + Profile Curvature 40.52 28.09 52.29 74.84 

0–20 cm 
Depth Only 18.57 16.33 27.10 24.32 

5.18 
Depth + Profile Curvature 14.87 15.85 28.21 22.22 

20–50 cm 
Depth Only 19.48 25.67 37.91 46.89 

19.43 
Depth + Profile Curvature 19.56 21.38 30.98 38.59 

50 cm+ 
Depth Only 98.14 36.21 124.35 117.78 

136.41 
Depth + Profile Curvature 67.71 25.88 77.30 69.18 

Parrots 
Depth Only 46.68 46.73 61.15 104.35 

58.49 
Depth + Profile Curvature 41.50 28.26 59.90 70.75 

Table 5. A list of geomorphology metrics and spatial scales found to produce the 
greatest total sample reduction across all islands for individual fish biomass indicators. 

Indicator Optimal Geomorphology Strata 
Total Sample 

Reduction 
Total Fish Mean Slope of Slope at 100 m 13.85 
Primary Profile Curvature Standard Deviation at 50 m 19.37 

Secondary Profile Curvature Standard Deviation at 100 m 22.67 
Planktivores Mean Slope at 50 m 39.95 
Piscivores Mean Slope of Slope at 0 m 24.45 
0–20 cm Profile Curvature Standard Deviation at 30 m 6.42 
20–50 cm Mean Slope of Slope at 100 m 19.88 
50+ cm Profile Curvature Standard Deviation at 100 m 140.83 

Parrotfishes Profile Curvature Standard Deviation at 50 m 58.49 
OVERALL Profile Curvature Standard Deviation at 50 m 317.38 
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Discussion 

We found several geomorphological characteristics (e.g., mean slope, mean slope of slope, mean 
rugosity, and standard deviation of profile convexity) for a variety of spatial scales, which if 
added as a second stratum variable, enhanced our survey design efficiency when compared to 
depth-only stratification. 

Slope (Pittman and Brown, 2011), slope of slope (Pittman et al., 2009), as well as remotely 
sensed rugosity (Kuffner et al., 2007), were found to be important predictors of fish biomass, 
abundance, and/or diversity in numerous other studies (Mellin et al., 2009). In our analysis, 
standard deviation of profile curvature produced the most efficient survey design when combined 
with depth stratification. As far as we know, however, this geomorphology variable has not been 
emphasized in previous studies of reef fish distributions.  

Profile curvature (Figure 4, top row) is measured in the parallel direction of the maximum slope, 
while planform curvature (Figure 4, bottom row) is measured perpendicular to the direction of 
the maximum slope. Large values of curvature represent complex terrain, and positive or 
negative values are indicative of either upwardly concave or convex surface in the vertical 
(profile) and horizontal (planform) direction relating to slope. The importance of profile 
curvature standard deviation in our survey efficiency analysis indicates that variation in 
upwardly convex and concave environments (i.e., complex benthic terrain) may be an 
overlooked geomorphological variable that can aid in reef fish biomass survey design. That 
planform curvature was not found to be an important geomorphological variable suggests that 
horizontal or sideward convexity/concavity has less influence on reef fish distributions. This 
makes sense if one considers that reef fish distributions and the oceanographic environment, in 
general, are vertically as opposed to horizontally patterned.  

 

Figure 4. Top row: Illustration of profile curvature; Bottom row: Illustration of plan 
curvature.  

Graphic credit: Esri, https://blogs.esri.com/esri/arcgis/2010/10/27/understanding-curvature-rasters/ 

https://blogs.esri.com/esri/arcgis/2010/10/27/understanding-curvature-rasters/)


 

While other studies (Chitarro, 2004) have shown that spatial scale had little influence with regard 
to predictive power, we found increasing predictive power with broader spatial scales. When 
looking at individual fish biomass indicators (Table 4), the most efficient survey designs mainly 
included larger (e.g., 50 and 100 m), as opposed to smaller, spatial scale predictors. One should 
exercise caution, however, in making generalizations of patterns across the different fish 
indicator groups. Previous attempts to compare across studies found that the relationships 
between remotely-sensed geomorphology and fish assemblages were widely varied, with 
biogeography and reef types being among some of the confounding factors (Mellin et al., 2009).  

We also demonstrate in our analysis the importance of spatial resolution when initially deriving 
the geomorphologies. Of the LiDAR-derived geomorphologies that were found to increase 
survey efficiency (i.e., mean slope, mean slope of slope, mean rugosity, and profile curvature 
standard deviation), none of them were found to produce the same effect when derived from 
coarser “synthesis” maps (see Materials and Methods). Although we used the 50-m spatial scale 
to calculate sampling efficiency (i.e., n*) for each of our candidate geomorphology metrics, the 
original data came from much finer (i.e., 2-m) resolution LiDAR maps. Thus, even though we 
summarize the geomorphology metrics at a 50 m spatial scale, there is additional fine-scale 
information in the 2-m resolution LiDAR data that is presumably lost when we move to the 50-m 
“synthesis” maps.  

In the future, we intend to explore more systematic possibilities for visualizing fish-
geomorphology trends and determining strata boundaries. The strategy of using loess curves to 
explore overall trends in the data was mainly used as a first pass. There are likely more 
sophisticated techniques for exploring fish biomass trends with benthic morphology (e.g., 
GAMs) as well as optimization algorithms for stratifying data with the goal of lowering variance 
in each strata (e.g., R package SamplingStrata; Barcaroli 2014). Furthermore, a better test of 
design performance would be to derive the geomorphology stratas using a portion of the Pacific 
RAMP fish data set (e.g., only certain years or islands) and then testing its effect on design 
performance on the remaining portion. Overall, the analytical framework described here (i.e., n* 
calculation) forms the basis for continuing to explore how to improve the efficiency of future 
reef fish monitoring efforts under Pacific RAMP. 
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APPENDIX	A	–	Example	of	distortions	observed	in	the	5-m	bathymetric	data,	exacerbated	upon	
derivation	of	geomorphology	features	(the	focus	of	this	project),	thus	causing	us	to	turn	to	
other	mapping	data	sources.	
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APPENDIX	B	–	Geomorphology metrics with loess curves that trend with fish biomass (i.e.,	
low measures of the geomorphology metric are significantly less than (based on 95% 
confidence intervals) the global mean for fish biomass, while high measures of the 
geomorphology metric are significantly greater than the global mean	
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APPENDIX	C	–	Geomorphology	metrics	with	loess	curves	that	show	no	significant	trend	
with	total	fish	biomass	based	on	loess	curves	whose	95%	confidence	intervals	overlap	with	
the	global	mean	for	fish	biomass	throughout	the	full	range	of	biomasses.	
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