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Abstract 14 

Blooms of the toxic cyanobacteria, Microcystis aeruginosa, have been both a public health and ecological 15 

concern in Lake Erie for over a decade. Although models were previously developed to forecast 16 

cyanobacterial bloom severity, the recent few years of bloom severity observations indicate the need to 17 

update these empirical models.  The models that best estimate the bloom biomass use the Maumee River 18 

discharge or total bioavailable phosphorus (TBP) loading from March through July. TBP is the sum of the 19 

dissolved reactive phosphorus and the proportion of particulate phosphorus that is bioavailable, corrected 20 

for loss due to settling in the river.  In years when average June water temperatures were too low for 21 

Microcystis growth (< 17 ºC), the July loads were excluded.  As total phosphorus (TP) load includes 22 

much phosphorus that is not bioavailable (or reaches the lake), the load of TBP was considered and it 23 

provided a model that better explained the blooms than the TP load. Residual discrepancies between 24 

predicted and observed blooms may involve factors such as the timing of the majority of the spring loads 25 

(e.g., most in March or most in June or July) and potential influence from an extremely large bloom in the 26 

previous year.  The most extreme loads, such as seen in 2015, may cause different responses than more 27 

moderate loads. The models estimate bloom size in most scenarios observed and can serve as the 28 

foundation for setting nutrient reduction targets to decrease the occurrence of blooms in western Lake 29 

Erie.       30 

 31 

Introduction 32 

For over a decade, western Lake Erie has experienced the recurrence of dense blooms of cyanobacteria, or 33 

blue-green algae.  These harmful “algal” blooms (HABs) have consisted primarily of Microcystis 34 
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aeruginosa (henceforth referred to as Microcystis), an organism that produces the toxin microcystin, but 35 

they have also included other potential toxin producers such as Dolichospernum spp. and Planktothrix 36 

agardhii (the latter more common in bays off the lake).  Lake Erie experienced severe cyanobacteria 37 

blooms in the 1960s and 1970s.   In the 1980s and 1990s, the lake appeared to be bloom free, except for 38 

blooms reported in 1995 and 1998 (Budd et al., 2001; Kane et al., 2014).  Starting in 2003, HABs became 39 

an annual occurrence, although the severity varied widely between years (Bridgeman et al., 2013; Stumpf 40 

et al., 2012).  Recently, the occurrence of HABs has culminated in several exceptional years: 2011, 2013, 41 

2014, and 2015.  The 2011 bloom may have been the most extensive ever to occur in Lake Erie to that 42 

time, ultimately covering over 5000 km2 of the lake and impacting both the American and Canadian 43 

coasts (Michalak et al., 2013; Stumpf et al., 2012). The 2011 bloom had a widespread influence impacting 44 

fishing, tourism, and public water suppliers.   In 2013 and 2014, potentially hazardous concentrations (> 1 45 

µg L-1) of microcystin were detected in finished drinking water of communities adjacent to western Lake 46 

Erie. In 2013 Carroll Township issued a “do-not-use” advisory to its 2000 municipal water supply 47 

customers and in 2014 the city of Toledo had the same problem, resulting in a “do-not-drink” notice for 48 

three days to about a half-million people.  The 2015 bloom was estimated to be even more severe than 49 

2011 (NOAA, 2015).   50 

 51 

In order to reduce the impacts caused by western Lake Erie HABs, several strategies have been employed 52 

to address management issues at different time scales.  In the short-term, biweekly forecast bulletins are 53 

produced that show the location and intensity of the bloom over the next few days (Wynne et al., 2013a).  54 

These bulletins provide information that can support immediate action for drinking water treatment.   55 

They also help activities such as boating, fishing, and other tourism that can move based on bloom 56 

location. In the mid-term, a seasonal forecast of the bloom severity allows public water suppliers and 57 

agencies concerned with toxin monitoring to plan for the bloom season, and for local businesses to 58 

anticipate possible effects on the summer tourism economy (Stumpf et al., 2012). In the long-term, being 59 

able to forecast HAB intensity on an annual basis helps identify the management actions that could reduce 60 

or eliminate the blooms in the future (Ohio EPA, 2013; Scavia et al., 2016), which is the emphasis of this 61 

manuscript. 62 

 63 

Short-term forecasts of the blooms have been in place since 2009 through the Lake Erie Experimental 64 

Harmful Algal Bloom Forecast System (Wynne et al., 2010, 2013a) which is produced and distributed by 65 

the U.S. National Oceanic and Atmospheric Administration (NOAA, 2015).  This forecast includes 66 

determination of bloom location and intensity from satellite, and the use of a circulation model to predict 67 
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the location several days into the future. As of September 2015, the bulletin was issued as the key part of 68 

the forecast and had over 1500 subscribers.  69 

 70 

Seasonal forecasts were developed out of an examination of the factors that should drive the blooms.  71 

Stumpf et al. (2012) showed that the spring (March to June) discharge from the Maumee River (Figure 1), 72 

as well as total phosphorus (TP) or dissolved reactive phosphorus (DRP) loads, explained the inter-annual 73 

variability in blooms since 2002.  Using the same data but a different statistical approach, Obenour et al. 74 

(2014) also concluded that spring TP load explains the bloom severity, although they also proposed that 75 

there was a trend toward increasing bloom magnitude over time.  The Stumpf et al. (2012) model was 76 

used to predict blooms in 2012 and 2013 up to two months in advance of the peak concentration (NOAA, 77 

2012, 2013).  In the last two years, the annual forecast drew on an ensemble of models, including 78 

Obenour et al. (2014) and the deterministic model of Verhamme et al. (2016) (NOAA,  2014, 2015).   79 

 80 

For the long term, modeling the bloom severity can support determination of targets for nutrient loads that 81 

can reduce the bloom.  The 1972 Great Lakes Water Quality Agreement (GLWQA) set annual target 82 

loads for TP at 11,000 metric tons in order to reduce the blooms occurring at that time.  The recurrence of 83 

blooms has shown that these targets are outdated, in part because this target was first met in 1981 and also 84 

because it has rarely been exceeded even in the recent bloom years (Ohio EPA 2013).  The most recent 85 

GLWQA (2012) calls for a rigorous update to the targets for phosphorus reductions in order to reduce the 86 

incidence of extreme HABs in the western basin (Ohio EPA 2013; GLWQA, 2012). Phosphorus-based 87 

models are critical to determining targets for phosphorus reduction.  Climatological models, such as 88 

Stumpf et al. (2012) provide a key component of a multi-model strategy to increase management 89 

confidence in the robustness of phosphorus reduction scenarios (Scavia et al., 2016).    90 

 91 

In considering models linking phosphorus loads to HAB severity, an additional consideration is the 92 

relative importance of various forms of phosphorus delivery, given that particulate phosphorus and 93 

dissolved phosphorus can have drastically differing bioavailability (Baker et al., 2014a). In the Maumee 94 

River, about 26% of the total particulate phosphorus (TPP) is chemically bioavailable, whereas nearly 95 

100% of the dissolved phosphorus is bioavailable (Baker et al., 2014a). In the 1970s, when most 96 

phosphorus came from point sources like sewage treatment plants, most TP discharged into the lake was 97 

bioavailable.  Following reductions in point sources of phosphorus (P) and changes in agricultural 98 

practices, nonpoint sources from agricultural land now dominate TP loads to Lake Erie. For the Maumee 99 

River, TP consists of 73% particulate P—mostly bound to suspended sediments—and 27% DRP (Baker 100 

et al., 2014a).  Furthermore, some 70% of TPP is spatially unavailable, as it settles out of the water over 101 
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the 42 km from the nutrient sampling station (and water gauge) at Waterville, Ohio to the mouth of the 102 

Maumee River in Lake Erie (Baker et al., 2014b). Hence, less than half of the TP measured in the 103 

Maumee River is immediately available to phytoplankton in the lake.  104 

 105 

The original models in Stumpf et al. (2012) were developed from ten years of satellite data (2002-2011).  106 

Since 2011, there have been three years with severe blooms (2013, 2014, and 2015) and one year with a 107 

small bloom (2012), providing important new data.  In addition, Obenour et al. (2014) concluded that the 108 

blooms may have become more sensitive to phosphorus loads than earlier in this century.  Also, the work 109 

of Baker et al. (2014a, 2014b) indicated the potential importance of differing forms of bioavailable 110 

phosphorus.  The combination of these factors led to the realization that the relationships between HAB 111 

intensity and the driving factors of phosphorus loading and river discharge should be reexamined in order 112 

to reevaluate the original loading models (Stumpf et al., 2012).  This paper examines the models for 113 

estimating bloom severity using data from 2002 to 2015 along with measures of bioavailable phosphorus 114 

in order to identify improvements in forecasting bloom severity and evaluating the impact of phosphorus 115 

loads for management strategies.  116 

 117 

Methods 118 

 119 

Biomass estimation 120 

Bloom biomass was determined using data from the Medium Resolution Imaging Spectrometer (MERIS) 121 

for 2002-2011.  After MERIS’s satellite failed in April 2012, the Moderate Resolution Imaging 122 

Spectroradiometer (MODIS) was employed for 2012-2015. Both satellite data sets were processed using a 123 

spectral curvature method to obtain the cyanobacterial chlorophyll-related index (CI) as described by 124 

Wynne et al. (2013b), who also showed that a simple multiplier to the MODIS curvature allows the 125 

MODIS and MERIS data to be directly matched.  The CI calculations used radiance-based reflectance, 126 

which formally has units of sr-1.  Several MODIS bands tend to saturate over “scum” areas (areas with 127 

dense accumulations on the water’s surface), requiring a switch to an infrared algorithm that is tuned to 128 

match the CI in the overlap in blooms in non-saturated areas (Wynne and Stumpf (2015).  Both MODIS 129 

and reduced resolution MERIS data have a nadir pixel view of about 1 km and were mapped to a common 130 

Albers equal area projection with nearest neighbor interpolation.   The CI corresponds to Microcystis 131 

biomass, with CI of 0.001 sr-1 corresponding to 105 cells mL-1 (Wynne et al., 2010; Lunetta et al., 2015).  132 

If the surface concentration is assumed to be one meter deep (the maximum depth of detection), then an 133 

accumulated CI of 1.0 units corresponds to 1020 cells (Stumpf et al., 2012).   134 

 135 
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Composite images of the maximum CI value at each map pixel were obtained from the individual scenes 136 

within sequential (non-overlapping) 10-day periods (Wynne and Stumpf, 2015).  The maximum was used 137 

for these 10-day composites for two purposes. First, the integration removes most clouds over the period.  138 

Second, the satellite observes only the surface concentration, nominally within a meter of the surface, as 139 

noted above.  As Microcystis blooms tend to float to the surface during calm weather, accumulating the 140 

biomass at the surface, choosing the maximum CI gives the best estimate of the areal biomass during the 141 

10-day period. Ten days are a reasonable compromise between frequency of recovery and temporal 142 

resolution (Stumpf et al., 2012).  All the pixels for the western basin were then summed to obtain the total 143 

biomass in CI units for each 10-day period (Figure 2).   144 

 145 

Stumpf et al. (2012) used the average of three highest consecutive 10-day periods to define the annual 146 

bloom magnitude (that will be called CI-avg).  This average gave an estimate of severity over the worst 147 

“month”. However, if any of the three 10-day periods suffered from a lack of usable days due to cloud 148 

cover, that 10-day composite may underestimate the areal biomass, particularly if only one usable day 149 

occurred and it was concurrent with strong winds. This could produce a low bias (underestimate) of the 150 

average areal biomass occurring over the 30 days.  An alternative approach is to use the 10-day period 151 

with the maximum biomass to capture the best estimate of the amount of actual cyanobacterial biomass 152 

for comparison with the seasonal phosphorus load. The peak in biomass also typically occurs in August or 153 

September, after the seasonal load (Stumpf et al., 2012).  Accordingly, to address the total biomass, this 154 

study uses the maximum single 10-day period (CI-max) (Figure 2 and Figure 3).  Yet it is important to 155 

note that the CI-avg and CI-max are closely matched, with linear regression r2 of 0.92 and a mean 156 

absolute percentage difference (MAPE) of 15% and CI-max = 1.68× CI-avg.    157 

 158 

The accumulated CI has some uncertainty, especially in how pixels next to the shore are evaluated (either 159 

excluded or included), as these pixels can have either dense blooms or erroneously high values. As a 160 

result, the minimum uncertainty is about 0.5 CI units (i.e., negligible separation between 2005 and 2007), 161 

with an additional uncertainty of 10% of the total CI for MERIS and about 25% for MODIS.  MODIS is a 162 

noisier sensor and requires more processing and adjustment to correct for saturation and faulty nearshore 163 

values.      164 

 165 

Nutrient loads and discharge  166 

Stumpf et al. (2012) found that bloom severity could be explained by models using monthly discharge 167 

and phosphorus loads (total phosphorus and dissolved reactive phosphorus) for the Maumee River 168 

(Stumpf et al., 2012; Kane et al., 2014).  The Maumee River is the largest tributary in the Great Lakes 169 
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basin.  While the Maumee has 1/35th the flow of the Detroit River, which carries water from Lake Huron 170 

and the upper Great Lakes (Wynne and Stumpf, 2015), the Maumee’s large concentration of phosphorus 171 

means that the two rivers supply an equal amount of the phosphorus load into Lake Erie (Scavia et al., 172 

2014).   The other tributaries into the western basin are negligible, with less than 1/10th the loads of the 173 

Maumee.  174 

 175 

Phosphorus loads were obtained using data from the Heidelberg Tributary Loading Program (HTLP) 176 

operated by the Heidelberg University’s National Center for Water Quality Research (NCWQR) 177 

(Richards et al., 2009). Water samples were collected for suspended sediment and nutrient analysis at the 178 

USGS gaging station (#4193500) on the Maumee River at Waterville, OH, 42 km upstream from the lake. 179 

Three samples per day were collected using a refrigerated ISCO autosampler. During periods of high flow 180 

or high turbidity, all samples were analyzed; at other times only one sample per day is analyzed. 181 

Typically, this program provides 450 to 500 analyzed samples per year (Heidelberg, 2015). Discharge 182 

was determined from the USGS data.  Monthly loads were calculated as the sum of daily loads (Richards 183 

et al., 2009). Any days with missing flow-weighted mean concentrations (<5% of the time) were 184 

interpolated from previous days.    185 

 186 

Bioavailable phosphorus was determined from TP, DRP, and the coefficients of Baker et al. (2014a).  187 

Baker et al. (2014a) found that the unreactive phosphorus is a negligible component of the dissolved 188 

phosphorus.  Therefore, total particulate phosphorus (TPP) was determined as the difference between TP 189 

and DRP (TP – DRP) following Baker et al. (2014a).  Total bioavailable particulate phosphorus (TBPP) 190 

was then calculated from the Waterville TPP as  191 

 192 

TBPP = β × TPP     (1) 193 

 194 

where β is the proportion of the TPP that is bioavailable (0.26), with the value for β obtained from Baker 195 

et al. (2014a).   As particulate phosphorus is lost by settling between Waterville and Maumee Bay, the 196 

residual (TBPPresid) that reaches the lake was determined by  197 

 198 

TBPPresid = (1 – S) × TBPP  (2) 199 

 200 

where S is the settling term, or the proportion of TPP that settled out of the water. Baker et al. (2014b) 201 

showed that approximately 70% of the TPP settled out following a storm event in late August 2007.  The 202 
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total bioavailable phosphorus entering Lake Erie from the Maumee River is then the sum of the DRP and 203 

TBPPresid: 204 

 205 

TBP = DRP +   TBPPresid   (3) 206 

 207 

To better understand the influence of the bioavailable term (β) and the settling term (S), the sensitivity of 208 

the TBP was examined. In these sensitivity tests, β covered the range from 0. 2 to 0.3 (Baker et al., 209 

2014a) and S covering the range from no settling (S=0) to complete settling (S=1.0). Loads and CI values 210 

are found in Tables S1 and S2.  211 

 212 

Water Temperature 213 

Water temperature was determined using MODIS thermal data from 2002-2014.  Monthly averages were 214 

obtained from the Giovanni web site (NASA, 2015) for the southern section of the western basin west of 215 

82.741 W (Marblehead) and south of 41.914 N (latitude of north end of Pelee Island) The satellite collects 216 

data about 2:00 am and 2:00 pm local time.  The night and day data sets were obtained separately and 217 

compared.  While they capture variations caused by diurnal heating, the two sets differed less than 1 218 

degree C across the entire time period, no larger than the uncertainties in the measurement.   219 

 220 

Analysis Methods 221 

Following Stumpf et al. (2012), we examined the non-linear relationships of CI-avg and CI-max with 222 

accumulated monthly spring Q as well as TP, DRP, and TBP loads.  All of these relationships between 223 

the loads or discharge and the bloom magnitude are approximately exponential, thus log transforms were 224 

applied to the biomass data (i.e., log10(CI) against TBP)  to allow for parameterization using standard 225 

least squares linear regression. The resulting models have the form:  226 

CI = B × 10(a X)    (4) 227 

 228 

where X is the input variable (discharge, TP, DRP, or TBP), and a and B are parameters obtained from 229 

linear regression.  For consistency in comparing the plots, 70% variation in the slope is plotted, as this 230 

value captured the inter-quartile range of misfit of observed to regression in the best models.  Mean 231 

absolute deviation (mad) and standard deviation (sd) were determined between the modeled and observed 232 

CI in order to assess error and robustness of the models.  These excluded the two extreme load years: the 233 

lowest (2012) and the highest (2015), both of which were anomalous in several ways, as discussed in the 234 

Results and Discussion sections.  The mad provides a better metric for non-normal distributions, e.g., 235 

ones with some large misfits (Willmott and Katsuura, 2005), while the sd is a familiar metric. Spearman 236 
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rank correlation (rho) was applied to the bloom years (2003, 2004, 2008-2011, 2013-2015) to evaluate the 237 

effectiveness of the models in determining the relative size of the blooms. The sensitivity of TBP to 238 

variations in the values of bioavailable (B) and settling (S) was also considered.  239 

 240 

Results  241 

Stumpf et al. (2012) determined that total discharge from March through June provided the best metric for 242 

estimating bloom magnitude for 2002-2011. Likewise, the TP and DRP loads for March-June had the best 243 

relationships with the CI (TBP was not examined in that paper nor in Obenour et al., 2014). The CI-max 244 

show weaker relationships for March through June discharges and phosphorus loads when 2012 to 2015 245 

data are included (Table 1, Figure 4), because the 2012 and 2013 blooms were larger than expected 246 

compared to the other years.  The 2014 bloom falls within the 2002-2011 data.   247 

 248 

Because western Lake Erie blooms establish in July (Bridgeman et al., 2013) and peak in late August or 249 

early September (Wynne and Stumpf, 2015), we examined the relationships between CI-max and nutrient 250 

loads from March through July to assess the influence of July in explaining the recent blooms. July had 251 

relatively large TBP (and discharge) in 2003, 2008, 2013, and 2015 (Figure 5). By including the July 252 

loads, the 2013 bloom was slightly better modeled (Figure 4B), however the 2003 bloom was not, and 253 

2003 had a bloom much smaller than expected from either discharge or any phosphorus load (Figure 4B). 254 

(The Discussion section will further consider variations in 2015.)  The model error increases for all loads 255 

(Table 1).  The 2008 bloom shows a slight difference when including July loads.  256 

 257 

As temperature is important for cyanobacterial growth, the western basin water temperatures were 258 

examined to better understand why the 2003 bloom was small for the March to July TBP (Figure 4B).  In 259 

2003 and 2008, June was much colder (17.7 ºC in 2003; 16.7 ºC in 2008) than in the other years (all 260 

above 20 ºC; Figure 6).  In contrast, 2013, which had similar loads prior to July, had a mean temperature 261 

of 21.3ºC.  Cyanobacteria favor temperatures above 20⁰C (Imai et al., 2009; Paerl and Huisman 2009), 262 

indicating growth would have been severely depressed by cold temperatures in early summer during 2003 263 

and 2008. Cold temperatures may also represent a surrogate for a combination of factors, like strong 264 

winds and cloudy weather that can also reduce cyanobacterial growth.  Under conditions associated with 265 

June temperatures < 20⁰C, the growth of Microcystis may be delayed and not be present to use the July 266 

loads.  The relationship between CI-max (bloom biomass) and TBP improved greatly when including July 267 

only during warm (June) summers (Figure 4C, Table 1).  The 2013 bloom was still smaller than modeled, 268 

as was 2012, which had no significant load in July.  Including August discharge or loads (not shown) did 269 

not improve the models, possibly because of nutrient limitation (Chaffin et al., 2014).  More likely, 270 
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August was not important because August loads were negligible in all years— except 2007 (Baker et al., 271 

2014b) when the spring loads and bloom were also minimal—also suggesting that the lack of early season 272 

growth limits the use of the late season nutrients.   273 

 274 

Because the bloom develops rapidly during July and August (Bridgeman et al., 2013), the July 275 

phosphorus loads during normal warm temperatures may have a larger influence on the bloom biomass 276 

than the previous months (March through June) (Chaffin et al., 2011).  Namely, some of the phosphorus 277 

provided to the lake from March to June may be lost to the eukaryotic phytoplankton before the 278 

cyanobacterial bloom starts.  Indeed, by reducing the influence of March through June loads by half and 279 

using the entire July load at normal temperature (Figure 4D, Table 1), the model has the best fit with all 280 

years, except for 2012 (and 2015, covered in Discussion).  This result raises a question about the timing 281 

of bloom initiation.  If July loads are a factor, then the possibility exists that the loads only during June 282 

and July would drive the blooms.  Stumpf et al. (2012) observed that June loads alone might explain most 283 

years except 2004 and 2011.  The combined load from June and July, however, does not provide a 284 

meaningful pattern compared to the bloom biomass (Figure 7), with similar results for the other loads.  285 

Extremely low TBP loads for June and July (less than 20 m.tons) corresponded to smaller blooms, with 286 

no pattern for the larger blooms.  In fact, 2011, one of the two biggest blooms had one of the smaller 287 

loads in June and July. 288 

 289 

The models applying the March through July loads, with the exclusion of July in cold Junes, best 290 

described the observed biomass (Figure 4C, Figure 4D).  Table 2 gives the parameters (B and a) for 291 

equation 4 for the equally weighted March to July and the March to July with reduced weight for March 292 

to June.   293 

 294 

Sensitivity 295 

The results shown here were mostly insensitive to variations in the bioavailable fraction (β) of phosphorus 296 

(Equation 1; Figure S1) or in the settling rate (Equation 2; Figure S2). The range of the bioavailable 297 

fraction (β) of TBPP of 0.2 to 0.3 reported in Baker et al. (2014a) results in a variation of 5% in TBP, 298 

which is negligible in the model (Figure S1).  Larger variations in β are not warranted (Baker et al., 299 

2014a).  The settling rate of suspended sediment and associated particulate phosphorus (between the 300 

sampling station at Waterville, OH and Lake Erie proper), had only a slight impact on the error terms with 301 

the mad of 1.87 for S=0.3, and a mad of 1.67 for S=0.5 and S=1.0.   The largest differences in the models 302 

occurs with total settling (mad=2.3).  Complete settling or no settling are unrealistic and have not been 303 

observed in this system (Baker et al., 2014b) The likely settling residual is more realistically between 0.3 304 
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and 0.5, which contributes at most a 10% change in TBP, which would lead to small uncertainty in the 305 

models.  306 

 307 

Discussion  308 

The bloom size was best modeled using discharge and TBP loading from March through July, with July 309 

excluded only when June water temperatures were below the optimal temperature (20 ºC)  for Microcystis 310 

growth (Imai et al., 2009; Paerl and Huisman 2009).  Discharge, Q, continued to provide the best 311 

predictor of the annual bloom biomass. While the uncertainty (mad) with Q is slightly higher than for 312 

TBP, Q is superior at determining the relative size of the blooms (Spearman rho in Table 2).  Discharge, 313 

of course, is not, by itself, useful for a management strategy. Of the phosphorus metrics (Table 2), TBP 314 

explained the bloom biomass well and better than a TP model, both as estimated and for relative size 315 

(Table 2).  This result was expected; the bioavailable phosphorus that reaches the lake is the ecologically 316 

relevant load, and so provides the information critical for nutrient management strategies.   317 

 318 

Several significant questions arise from these results:  (1) what is the appropriate model for predicting 319 

annual bloom severity and should the original March to June model used by Stumpf et al. (2012) and 320 

Obenour et al. (2014) be replaced; (2) what is the appropriate choice of phosphorus loading for target 321 

scenarios (3) do the results support a trend over time that yields larger blooms relative to phosphorus load 322 

as proposed by Obenour et al. (2014); (4) are there details we still do not understand after the inclusion of 323 

2012-2015 data?   324 

 325 

(1) For assessing annual severity, the results indicate that a model based on TBP for March to June, which 326 

was the recommended model of Stumpf et al. (2012), was insufficient with the additional data, because it 327 

under predicts the blooms of 2012, 2013, and 2015 by not including July loads.  When including July, 328 

models using TBP loads best approximate the inter-annual variability in the bloom biomass, compared to 329 

TP or DRP loads (Table 1, Table 2, and Figure 8).  Of particular note, TP loads provided poorer 330 

discrimination between all of the blooms (CI greater than 2) compared to TBP (or DRP) loads, with 331 

consistently lower Spearman’s rho (e.g., 0.73 vs 0.87 for TBP for weighted March to July) .  Also, 332 

parameterization with least squares regression led to fits that were strongly leveraged by 2005 (the 333 

smallest load used in the regression) and 2011 (the largest load used).  Using models constructed with 334 

those two years excluded, the TP model changed drastically and completely over-predicted 2011, whereas 335 

DRP and TBP models still closely predicted 2011 (Table 3).   336 

 337 
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The nutrient load through July should be considered because cyanobacterial growth typically starts in 338 

Lake Erie by the beginning of July (Bridgeman et al., 2013), although it intensifies in August in most 339 

years (Wynne and Stumpf, 2015).  Cells are available to take advantage of the fresh supply of TBP. If 340 

cyanobacterial growth starts later because of a cold early summer (e.g., in 2003), excluding the loads for 341 

July may be an appropriate model component.  This hypothesis can be examined more specifically with 342 

deterministic models, such as that of Verhamme et al. (2016).  The temperature exclusion may become 343 

irrelevant in the future if climate change leads to consistently warm Junes.  In the new analysis, loads 344 

from March through July had the best relationship with the total biomass, although 2015 would be over-345 

estimated.  Since these months cover an ecologically appropriate time period, subsequent forecast models 346 

should use March through July for predicting the seasonal cyanobacterial bloom.  Only one year, 2007, 347 

had a large nutrient load in August and that year had one of the smallest blooms, even in September 348 

(Figure 2, Figure 3).  349 

 350 

(2) Historically, evaluation of phosphorus load impacts in aquatic systems has focused on TP rather than 351 

on the bioavailable forms of phosphorus because virtually all TP from point sources was bioavailable 352 

(Baker et al., 2014a).   In contrast, phosphorus draining nonpoint sources tends to consist primarily of 353 

sediment-bound TPP, which is much less bioavailable (Baker et al., 2014a).  True bioavailability should 354 

include only that phosphorus that is both chemically and spatially bioavailable.  Settling determines 355 

spatial bioavailability; most phosphorus bound to suspended sediments does not reach the lake and is not 356 

available for bloom development under any conditions.  Since the mean spring DRP load is 27% (range 357 

15-38%) of the TP load at Waterville, the Maumee River delivers nearly equal amounts of DRP and TPP 358 

to Lake Erie; as a result, the TBPP load is less than the DRP load.  Varying the proportion of TPP that 359 

settled during delivery (S) should produce only slight variations in the amount of TBP (Figure S2), as 360 

DRP load component of TBP is greater than the TBPP component.   361 

 362 

(3)  Obenour et al. (2014) concluded that the HABs appear to be more sensitive to recent loads compared 363 

to the past decade; the results here do not support this conclusion.  Even though the models would under-364 

estimate the 2012 bloom, and the 2013 bloom would be under-estimated in some models, the 2014 bloom 365 

was indistinguishable from the other past blooms, and 2015 bloom would be overestimated by most 366 

models. At this time, evidence does not support the hypothesis of increasing sensitivity over time of the 367 

bloom growth to phosphorus loads.   368 

 369 

An additional consideration on trends is the temporal pattern in discharge over the 13 years studied here.  370 

The first six years (2002-2007) had five of both the smallest discharges (and P loads) and the smallest 371 
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blooms.  The last eight years (2008-2015) had all but one of the seven largest loads and seven largest 372 

blooms. This disparity can lead to a conclusion that there is a trend toward increasing bloom intensity.  373 

While a trend is possible, this pattern may also be a result of cyclicity in precipitation. Nevertheless, 374 

higher discharges and phosphorus loads of recent years also approximate conditions that are predicted to 375 

be more common with climate change (Hayhoe et al., 2010; Stow, 2015). In fact, precipitation and 376 

discharge have increased in the Maumee River basin over the last several decades (Stow, 2015), and 377 

climate change models forecast more frequent intense rainfalls in the region (Michalak et al., 2013).  378 

These climatic factors do not mean that a given phosphorus load will produce larger blooms in the future, 379 

but they do suggest that larger loads may become more common, increasing the risk of larger blooms.       380 

 381 

(4) What other factors are still not understood?  Each of the outlier years may provide information that 382 

lead to hypotheses that can be tested in the future with more data, or with other types of models.  The 383 

most striking outliers are 2003, 2012, 2013, and 2015.  In 2012, the bloom was larger than expected given 384 

the extremely small loads (lowest of all 13 years); but 2012 was also the only year that a small load 385 

followed a year with a massive bloom.  The 2011 bloom may have had a residual impact on 2012, either 386 

in residual cyanobacterial cells or in excess phosphorus available for internal loading.  In 2012, the central 387 

basin also had the largest measured hypoxia zone (Zhou et al., 2015), indicating unusual conditions that 388 

year. At this point, testing a residual impact requires the occurrence of another drought year following a 389 

severe bloom.  To further complicate 2012, Lake Erie was ice-free in the preceding winter (2011-2012), 390 

an uncommon event that occurred in one other year (2006) in this time series (Bai et al., 2015). 391 

 392 

The other outlier years have commonality in July loads.  Of these, 2013 has no obviously unusual 393 

characteristics, except for the large July load.  In 2003, the bloom tended to be smaller than expected 394 

when compared to the equivalent large bloom years and to the model relationships.  Though the 395 

Microcystis biomass measured by Bridgeman et al. (2013) indicates a locally strong and persistent bloom 396 

in 2003, the measurements from the satellite do not appear to be an underestimate as the bloom was 397 

localized primarily in and around Maumee Bay (Stumpf et al., 2012).  A chlorophyte bloom was still 398 

present in the first week of August (Fahnenstiel, pers. comm), and 2003 was cold in May as well as June 399 

(Figure 6).  Furthermore, 2003 was the first time in several years that a severe Microcystis bloom 400 

occurred in western Lake Erie.  The combination of these factors suggests that 2003 was anomalous in 401 

several ways, possibly contributing to the proportionately mild bloom.  The other year with a cold June, 402 

2008, shows a smaller anomaly, but this is consistent with the smaller July load in 2008.   403 

 404 

The 2015 Bloom. 405 
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The 2015 event pushed the limits of the system and models.   The monthly discharge was a record for 406 

June and the third greatest monthly discharge since the USGS began collecting data in 1939. Even the 407 

July load (Figure 5, Table S2) was larger than the entire March-July load for three of the years (Figure 408 

4B).  Unlike all other bloom years (Wynne and Stumpf, 2015), the 2015 bloom started near the islands 409 

rather than near the Maumee River mouth and did not appear in the far western lake until weeks later.  410 

This was likely due to light limitation from high turbidity associated with the storm event runoff and 411 

possibly the change in timing and spatial distribution of the phosphorus loads. The maximum bloom 412 

occurred in August, whereas other major bloom years had a maximum bloom in September (Figure 2). 413 

The dense scum that formed over a large part of the western basin (NOAA, 2015) may have led to an 414 

underestimate of the total biomass, because the satellite data cannot capture more information once scum 415 

completely covers the entire area of water observed in each pixel.  While 2015 fits a March to June model 416 

(Figure 4A), these many anomalous aspects of the 2015 bloom raise doubts about recommending a model 417 

based on the fit of 2015. However, that model is included in Table 2 for reference.   418 

 419 

The 2015 observations also suggest a limit to the non-linear relationship between phosphorus load and 420 

biomass.  An ecological reason for the observed non-linearity is suggested by the strength of discharge 421 

alone as a biomass predictor.  If the Maumee phosphorus is dispersed over a large area as a result of large 422 

discharge, then the bloom can also develop over a larger area.  As a result, the cells will have access to 423 

more ambient phosphorus that did not discharge from the Maumee River, leading to a non-linear 424 

relationship with Maumee phosphorus loads.  Eventually growth must slow due to limitation of available 425 

phosphorus or other factors like light, nitrogen, or micronutrients. The resultant curve would resemble a 426 

familiar logistic growth model, with 2015 falling within the reduced growth phase. (As the 2011 bloom 427 

peaked in the central basin, the bloom that year may have accessed more central basin “non-Maumee” 428 

phosphorus than in other years, leading to more biomass than might otherwise have occurred as suggested 429 

by Obenour et al., 2014.) While a logistic function could be fit through the data, there are too few data 430 

points to achieve a robust relationship for such a model.  A logistic function may improve prediction of 431 

the extreme blooms like 2015, but it would not improve the understanding or prediction of the load 432 

response for most moderate blooms until we have more years of data. 433 

 434 

Flow Weighted Mean Concentration. 435 

The spring (March to July) flow weighted mean concentration (FWMC) of TBP from the Maumee River 436 

is near 0.10 mg L-1 (Figure 9), which is the TP concentration that Downing et al. (2001) found was 437 

present when cyanobacterial dominance was most likely.  This concentration is much higher than what 438 

was observed in the 1990s because the FWMC for DRP approximately doubled from then into the present 439 
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century (Baker et al., 2014a). Our models are not currently based on FWMC, in part because FWMC has 440 

not changed drastically in the period of time with concurrent satellite bloom estimates. Therefore, 441 

discharge and phosphorus loads are all correlated. While discharge provides the best model of the bloom 442 

intensity for an annual forecast, it is not the most useful for setting nutrient reduction targets.  The 443 

effectiveness of discharge for predicting the annual biomass suggests that discharge implicitly describes 444 

dispersion of phosphorus across the lake with that dispersion potentially more important than the small 445 

inter-annual variations in FWMC.  One hypothesis for future scenario modeling for phosphorus is to 446 

simply apply the (updated) average FWMC to the discharge as a predictor.  We anticipate that large 447 

changes in FWMC would cause shifts in the modeled blooms compared to the current time period, and 448 

FWMC can be influenced by management strategies, unlike rainfall or discharge.  Scenario forecasting 449 

efforts should use TBP models to estimate bloom biomass, although seasonal predictions can be made 450 

with discharge (Figure 4C, 4D, Figure 8A, Table 2).  Further investigation of weighting factors for March 451 

to June will require other types of models as there are insufficient observations to parse annual patterns 452 

with statistical climatological models.  Evaluation with other models may become important if future 453 

years have large loads in July.  Future efforts should closely monitor the FWMC for bioavailable 454 

phosphorus for changes from the past 15 years.   455 

 456 

Conclusions  457 

The models developed here for western Lake Erie HABs can be used for two core purposes: forecasting 458 

the severity of the seasonal bloom and evaluating scenarios that would reduce the severity of HABs.  459 

While both discharge and TBP loads from March through July were good predictors of the biomass they 460 

serve different purposes.  Whereas discharge continues to produce the least uncertainty in estimating the 461 

relative annual bloom biomass, TBP provides the best information on phosphorus loads suitable for 462 

bloom reduction strategies.    Hence, strategies for reducing the flow-weighted mean concentration of 463 

TBP will have the largest influence on reducing the severity of HABs.  As the typical DRP concentration 464 

in the lake is below 0.02 mg L-1, a reduction in the phosphorus concentration entering the lake will likely 465 

reduce the area of the lake with concentrations that favor cyanobacterial blooms (Downing et al., 2001), 466 

regardless of the river discharge.  Because DRP comprises most of the bioavailable phosphorus entering 467 

the lake, reducing the FWMC of DRP should be a critical component of the phosphorus management 468 

plans, such as the Great Lakes Water Quality Agreement (GLWQA, 2012).   Future research should 469 

continue to examine the composition of TP as well as the bioavailability of particulate phosphorus.   470 

FWMC should continue to be examined in detail, as it provides an indicator that can be influenced by 471 

management strategies.   472 

 473 
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For understanding drivers of aquatic health, empirical models have a particular value in defining the 474 

actual conditions and providing a contrasting reference to deterministic simulation models such as the 475 

WLEEM and ELCOM-CAEDYM used in Lake Erie (Scavia et al., 2016; Verhamme et al., 2016).  476 

Nevertheless, outliers may exist for a variety of different ecological factors and care must be used to 477 

avoid over-fitting or over-interpretation of the data. Continued monitoring of both tributary loads as well 478 

as the size of the bloom using satellite imagery should help us observe unique patterns that point to causes 479 

of these outliers.  Each subsequent year of data will lead to understanding of the impacts of new nutrient 480 

management strategies on the timing of loading and bloom development.  These models point to the 481 

essential role that monitoring the health of our aquatic ecosystems can play on ecological, economic, and 482 

social systems.  483 

 484 

Acknowledgements 485 

 486 

This work was partially supported by NASA Public Health and Water Quality (NNH08ZDA001N)and the 487 
NASA Ocean Biology and Biochemistry Programs (proposal 14-SMDUNSOL14-0001). Support for the 488 
long-term monitoring program on the Maumee River near Waterville has come from many sources, most 489 
recently including the State of Ohio through the Ohio Department of Natural Resources, The Andersons 490 
Charitable Foundation, and The Fertilizer Institute.    491 

 492 

References 493 

Bai, X., Wang, J., Austin, J., Schwab, D.J., Assel, R.A., Clites, A.H., Bartton, J.F., Colton, M.C., Lenters, 494 

J., et al., 2015.  A record-breaking low ice cover over the Great Lakes during winter 2011/2012: 495 

Combined effects of a strong positive NAO and La Nina. Clim. Dynam. 44(5-6), 1187-1213.  496 

 497 

Baker, D.B., Confesor, R., Ewing, D.E., Johnson, L.T.,  Kramer, J.W., Merryfield B.J., 2014a. 498 

Phosphorus loading to Lake Erie from the Maumee, Sandusky, and Cuyahoga rivers: The importance of 499 

bioavailability. J. Great Lakes Res. 40, 502-517. 500 

 501 

Baker, D.B., Ewing, D.E., Johnson, L.T.  Kramer, J.W., Merryfield, B.J., Confesor, R.B., Richards, R. P., 502 

Roerdink, A.A., 2014b. Lagrangian analysis of the transport and processing of agricultural runoff in the 503 

lower Maumee River and Maumee Bay. J. Great Lakes Res. 40, 479-495. 504 

 505 

Bridgeman, T.B., Chaffin, J.D., Filbrun, J.E., 2013. A novel method for tracking western Lake Erie 506 

Microcystis blooms, 2002-2011. J. Great Lakes Res. 39, 83-89. 507 



16 
 

 508 

Budd, J.W.; Beeton, A.M.; Stumpf, R.P.; Culver, D.A.; Kerfoot, W.C., 2002. Satellite observations of 509 

Microcystis blooms in Western Lake Erie. Verh. Int. Ver. Theor. Angew. Limnol. 27, 3787–3793. 510 

 511 

Chaffin, J. D., Bridgeman, T. B., Heckathorn, S. A., Mishra, S., 2011. Assessment of Microcystis growth 512 

rate potential and nutrient status across a trophic gradient in western Lake Erie. J. Great Lakes Res. 37(1), 513 

92-100. 514 

 515 

Chaffin, J. D., Bridgeman, T. B., Bade, D. L., Mobilian, C. N., 2014. Summer phytoplankton nutrient 516 

limitation in Maumee Bay of Lake Erie during high-flow and low-flow years. J. Great Lakes Res. 40(3), 517 

524-531. 518 

 519 

Dolan, D.M,  Chapra, S.C.,  2012.  Great Lakes total phosphorus revisited:  1. Loading analysis and 520 

update (1994-2008).  J. Great Lakes Res. 38(4), 730-740. 521 

 522 

Downing, J.A., Watson, S.B.,  McCauley, E., 2001. Predicting cyanobacteria dominance in lakes. Can. J. 523 

Fish. Aquat. Sci. 58, 1905-1908. 524 

 525 

Gorard, S., 2005.  Revisiting a 90-year-old debate: the advantages of the mean deviation.  Brit. J. Educ. 526 

Stud. 53(4),  417-430. 527 

 528 

GLWQA, 2012. Great Lakes Water Quality Agreement,  http://www2.epa.gov/glwqa. Accessed 529 

September 23, 2015. 530 

 531 

Heidelberg, 2015. National Center for Water Quality Research Tributary Data Download,  532 

http://www.heidelberg.edu/academiclife/distinctive/ncwqr/data, Accessed April 5, 2016. 533 

 534 

Imai, H., Chang, K. H., Kusaba, M., Nakano, S. I., 2009. Temperature-dependent dominance of 535 

Microcystis (Cyanophyceae) species: M. aeruginosa and M. wesenbergii. J. Plankton Res. 31(2), 171-178. 536 

 537 

Kane, D.D., Conroy, J.D., Richards, R.P., Baker, D.B., Culver., D.A., 2014. Re-eutrophication of Lake 538 

Erie: Correlations between tributary nutrient loads and phytoplankton biomass. J. Great Lakes Res. 40, 539 

496-501. 540 

 541 

http://www.heidelberg.edu/academiclife/distinctive/ncwqr/data


17 
 

Lunetta, R.S., Schaeffer, B.A., Stumpf, R.P.,  Keith, D., Jacobs, S. A., Murphy, M.S., 2015. Evaluation of 542 

cyanobacteria cell count detection derived from MERIS imagery across the eastern USA.  Remote Sens. 543 

Environ. 157:24-34. 544 

 545 

Michalak, A.M., Anderson, E.J., Beletsky, D., Boland, S., Bosch, N.S., Bridgeman, T.B., Chaffin, 546 

J.D.,Cho, K., Confesor, R., Daloglu, I.; et al., 2013.  Record setting algal bloom in Lake Erie caused by 547 

agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. 548 

USA. 110, 6448–6452. 549 

 550 

NASA. 2015. Giovanni.   http://giovanni.sci.gsfc.nasa.gov/giovanni/. Accessed September 22, 2015. 551 

 552 

NOAA. 2012. NOAA news story: NOAA, partners predict mild harmful algal blooms for western Lake 553 

Erie this year, 05 July 2012.  http://www.noaanews.noaa.gov/stories2012/20120705_habs.html. Accessed 554 

March 4, 2016. 555 

NOAA. 2013. NOAA, partners predict significant harmful algal bloom in western Lake Erie, 02 July 556 

2013. http://www.noaanews.noaa.gov/stories2013/20130702_lakeeriehabs.html. Accessed March 4, 2016. 557 

NOAA. 2014. NOAA, partners predict significant harmful algal bloom in western Lake Erie, 10 July 558 

2014.  http://www.noaanews.noaa.gov/stories2014/20140710_erie_hab.html. Accessed March 4, 2016. 559 

NOAA. 2015. Lake Erie HAB Bulletin. 560 

http://www.glerl.noaa.gov/res/HABs_and_Hypoxia/lakeErieHABArchive/. Accessed February 29, 2016. 561 

Obenour, D.R., Gronewold, A.D., Stow, C.A.,  Scavia. D., 2014. Using a Bayesian hierarchial model to 562 

improve Lake Erie cyanobacteria bloom forecasts. Water Resourc. Res. 50, 7847-7860. 563 

 564 

Ohio EPA, 2013, Ohio Lake Erie Phosphorus Task Force II Final Report. Ohio Environmental Protection 565 

Agency.   http://www.epa.ohio.gov/dsw/lakeerie/index.aspx#126087070-phase-i-information, accessed 566 

April 3, 2016. 567 

Paerl, H. W., Huisman, J., 2009. Climate Change: a catalyst for global expansion of harmful 568 

cyanobacterial blooms. Environ. Microbiol. Rep. 1, 27-37. 569 

Richards, R.P., Baker, D.B., Crumrine, J.P., 2009. Improved water quality in Ohio tributaries 570 

to Lake Erie: a consequence of conservation practices. J. Soil Water Conserv. 64, 200–211. 571 

 572 

http://giovanni.sci.gsfc.nasa.gov/giovanni/
http://www.noaanews.noaa.gov/stories2012/20120705_habs.html
http://www.noaanews.noaa.gov/stories2013/20130702_lakeeriehabs.html
http://www.noaanews.noaa.gov/stories2014/20140710_erie_hab.html
http://www.glerl.noaa.gov/res/HABs_and_Hypoxia/lakeErieHABArchive/
http://www.epa.ohio.gov/dsw/lakeerie/index.aspx#126087070-phase-i-information


18 
 

Scavia, D., Allan, J. D., Arend, K. K., Bartell, S., Beletsky, D. Bosch, N. S., Brandt, S. B.,  Briland, R. D.,  573 

Daloğlu, I., DePinto, J. V., Dolan, D. M., Evans, M. A., Farmer, T. M., Goto, D., Han, H., Höök, T. O., 574 

Knight, R.,  Ludsin, S. A., Mason, D.,  Michalak, A. M.,  Richards, R. P., Roberts, J. J., Rucinski, D. K., 575 

Rutherford, E., Schwab, D. J., Sesterhenn, T., Zhang, H., Zhou, Y., 2014, Assessing and addressing the 576 

re-eutrophication of Lake Erie: Central Basin Hypoxia.  J. Great Lakes Res. 40, 226–246. 577 

 578 

Scavia, D., DePinto, J.V., Bertani, I., 2016. A Multi-Model approach to evaluating target phosphorus 579 

loads for Lake Erie. J. Great Lakes Res. (this issue). 580 

 581 

Stow, C.A. 2015. The need for sustained, long-term phosphorus modeling in the Great Lakes.  J. Great 582 

Lakes Res. 41, 315-316. 583 

 584 

Stumpf, R.P., Wynne, T.T., Baker, D.B.,  Fahnenstiel, G.L., 2012. Interannual variability of 585 

cyanobacterial blooms in Lake Erie. PLoS ONE. 7(8): e42444. doi:10.1371/journal.pone.0042444. 586 

Verhamme, E.M., Redder, T., Schlea, D., Grush, J., Bratton, J.F.,  DePinto, J.V., 2016. Development of 587 

the western Lake Erie Ecosystem Model (WLEEM): Application to connect phosphorus loads to 588 

cyanobacteria biomass. J. Great Lakes Res. (this issue). 589 

Willmott, C.J., Matsuura, K., 2005.  Advantages of the mean absolute error (MAEW) over the root mean 590 

square error (RMSE) in assessing average model performance.  Clim. Res. 30, 79-82. 591 

Wynne, T.T., Stumpf, R.P., 2015. Spatial and temporal patterns in the seasonal distribution of toxic 592 

cyanobacteria in western Lake Erie from 2002-2014. Toxins. 7, 1649-1663.  593 

Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., Fahnensteil, G.L., Schwab, D.J., Dyble, J.,  Joshi, S., 594 

2013a. Evolution of a cyanobacterial bloom forecast system in western Lake Erie: development and initial 595 

evaluation. J. Great Lakes Res. 39, 90-99. 596 

Wynne, T.T., Stumpf, R.P., Briggs, T.O.,  2013b. Comparing MODIS and MERIS spectral shapes for 597 

cyanobacterial bloom detection.  Int. J. Remote Sens. 34, 6668-6678. 598 

Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., Dyble J.,  2010. Characterizing a cyanobacterial bloom in 599 

western Lake Erie using satellite imagery and metrological data.  Limnol.  Oceanogr. 55(5), 2025-2036. 600 

Zhou, Y., Michalak, A. M., Beletsky, D., Rao, Y. R., Richards, R. P. 2015. Record-breaking Lake Erie 601 

hypoxia during 2012 drought. Environ. Sci. Tech. 49(2), 800-807. 602 



19 
 

 603 

Table 1.  Mean absolute deviation (mad) in CI units and Spearman’s rho for the several models for each 604 

of the variables, load of Q (106 m3), TP, DRP, or TBP (metric tons).   605 

 606 

 mad rho 

 Mar-Jun Mar-Jul Mar-Jul 

warm 

Mar-Jul wgt Mar-Jun Mar-Jul Mar-Jul 

warm 

Mar-Jul 

wgt 

Q 1.8  2.4  2.3  2.0  0.75 0.62 0.87 0.93 

TP 2.2  2.8  2.7  2.8  0.48 0.55 0.55 0.73 

DRP 2.6  3.6  2.4  2.3  0.70 0.58 0.68 0.87 

TBP 2.2  3.3  2.0  1.9  0.70 0.63 0.72 0.87 

 607 

 608 

Table 2.  Coefficients for the March to July unweighted and weighted models with CI_max (Figures 4 609 

and 8).  “Unweighted” and “weighted” are March to July models with warm June.  March to June (for 610 

reference against Stumpf et al., 2012), and March to July without temperature change are shown for 611 

completeness.  Coefficients B and a are from equation 4:  CI biomass = B × 10(a X), where X is the total 612 

load of Q (106 m3), TP, DRP, or TBP (metric tons).   613 

 614 

 unweighted weighted Mar-Jun Mar-Jul 

 B a×10-3 B a×10-3  B a×10-3 B a×10-3 

Q 0.11 0.503 0.081 1.05 0.27 0.401 0.23 0.392 

TP 0.40 0.864 0.31 1.85 0.57 0.748 0.55 0.713 

DRP 0.38 4.12 0.34 8.30 0.48 3.87 0.55 3.30 

TBP 0.37 3.26 0.32 6.67 0.47 3.06 0.51 2.70 

 615 

 616 

Table 3. CI prediction of 2011, and percentage of predicted to observed 2011, for regression 617 

parameterization excluding 2005 and 2011. Observed CI-max for 2011 was 29.1.  618 

 619 

Model    Mar-July unweighted (%) March-Jul weighted (%) 620 

TP  105 (360%)  160 (550%) 621 

DRP    23  (79%)      21  (72%) 622 

TBP    27  (93%)     26  (91%) 623 
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 626 

 627 
 628 
List of Figures 629 
 630 
Figure 1.  Western Lake Erie location.  631 
 632 
Figure 2.  Time Series of the total biomass measured as CI based on the 10-day composites. Eleven 633 
periods cover each year, starting July 11 and ending October 31.  Threshold at CI= 1 for readability (not 634 
the log scale 635 

Figure 3.  Bloom pattern at peak biomass for each year. Green (in center of scale bar corresponds to 636 
threshold of hazardous bloom (CI=0.001, Stumpf et al., 2012).  637 

Figure 4.  Relationships between total bioavailable phosphorus (TBP, which includes settling correction 638 

of equations 2-3) and biomass (CI units of (CI-max= 1020 cells) for March to June (A), March to July (B), 639 

and March to July, with July included only for warm Junes (C), and with the same parameters as (C) but 640 

with March to June loads weighted at ½ of July (D).  Dark line is relationship with values shown in Table 641 

2.  Thin lines show +/- 70% of slope.  The mad and sd are the mean absolute deviation and standard 642 

deviation of observed against the regression line, excluding 2012 and 2015.     643 

 644 
Figure 5.  July load of total bioavailable phosphorus.   645 
 646 
Figure 6.  Western basin average monthly water temperature for May, June, and July from 2002-2014.  647 

Figure 7.  The lack of a relationship between the bloom severity (CI max) and the combined June and July 648 
TBP loads only (without March to May loads).   649 

Figure 8.  Relationships between CI-max and March to July, with July included only for warm Junes and 650 
March to June loads weighted at ½ of July for (A) discharge (Q), (B) TP loads, (C) DRP loads, and (D) 651 
TBP loads.   652 

Figure 9. Flow weighted mean concentration (FWMC) of the total bioavailable phosphorus for March to 653 
July.   654 

 655 
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