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ABSTRACT

The National Centers for Environmental Prediction (NCEP) stage IV quantitative precipitation estimates

(QPEs) are used in many studies for intercomparisons including those for satellite QPEs. An overview of the

NationalWeather Service precipitation processing system is provided here so as to set the stage IV product in

context and to provide users with some knowledge as to how it is developed. Then, an assessment of the stage

IV product over the period 2002–12 is provided. The assessment shows that the stage IV product can be useful

for conditional comparisons of moderate-to-heavy rainfall for select seasons and locations. When evaluating

the product at the daily scale, there aremany discontinuities due to the operational processing at the radar site

as well as discontinuities due to the merging of data from different River Forecast Centers (RFCs) that use

much different processing algorithms for generating their precipitation estimates. An assessment of the daily

precipitation estimates is provided based on the cumulative distribution function for all of the daily estimates

for each RFC by season. In addition it is found that the hourly estimates at certain RFCs suffer from lack of

manual quality control and caution should be used.

1. Introduction

Many studies have used the National Weather

Service/National Centers for Environmental Prediction

(NWS/NCEP) stage IV quantitative precipitation esti-

mates (QPEs) for analysis and comparison. The NCEP

stage IV product, herein referred to as stage IV, is a

near-real-time product that is generated at NCEP sep-

arately based on theNEXRADPrecipitation Processing

System (PPS; Fulton et al. 1998) and the NWS River

Forecast Center (RFC) precipitation processing (Seo

and Breidenbach 2002). Originally, the stage IV product

was intended for assimilation into atmospheric forecast

models to improve quantitative precipitation forecasts

(QPFs; Lin and Mitchell 2005). The product as it is

currently generated and archived has become quite

popular for various applications. However, there is some

confusion as to what the stage IV product is, what it is

not, and how it is produced. This paper attempts to an-

swer these questions as well as present the quantitative

and qualitative measures of the product itself.

A review of the studies that use the stage IV product

can be categorized into five main topics: assimilation,

hydrologic model evaluation, QPF evaluation, radar

QPE evaluation and comparison, and satellite QPE
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comparison. Lopez and Bauer (2007) investigated the

impact of using stage IV data for 1D and 4D variational

assimilations, and Lopez (2011) used the stage IV product

for 4D variational assimilation in the easternUnited States

in the ECMWF’s global Integrated Forecast System.

Gourley et al. (2011) used stage IV and satellite QPEs

in a comparison for calibration of a hydrologic model.

Kalinga and Gan (2010) used stage IV results for as-

sessing the infrared microwave rainfall algorithm via the

Sacramento soil moisture model (Burnash et al. 1973).

Yilmaz et al. (2005) compared gauge-, radar-, and

satellite-based precipitation estimates accounting for

hydrologic modeling. Habib et al. (2008) used stage IV

data as input into a salinity model to study the effects of

the variability of rainfall on the model outputs. Several

studies used the stage IV data for evaluation of QPFs

from different forecast models (Gallus 2002; Davis et al.

2006a,b; Yuan et al. 2007a,b, 2008, 2009).

Several studies have performed evaluations of the stage

IV product but for limited spatial and/or temporal ex-

tents. Wang et al. (2008) used gauges to compare the

stage IV product with the RFC specific stage III product

for one basin in Texas. Themain finding for this basin was

that the Multisensor Precipitation Estimation (MPE)

has a higher capability of rain detection than do gauges or

stage III data. Westcott et al. (2008) compared monthly

gauges amounts to the stage IV product and found that

stage IV overestimates precipitation at the low end and

underestimates precipitation at the high end. Habib et al.

(2009a) performed a validation of the stage IV product

using a dense network of gauges over Louisiana at small

spatial and temporal scales. Nelson et al. (2010) used

stage IV data for comparison to a reanalysis product over

the southeastern United States. They found that the

added value of quality control of the input radar-only

products and gauge data provided better estimates of

multisensor precipitation as compared to stage IV. Wu

et al. (2012) evaluated the National Mosaic and Multi-

sensor Quantitative (NMQ) Precipitation Estimation

System (Zhang et al. 2011) for two seasons during 2009

using gauges and the stage IV product as supplementary

information. They found some improved statistics for the

NMQ versus the stage IV products but the 6-hourly stage

IV product has a higher correlation coefficient than the

1-h stage IV product. Habib et al. (2013) evaluated six

different products from the NWS MPE algorithm over

Louisiana using rain gauges. They conclude that the most

effective improvement in the rainfall products comes from

applying the mean-field bias adjustment to the radar-only

product. Hou et al. (2014) describe a methodology for

generating a new dataset by adjusting 6-h accumulations

of the stage IV data to the NWS Climate Prediction

Center (CPC) unified gauge estimates. (Chen et al. 2008)

The method has some limitations with heavy-to-extreme

precipitation. Although there are many studies evaluating

the stage IV product, these studies are limited in their

scope spatially and/or temporally. To date, no compre-

hensive assessment of the product exists.

The stage IV product is getting by far the most use in

satellite QPE intercomparisons. Joseph et al. (2009)

have created a high-resolution multisatellite-derived

QPE [using Special Sensor Microwave Imager (SSM/I),

Advanced Microwave Sounding Unit (AMSU-B), Ad-

vanced Microwave Scanning Radiometer (AMSR),

Advanced Microwave Scanning Radiometer for Earth

Observing System (AMSR-E), and TRMM Microwave

Imager (TMI)] and used the stage IV data for compar-

ison. Several studies used the stage IV for comparison

and verification of algorithms to improve satellite QPEs

(Ferraro et al. 2005; Hong et al. 2006; Barros and Tao

2008; Tao and Barros 2010; Tesfagiorgis et al. 2011).

Villarini et al. (2011) evaluated QPEs for a satellite

(TRMM), a model [North American Land Data As-

similation System (NLDAS)], and radar (stage IV) for

three hurricanes during 2004 and found stage IV to be

the best. Jiang et al. (2008) used stage IV to evaluate

satellite QPEs for Hurricane Isidore. Zagrodnik and

Jiang (2014) used the stage IV product to evaluate the

TRMM PR and TMI products for landfalling tropical

cyclones over the southeastern United States. Habib

et al. (2009b) evaluated TRMM-based estimates over

Louisiana for tropical-based heavy rainfall events.

Habib et al. (2012) evaluated the CPC morphing tech-

nique (CMORPH; Joyce et al. 2004) using a dense rain

gauge network overLouisiana.And, finally,AghaKouchak

et al. (2011) evaluated four different satellite QPEs

[CMORPH, Precipitation Estimation from Remotely

Sensed Information Using Artificial Neural Networks

(PERSIANN; Hsu et al. 1997), TRMM-RT, and

TRMM-V6] using stage IV. Each of these studies used

the stage IV product for analysis, but an assessment of

the stage IV product does not exist that these studies can

reference. This paper provides such an assessment.

This paper is organized as follows. Section 2 provides

an overview of the stage IV development and process-

ing. Section 3 presents the issues and biases that are

evident in the stage IV product. Section 4 presents an

attempt at conterminous United States (CONUS) wide

comparisons for illustration of the issues and biases

raised in section 3. Section 5 provides conclusions and

recommendations.

2. NWS precipitation processing

We provide a brief overview of the data products

generated at the radar site, the RFCs, and NCEP.
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Currently there are 144 Weather Surveillance Radar-

1988 Doppler (WSR-88D) sites in the CONUS, Hawaii,

and Alaska. WSR-88D sites also exist in Guam, South

Korea, and Japan. Klazura and Imy (1993) provide de-

tails as to the products that were initially generated at

the WSR-88D sites, and Fulton et al. (1998) provide a

detailed description of the operational WSR-88D pre-

cipitation algorithm. Kitzmiller et al. (2013) give an

overview of the estimation techniques in the National

Weather Service’s hydrologic operations.

a. Radar-site processing

1) LEVEL PRODUCTS

Historically, WSR-88Ds have produced three

base products—radial velocity, spectrum width, and

reflectivity—referred to as level II data. Initially, these

products were recorded at 18 and 1-km spatial resolution

and at 5-, 6-, or 10-min (depending on the radar scanning

strategy) temporal resolution (Crum et al. 1993). Re-

cently, the WSR-88D sites were upgraded to be able to

provide products at higher spatial resolutions of 0.58 and
0.5 km. Level II data are used by NWS Weather Fore-

cast Offices (WFOs) for real-time monitoring and

warning of severe weather. In addition, the level II data

(specifically the reflectivity product) are processed

through the WSR-88D rainfall algorithm (Fulton et al.

1998) to provide products to the NWS RFCs for real-

time decision support and warnings. These are typically

called level III products.

2) STAGE I

Calibrated, quality controlled reflectivity data are input

into the PPS. The PPS algorithm involves five scientific

processing components: (i) reflectivity preprocessing,

(ii) rain-rate conversion, (iii) rainfall accumulation, (iv) pre-

cipitation adjustment, and (v) precipitation products; see

Fulton et al. (1998) for a detailed description of each of

the five processing components. This algorithm, which

runs at each WSR-88D site, is called stage I and pro-

duces theDigital PrecipitationArray (DPA). TheDPAs

are produced at hourly 4km 3 4 km resolution. The

DPA data are then passed to the NWS RFC for hydro-

logic forecasting.

3) STAGE II

Stage II data are generated from the stage I and rain-

gauge estimates. Stages II and III (Hudlow 1988) were

used only until about 2002, at that point MPE replaced

stage III and stage II was removed (Seo and Breidenbach

2002). Stage II consists of a radar only estimate, rain-

gauge data, and a multisensor estimate. The stage II

process consists of a mean field bias correction (Smith

and Krajewski 1991) and radar–gauge merging (Hudlow

1988), resulting in the multisensor precipitation estimate.

b. RFC processing

1) STAGE III

Prior to 2002, stage III of the NWS rainfall PPS re-

ferred to the creation of the RFC-wide mosaic of the

stage II data. It was a mosaic of stage II multisensor data

from multiple radars in an RFC’s domain that was

gridded to the national Hydrologic Rainfall Analysis

Projection (HRAP;Greene andHudlow 1982; Reed and

Maidment 1999). Figure 1 shows the 13 RFC domains,

and Table 1 provides the RFC names and abbreviations

as well as their locations. RFCs had control to manually

edit or remove bad data in the stage III processing.

Stages II and III were replaced in 2002 by the multi-

sensor precipitation estimator (for most RFCs).

2) MULTISENSOR PRECIPITATION ESTIMATOR

The multisensor precipitation estimator incorporated

improvements based on experience with the stage II and

III processing. However, some RFCs do not use the

MPE algorithm. For example, the Arkansas–Red basin

RFC (ABRFC) uses its own version of multisensor

processing called the P3 algorithm (Young et al. 2000;

Seo and Breidenbach 2002). Furthermore, the California–

Nevada RFC, the Northwest RFC, and the Colorado-

basin RFC do not include radar-based estimates in their

regional processing (Hou et al. 2014). In addition, radar

coverage in the westernUnited States is poor as a result of

the scarcity of the radar network and blockage from the

mountains (Maddox et al. 2002). Figure 1 shows the radar

coverage over the CONUS at 230km from the radar.

Figure 1 also shows the radar locations and their range

rings along with the overlap of other radars in the vicinity.

The MPE is similar to stage III in that there is flexibility

for the RFC to quality control bad radar and gauge data,

and then theDPA and rain-gauge data aremerged via the

MPE algorithm. In addition, MPE has a component de-

signed to merge satellite QPEs from the NOAA Hydro-

estimator (Scofield and Kuligowski 2003). The MPE

includes several different products at the RFC-wide do-

main including radar-only, bias-adjusted radar (both

mean field and local); gauge only; and satellite bias ad-

justed (Seo and Breidenbach 2002).

3) MOUNTAIN MAPPER

The western CONUS RFCs use a different rainfall

processing algorithm. For instance, the California–Nevada,

Northwest, and Colorado-basinRFCs use what is known

as theMountainMapper (Hou et al. 2014; Schaake et al.

2004). Mountain Mapper is a gauge-only algorithm that
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attempts to adjust for climatological variations due to

topography and wind directions similar to a Parameter-

Elevation Regressions on Independent Slopes Model

(PRISM) type adjustment (Daly et al. 1994).

4) P3 ALGORITHM

In P3, the first step is to merge the hourly digital

precipitation (HDP) products to produce a radar-only

product for the entire RFC area. The next step involves

computing the ratio between the gauge- and radar-only

precipitation estimates and assigning the ratio to the

HRAP cell that contains the gauge. For HRAP cells

that do not contain a gauge, a ratio is computed from

nearby cells by interpolation using a distance-weighting

scheme. In the final step, the radar precipitation esti-

mates are multiplied by the ratio field to produce the P3

multisensor precipitation product. The P3 algorithm

generates a QPE field that tends to agree more with

gauge reports near gauge sites; thus, long-term aver-

aging shows evidence of the ‘‘bull’s-eye’’ effect.

c. NCEP processing

1) NCEP STAGE II

During the 1995–96 time frame, NCEP started pro-

ducing its own stage II product. We only provide a de-

scription of the NCEP stage II product for information,

and we do not use it in our analysis. NCEP produces two

CONUS-wide products, stages II and IV, which cause

some confusion with the stage II product that was pro-

duced at the RFCs (described previously in this section).

It is important to note that the NCEP stage II product is

different than theNWSPPS stage II product. TheNCEP

stage II algorithm was adapted from the optimal rainfall

algorithm developed by the NWS Office of Hydrologic

Development (OHD; Seo 1998) and produced on the

national HRAP grid. This national product was de-

veloped for data assimilation for use in national QPF

(Lin andMitchell 2005). NCEP stage II uses ASOS sites

and the DPA (also known as stage I) data to generate an

hourly 4-km QPE in near–real time, and then it uses the

FIG. 1. NWS RFC domains and NEXRAD radar sites.
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HADS (Kim et al. 2009) automated gauges and DPA to

rerun the hourly 4-kmQPE 6 and 18h later. The impetus

for generating the near-real-time QPE is for QPF data

assimilation.

2) NCEP STAGE IV

In 2001, stage IV data began to be operationally pro-

duced at NCEP’s Environmental Modeling Center

(EMC). Lin and Mitchell (2005) provide an overview

of the stage IV process, and NCEP maintains an in-

formational web page to provide other details of the stage

IV process (http://www.emc.ncep.noaa.gov/mmb/ylin/

pcpanl/stage4/). Archived stage IV data are available

from the National Center for Atmospheric Research

(NCAR) (CPC/National Centers for Environmental

Prediction/NWS/NOAA/U.S. Department of Commerce,

and Joint Office for Science Support/UCAR 2000). Stage

IV data are the mosaicked data from the 12 RFCs in the

CONUS (Alaska is not included in stage IV). The pre-

cipitation estimates from each RFC (i.e., theMPE, P3, or

Mountain Mapper estimates), which NCEP terms the

Regional Multisensor Precipitation Analysis (RMPA),

are sent to NCEP at semiregular intervals. NCEP per-

forms the mosaic for hourly and 6-hourly CONUS-wide

maps that are gridded in their original projection (HRAP).

The 24-h stage IV product reprocessed 24h after the

verification time is the most accurate product for post-

analysis of precipitation data. Use of the stage IV products

in real time is not optimal as the hourly and 6-hourly maps

are generated at differing times and for different reasons.

For example, RFCs generate hourly and 6-hourly analyses

first in an automated sense with nomanual quality control.

Then, the analysis is done several hours later in manual

mode with quality control performed by a human analyst.

So NCEP generates the national mosaic of hourly,

6-hourly, and daily mosaics at top-of-the-hour (i.e., ap-

proximately 30-min delay) periods with some RFCs

sending theirRMPAs at varying time periods. Therefore, a

complete CONUS-wide map may not be available until

several hours later. NCEP also produces a 24-h analysis

that is the summation of the 6-hourly analysis. In addition,

at least one RFC does not send hourly RMPA (Northwest

RFC) to NCEP for processing. They only send the 6-h

RMPA. It is also important to note that the 6-hourly

analysis files are not the accumulation of the hourly anal-

ysis. The RFCs send hourly and 6-hourly analysis sepa-

rately. The hourly RMPAs that NCEP receives are not

manually quality controlled. However, the 6-hourly anal-

ysis that is included in the NCEP stage IV are the pre-

cipitation maps that are manually quality controlled at the

RFC. RFCs do quality control hourly maps but at a time

later than those that are sent to NCEP, and sometimes it

happens that NCEP is not able to include the manually

quality controlled hourly maps from every RFC in the

NCEP stage IV hourly estimates.

3. Biases in stage IV

In this section we present the sources of uncertainty

and problematic areas that exist in both the hourly and

6-hourly stage IV products. In this section we will not

identify the well-known discontinuities and anomalies

that exist as part of single-radar reflectivity scanning and

processing [i.e., beam blockage (Young et al. 1999;

Nelson et al. 2010), hot and cold biases (Nelson et al.

2010), bright band (Smith et al. 1996), anomalous

propagation (Krajewski and Vignal 2001), and cone of

silence (Nelson et al. 2010)]. Rather, we focus on the

larger aspects of combined radar processing, combined

RFC processing, and CONUS-wide QPE estimation.

As a purely qualitative snapshot, Fig. 2a shows the

yearly average of the stage IV product (using the daily

product maps) over the 11-yr period, and Fig. 2b shows

the climatology from the PRISM for the same period.

a. Mosaicking process

The mosaicking process creates discontinuities in

areas that are distinctly outside of a certain RFC but

may fall within the mosaicking domain of more than

one RFC. This is mostly relevant over oceans and in

Canada but can also be seen in the extent that covers

the Great Lakes region. There is also an issue with

mosaicking in the western part of the Missouri RFC

and eastern part of the Northwest RFC for the hourly

stage IV products. Evidently, data from the Missouri

RFC are used over the Northwest RFC at certain times

and not others. This causes the ‘‘rectangular’’ discon-

tinuity in the hourly maps.

Pixels that fall outside of an RFC domain tend to have

another uncertainty associated with their estimation.

TABLE 1. RFC names and locations with corresponding

abbreviations.

River Forecast Center Name Location

ABRFC Arkansas–Red basin Tulsa, OK

CBRFC Colorado basin Salt Lake City, UT

CNRFC California–Nevada Sacramento, CA

LMRFC Lower Mississippi Slidell, LA

MARFC Mid-Atlantic State College, PA

MBRFC Missouri basin Pleasant Hill, MO

NCRFC North Central Chanhassen, MN

NERFC Northeast Taunton, MA

NWRFC Northwest Portland, OR

OHRFC Ohio Wilmington, OH

SERFC Southeast Peachtree City, GA

WGRFC West Gulf Fort Worth, TX
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The process of determining this estimate follows cer-

tain steps (Lin and Mitchell 2005). If a point falls out-

side an RFC’s domain but an estimate exists (from one

or several RFCs), an average value from those esti-

mates is used. Then, if a point falls within the RFC

domain but the estimate does not exist, an average

value of any other estimate from other RFCs that falls

within that point is taken. The method can be illus-

trated by the discontinuity created along the bound-

aries of RFCs (Fig. 3). As an example in Fig. 3, the

overlap region of the Missouri RFC and the North

Central RFC can be seen along the Canadian border.

The long-term average of precipitation in this overlap

region between the Missouri RFC and the North

Central RFC shows a discontinuity as compared to ei-

ther of the RFCs. This is due in part to averaging of

daily values from both RFCs. Of note at the hourly

scale, the Northwest RFC does not provide precipita-

tion estimates so the hourly stage IV data in this RFC

include data from other RFCs but not the Northwest

RFC. The bottom of Fig. 3 shows the rectangles that

correspond to the RFC processing areas as they exist in

the CONUS-wide processing grid.

b. RFC processing

Not all RFCs generate precipitation with the same

rainfall algorithm. For instance, the majority of the

RFCs (Missouri, North Central, Ohio, Mid-Atlantic,

Northeast, Southeast, Lower Mississippi, and West

Gulf) use the MPE algorithm developed by the NWS

OHD (J. P. Breidenbach et al. 2002, unpublished

manuscript). A key step in the MPE is for the algo-

rithm to identify which reflectivity value to use for

each pixel. The MPE algorithm uses the pixel associ-

ated with the lowest unobstructed sampling volume,

which usually results in using the pixel closest to the

identified radar. A result of this processing is de-

veloping defined borders for each radar. The look of

this result is something akin to Theissen polygons.

However, it is actually due to the slight changes in

reflectivity values from adjacent radars that can be due

to hot and cold biases in radar operating strategies

FIG. 2. (a) Average annual precipitation for stage IV daily precipitation estimates from 2002 to

2012. (b) Average annual precipitation for PRISM (2002–12).
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(Breidenbach et al. 1999, 2001). Figure 4a clearly

identifies the artificial ‘‘border’’ in a long-term aver-

age of the stage IV product.

As discussed earlier, the RFCs generate precipitation

via different algorithms. For example, Fig. 4c is a long-

term average of the Arkansas–Red basin precipitation.

The ABRFC uses the P3 algorithm, which is the newer

version of the P1 algorithm evaluated in Young et al.

(2000). There are no ‘‘polygons’’ in this map but there

are radar ‘‘rings’’ (approximately 230 km from the ra-

dar), which are evident and this is due to the compositing

nature that happens in the P3 algorithm. The ring bor-

ders are also due to hot and cold biases in radar oper-

ating strategies.

Figure 4b shows the long-term average of the hourly

stage IV. The issues related to automated processing are

evident in the California–Nevada RFC (CNRFC) pre-

cipitation estimates. In addition, the lack of gauge cov-

erage is clearly an issue as the radius of influence for

each gauge is limited. And finally, the quality control of

the gauges for the hourly maps is lacking as a result of

the automated nature of the hourly RFC processing. It is

quite obvious that in the western RFCs the hourly maps

should be used with caution.

c. RFC border

Figure 4d shows an example of the QPE at the border

of the Missouri, North Central, Ohio, and Lower Mis-

sissippi RFCs. Figure 4d is a good example of a main

problem in the stage IV dataset. Discontinuities are due

not only to radar-to-radar hot and cold biases but what

can be termed RFC-to-RFC hot and cold biases. RFC

borders are evident in the long-term accumulation/

average of the QPE, and this is an indication of the

differences in processing from RFC to RFC, thus

producing a bias throughout the dataset.

4. Assessment of stage IV

In this section we provide an assessment of the stage

IV product. The assessment is intended to put the

product in context for its use in comparative studies.

a. Conditional analysis

The distribution of rainfall is lognormal. Therefore,

analyzing the data conditionally provides a better way of

describing the bias, error, and correlation as compared

to unconditional analysis. Evaluating bias, error, and

correlation in an unconditional sense does not tell the

whole story because over- (under-) estimation in one

regime can wash out the under- (over-) estimation in

another regime. In addition, just due to the nature of

rainfall estimation, biases and errors are a function of

precipitation intensity. Figure 5a is the cumulative dis-

tribution function (CDF) for the period of record for

each of the 12 RFCs. The CDF allows us to describe the

distribution of rainfall for each RFC. Figure 5b provides

some percentiles of interest (50th, 70th, and 90th) to

describe the distribution of rainfall and to provide a

comparison from RFC to RFC. The classification of the

different regimes as a function of the daily rainfall in-

tensity is rather arbitrary. However, we find a few clas-

sifications in the literature (Alpert et al. 2002; Arnone

et al. 2013). Alpert et al. (2002) propose a classification

in six classes (light, 0–4mmday21; light–moderate, 4–

16mmday21; moderate–heavy, 16–32mmday21; heavy,

32–64mmday21; heavy–torrential, 64–128mmday21;

and torrential:.128mmday21). More recently, Arnone

et al. (2013) provided a simpler classification (light,

0.1#R, 4mmday21; moderate, 4#R, 20mmday21;

and heavy, R $ 20mmday21). We note that the

moderate–heavy category corresponds to the wet milli-

meter days (wmmd) (.17.8mmday21 for CONUS), the

heavy rainfall corresponds to 50mmday21, and the

heavy–torrential category corresponds to 100mmday21,

which are commonly used thresholds (Prat and Nelson

2015). For light rain (50th percentile) there is little

FIG. 3. RFC domains as they translate to the NCEP stage IV

HRAP grid.
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difference in the daily accumulation as it relates to the

percentile from RFC to RFC. However, from season to

season andat the local scale there are significant differences

from RFC to RFC. In the following sections we describe

the stage IVQPEs by season and percentile. For heavy and

very heavy rainfall (90th and 99th percentiles) there are

significant differences from RFC to RFC. For example in

Fig. 5a the range of values is from 8mmday21 (CBRFC) to

29mmday21 (LMRFC) at the 90th percentile and from

25mmday21 (CBRFC) to 73mmday21 (LMRFC) at the

99th percentile. The ranges of values for the heavy pre-

cipitation vary from RFC to RFC when broken down by

season. Figure 5 and Table 2 show the range of values for

the percentiles of interest (50th, 70th, 90th, and 99th).

In a separate study (Prat and Nelson 2015) we used a

rain-rate-based threshold [i.e., 17.8mmday21, 2 in. day21

(50.8mmday21), and 4 in. day21 (101.6mmday21)] for

the entire CONUS. The goal was to compare the dif-

ferent sensors (rain gauges, stage IV, and satellite) and

their ability to capture intense–heavy precipitation re-

gardless of the climatic characteristics of the area. For

instance the number of heavy events decreases sig-

nificantly when we move westward. In this work, we

consider a different approach. Our goal is to evaluate

the performance of the NCEP stage IV dataset re-

gardless of the climatic characteristic of the RFC do-

main. Therefore, the use of a percentile rather than

intensity for the threshold allows a comparison of

stage IV performance fromRFC toRFC in a statistically

significant way (distributions versus distributions) and

minimizes the climatological characteristics of each of the

RFCs. On average, the choice of 50% corresponds to the

FIG. 4. (a) Long-term daily average precipitation showing biases in the stage IV product due to operational processing of individual

radar sites and mosaicking of RFC stage III or MPE data. (b) Long-term hourly average precipitation showing lack of manual quality

control measures in the CNRFC. (c) Long-term daily average precipitation for the ABRFC showing a different algorithm for estimating

precipitation as compared to the adjacent RFCs. (d) Long-term daily average precipitation for the central United States showing six RFCs

(Arkansas-Red,Missouri, North Central, Ohio, Southeast, and LowerMississippi). TheRFC boundaries are evident because of the biases

in operational processing of precipitation estimates from RFC to RFC.
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light rainfall definition mentioned above [,4mmday21;

Alpert et al. (2002);Arnone et al. (2013)]. Furthermore, the

light–moderate and moderate–heavy thresholds defined

here as 50th–70th and 70th–90th percentiles, respectively,

correspond loosely to the classifications mentioned above

(Alpert et al. 2002; Arnone et al. 2013). They represent a

compromise between both classifications, ensuring that

each category [L, 50th (2mmday21 , R , 5mmday21);

L–M, 70th (3mmday21 , R , 11mmday21); M–L, 90th

(8mmday21 , R , 29mmday21); and H, 99th (.20–

25mmday21)] is statistically significant.

1) LIGHT PRECIPITATION

Light precipitation is an important aspect of the pre-

cipitation regime and it is sometimes overlooked. Since

light precipitation occurs throughout the diurnal cycle, it

is particularly important. Furthermore, the challenge in

retrieving both light and heavy precipitation (i.e., both

sides of the spectrum) is well known.

In this section we examine light precipitation within

the CDF for each season. For purposes of our study we

have defined light precipitation as the 50th percentile.

This is a subjective measure but as is evident in the CDF,

where at the lower percentiles there is little difference in

the daily value that corresponds to the lower percentiles.

This is mainly due to the fact that there are so many

values at the lower end of the precipitation regime be-

cause of either the climatology or the minimum detec-

tible threshold of rainfall defined at each RFC. Figure 6

shows a map of the 50th percentile for the CONUS for

each season.

The seasonal distribution of light rainfall shows the

challenges involved with detecting precipitation

throughout the CONUS. In the western RFCs (NW,

CN, and CB) light precipitation is dominant in the

winter season with some contribution in spring and fall.

However, there is very little light precipitation during

the summer season. There is certainly a climatological

effect as the western United States sees little pre-

cipitation in the summer, but since the western RFCs

process QPE differently, there is an effect of processing

in the lack of observed precipitation. This effect is due to

sparse gauge networks that cannot capture pre-

cipitation, and the fact that the western RFCs do not use

the radar data in their MPE processing. Other factors

such as evaporation between the cloud base and surface

could contribute to the lack of observed precipitation.

In the RFCs that use the DPA radar data (MB, AB,

WG, NC, LM, OH, NE,MA, and SE), there are obvious

coverage issues from season to season. This is particu-

larly true in theMissouri, Arkansas–Red, andWest Gulf

RFCs but is evident in others as well. For example, the

western edge of these RFCs shows a much different

climatology from the winter season to summer. The

coverage issue is due to the fact that the sparse radar

coverage is not sufficient—spatially—to detect rainfall

during the cool season (quantitatively). Next, there is

significant light precipitation in the Gulf of Mexico

states during the winter and fall. In addition, this area of

significant precipitation falls a bit north of the Gulf of

Mexico states in the spring (Prat and Nelson 2014). Fi-

nally, it is interesting to note that the Florida Peninsula

shows lower light precipitation in the winter—its

dry season.

2) HEAVY PRECIPITATION

We define heavy precipitation as the 90th percentile at

each RFC. The values of heavy precipitation at this

FIG. 5. (a) CDF for each daily precipitation estimate for each

RFC over the study period (2002–12). (b) Range of values for each

RFC for select percentiles (30th, 50th, 90th, and 99th percentiles).
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percentile range from 6.4mmday21 (MRRFC) in the

winter to 30.7mmday21 (LMRFC) in the spring (Table

2). This range of values emphasizes the difficulty in de-

scribing the QPE from season to season and from RFC

to RFC. The less precipitation in the winter in the

Missouri River RFC is likely due to the climatology

of winter precipitation (i.e., snow and frozen pre-

cipitation), and the large precipitation in the Lower

Mississippi RFC is likely due to the climatology of spring

precipitation and the convective nature of storms in the

spring. Figure 7 shows the seasonal maps of pre-

cipitation for the 90th percentile at each pixel. Of note

for heavy precipitation is wintertime precipitation in the

Northwest and California–Nevada RFCs. Climatologi-

cally, it is evident that this region gets the majority of its

precipitation in the winter with some heavy events in the

spring and fall. The location where the heavy pre-

cipitation is largest in the summer is in the central

United States. Climatologically, large convective storms

pass through this region. Heavy events are concentrated

on the Gulf during spring and fall and on the mid-

Atlantic in the spring.

3) VERY HEAVY PRECIPITATION

We define heavy precipitation as the 99th percentile at

each RFC. The values of heavy precipitation at this

percentile range from 20.6mmday21 (CRRFC) in the

summer to 87.8mmday21 (LMRFC) in the fall. Figure 8

shows the seasonal maps of precipitation for the 99th

percentile at each pixel. In Fig. 8 the climatology of

extreme precipitation is evident. For example, the very

heavy precipitation on the Gulf coast in the fall is most

likely due to tropical storms and hurricanes. There are a

larger number of tropical storms making landfall during

the fall season as compared to other seasons in the Gulf

coast region (Prat and Nelson 2013, 2014). The very

heavy events in the central and northern plains happen

in the summer season, which agrees with climatology

and the patterns of highly convective thunderstorms. In

the spring the very heavy events are concentrated in the

central plains and the Tennessee and Ohio River valleys

as well as along the gulf coast. In California and the

Northwest the very heavy events are concentrated in the

winter but there are also very heavy events in the fall.

b. In situ verification

Verification of the NCEP stage IV precipitation

product is difficult for many reasons including but not

limited to the availability of a consistent long-term

CONUS-wide rain gauge dataset. For the purposes of

verifying the stage IV precipitation product over the

CONUS, we use the U.S. Climate Reference Network

(USCRN). The USCRN is a network that was imple-

mented in response to the challenges of siting a climate

network that will provide no changes in the station his-

tory. TheUSCRNprogram aims to create a set of station

TABLE 2. The 50th, 70th, 90th, and 99th percentiles (mmday21) for eachRFC for each season [December2February (DJF),March2May

(MAM), June2August (JJA), and September2November (SON)] and all seasons based on the 11-yr study period (2002–12). Boldface

values are the maximum and italic values are the minimum for a given season and condition.

Percentiles Season

Rain rate (mmday21)

RFCs

NW CN CB MB AB WG NC OH LM NE MA SE

50th DJF 2.3 2.7 1.7 1.2 1.9 2 1.8 2.8 5 2.8 3 4.7

MAM 1.9 1.9 1.4 2.1 2.9 2.7 2.7 4 5.3 3.2 3.4 5

JJA 1.5 1.0 1.4 2.5 3.3 2.9 3.5 4.4 4.2 3.8 3.8 4.7
SON 2.0 1.8 1.7 2.0 2.8 2.9 2.6 4 5.1 3.9 4 4.3

ALL 1.9 1.9 1.5 2.0 2.7 2.7 2.5 3.7 4.9 3.4 3.5 4.6

70th DJF 5.3 6.7 3.5 2.4 4.7 5.2 3.6 6.4 12.0 6.5 7.5 10.9

MAM 4.4 4.4 3.0 4.9 7.9 7.7 6.2 9.0 12.5 6.9 7.8 11.6

JJA 3.5 2.3 3.0 6.3 8.5 7.4 8.4 9.6 9.9 8.3 8.6 10.6

SON 4.7 4.2 3.8 4.4 7.6 7.9 6.3 9.3 12.8 9.4 10.4 10.9

ALL 4.6 4.8 3.2 4.6 7.3 7.1 6.0 8.5 11.6 7.7 8.4 10.9

90th DJF 15.1 21.9 9.4 6.4 15.1 16.5 9.7 16.5 28.6 16.5 19.5 26.2

MAM 11.3 13.5 7.4 14.1 23.0 23.4 16.5 21.4 30.7 17.1 18.8 28.5

JJA 9.3 6.3 7.3 17.9 24.0 21.6 20.9 22.3 24.1 19.4 20.9 26.0

SON 13.0 13.8 10.1 12.9 22.8 24.3 17.1 22.1 30.5 23.8 26.1 28.8

ALL 12.5 15.9 8.3 13.9 22.0 21.8 16.8 30.4 28.4 19.1 21.2 27.0

99th DJF 49.5 69.8 31.1 23.0 45.3 49.0 28.4 42.8 69.8 40.1 44.9 61.1

MAM 33.3 46.0 19.3 42.6 67.0 64.0 43.1 51.2 76.9 48.1 48.9 71.8

JJA 26.2 20.6 20.6 49.1 63.0 62.8 54.3 53.1 60.0 47.6 55.3 67.8
SON 44.2 53.4 28.8 41.3 68.0 74.5 47.5 54.5 87.8 57.9 78.4 86.3

ALL 40.5 57.5 25.1 42.8 62.5 63.8 45.9 50.4 73.1 49.0 55.8 71.3
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records that provide a robust multidecadal climate

monitoring capability (Diamond et al. 2013). As related

to precipitation, the USCRN has three independent

vibrating-wire weighing transducers that suspend the

precipitation-bucket cradle and provide three indepen-

dent measurements of the depth of the precipitation that

has fallen in the bucket. Data are quality controlled and

are available at the 5-min, hourly, daily, and monthly

scales, in local standard time. For this study we use

USCRN daily precipitation amounts accumulated from

the hourly precipitation data with a conversion for local

standard time to UTC to match the stage IV precipita-

tion product. Figure 1 shows the distribution of gauges

across the CONUS.While there is some sparse coverage

over certain RFCs, we consider this to be the only in situ

dataset that is available for CONUS-wide comparisons.

Another widely used CONUS wide rain gauge network,

the Global Historical Climatology Network (GHCN;

Menne et al. 2012), provides a much denser network at

the daily time scale but an investigation of this network

showed that some of these sites are used in some ca-

pacity in the processing of the RFC-wide precipitation

data that are sent to NCEP as inputs to stage IV. The

specific gauge locations that are used are not known and

thus it is difficult to extract those that could be used for

verification. Thus, for verification purposes we use all

available data from the USCRN precipitation observa-

tions to make a comparison of daily precipitation. The

period of record of the USCRN station that is used for

comparison varies from gauge to gauge based on when it

was installed. Some gauges were installed in 2002 or

prior and have a full record for the study period and,

others were installed later (some as late as 2010) and

thus have a shorter record.

Comparisons of gauge to pixel estimates for all of the

available daily USCRN data are shown in the scatter-

plots in Fig. 9.While comparisons of unconditioned data

show strong statistics for certain RFCs, we provide the

FIG. 6. Daily values at each pixel for the 50th percentile of the CDF over the period of record (2002–12) for the given season DJF, MAM,

JJA, and SON.
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bias, fractional standard error (FSE), and correlation

based on certain conditions of the rain rate. All statistics

are calculated for rain rates conditioned on the rain-

gauge value. The bias is calculated as the ratio of the

radar estimate to the gauge estimate:

Bias5
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The FSE is a normalized root-mean-square error that is

normalized by the average gauge value for the given

RFC and condition. Additionally, the correlation is de-

fined as the sample Pearson correlation coefficient.

Table 3 provides the bias values by RFC for each con-

dition of precipitation for each season, Table 4 provides

the FSE values by RFC for each condition of pre-

cipitation and each season, and Table 5 provides the

sample Pearson correlation coefficient for each condi-

tion of precipitation and each season.

Tables 3–5 (as well as Figs. 11–13, shown later) pres-

ent the bias, FSE, and correlation for each RFC for four

different conditions of rain rates. The light rain rate

corresponds to rainfall greater than zero and less than

the 50th percentile for the RFC. The light-to-moderate

rain rate corresponds to rainfall greater than the 50th

percentile and less than the 70th percentile for the RFC.

The moderate-to-heavy rain rate corresponds to rainfall

greater than the 70th percentile and less than the 50th

percentile for the RFC. The heavy rain rate corresponds

FIG. 7. As in Fig. 6, but for the 90th percentile.
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to rainfall greater than the 90th percentile for the RFC.

Each of the percentile values are given in Table 2.

1) BIAS

Our discussion of bias relates to the over- (under-)

estimation of the radar estimate as compared to the

gauge measurement. A bias of 2 means the radar esti-

mate is twice as large (overestimation) as the gauge

measurement and a bias of 0.5 means the radar estimate

is half as large (underestimation) as the gauge mea-

surement. In general, the largest underestimations

(Fig. 10 and Table 3) exist in the western RFCs. The

largest underestimation is for the CNRFC during the

summer for light rainfall at 0.38. A very small bias

exists at the same RFC for light-to-moderate rain in

the summer. The large underestimations in summer

for light rain at the CNRFC can be due to limited

sampling. Underestimation in the western RFCs is

due in general to the fact that the Mountain Mapper

algorithm is used for the stage IV product. Large

underestimation should be evident at gauge locations

that are not used in the Mountain Mapper estimation

(i.e., CRN gauge locations).

The largest biases (stage IV overestimation; see

Fig. 10 and Table 3) exist for light rainfall at theMBRFC

for summer at 2.01. There are three possible reasons

for a large bias no matter which RFC is being evaluated:

1) reflectivity to rain-rate relation; 2) rainfall repre-

sentativeness, which refers to the difference in the

sampling volumes of a gauge versus a radar pixel (i.e.,

submeter scale versus kilometer scale); and 3) possi-

ble bright band or hail contamination. In fact, the

larger biases are for light precipitation for all RFCs

and for all seasons, suggesting the continued difficulty

of radar-rainfall estimation in this regime. The largest

biases for light-to-moderate rainfall are for theMARFC

for all seasons. For moderate-to-heavy and heavy rain-

fall the biases are greatly reduced for the eastern RFCs

(MB, AB, WG, NC, OH, LM, NE, and SE); although,

some small biases (stage IV underestimation) are evident

FIG. 8. As in Fig. 6, but for the 99th percentile.
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for most seasons at the moderate-to-heavy and heavy

rain rates.

While most RFCs exhibit a large overestimation for

light rainfall, the biases are generally reduced for

increasing rain rates. The RFCs that tend to exhibit

better performance as it relates to bias are the AB, SE,

and NC RFCs. The biases tend to be neutral for mod-

erate and moderate-to-heavy rain rates at these RFCs.

FIG. 9. Scatterplots of gauge (USCRN) versus radar pixels for each RFC.
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At high rain rates all RFCs tend to underestimate with

the exception of the CNRFC.

2) FRACTIONAL STANDARD ERROR

The fractional standard error (Fig. 11 and Table 4) is

the normalized RMSE, which is normalized by the av-

erage gauge value for the particular RFC, season, and

condition. For light precipitation there are large FSEs

in the eastern and southern RFCs. The percentage

FSE is large but the error is relatively small. An FSE at

light rainfall of 100% is just 1 times the average value

for that particular RFC. So for instance an FSE of

100% for an average rainfall value in the light pre-

cipitation regime of 1mmday21 would be an RMSE of

1mmday21. In this sense the FSE provides a relative

measure of RMSE, and thus an FSE of 50% for heavy

rainfall suggests that rainfall estimation in this regime

is improving. The OHRFC, WGRFC, and SERFC

have the largest FSEs for light precipitation. The large

FSEs seem to move westward for larger rain rates. The

MBRFC, CBRFC, and CNRFC have large FSEs for

light-to-moderate, moderate-to-heavy, and heavy

precipitation. It is also of note that FSEs decrease for

increasing rain rates.

The smallest FSEs are in the eastern RFCs. For ex-

ample for light and light-to-moderate precipitation the

smallest FSE is in the NERFC except for SERFC in

winter for light precipitation. For moderate-to-heavy to

heavy precipitation the smallest FSEs are in NERFC,

LMRFC, SERFC, and ABRFC.

3) CORRELATION

Our conditional analysis is based on the percentiles of

the distribution that correspond to certain types of

precipitation, and thus our statistics are computed being

bound on both ends of the distribution. We evaluate our

statistics this way since we have defined the various

precipitation regimes. The relatively few studies that

evaluate precipitation conditionally for the CONUS

(Prat and Nelson 2015; Habib et al. 2013;Wu et al. 2012)

do so by bounding only the lower end of the distribution.

When we look at the results (Fig. 12 and Table 5) there

are very low correlations in the western RFCs for all

precipitation regimes and seasons. The smallest corre-

lation is close to zero at the CNRFC for light pre-

cipitation in the summer. There is also a very small

correlation close to zero for the MBRFC in winter.

These small correlations for light precipitation are likely

due to radar error (i.e., not detecting rainfall) or for the

western RFCs, they are due to the problem of the al-

gorithm being gauge based and the verifying gauge (i.e.,

CRN) being outside the radius of influence of the gauge

used in the estimation algorithm. There are other

interesting points to note for the correlation. There ap-

pears to be a small dip in the correlation values at light-

to-moderate rain rates. This is likely due to 1) sampling

TABLE 3. Bias (ratio) for each RFC for each season (DJF, MAM, JJA, and SON) based on the 11-yr study period (2002–12). Statistics

are computed for gauge (USCRN) and radar pixels. Boldface values are the maximum and italic values are the minimum for a given

season and condition.

Type Season

Bias

RFC

NW CN CB MB AB WG NC OH LM NE MA SE

Ro $ 0 DJF 0.79 1.18 0.78 0.72 1.01 0.74 0.87 0.88 0.94 0.90 1.04 0.94

MAM 0.82 1.11 0.80 0.93 1.03 0.92 0.97 0.93 0.98 0.99 1.11 1.00

JJA 0.78 0.68 0.85 1.10 1.07 0.99 0.92 0.87 0.98 0.96 0.98 0.96

SON 0.80 1.08 0.87 0.92 1.02 0.90 0.89 0.88 0.95 0.94 1.03 0.95

0 , Ro , 50th DJF 1.18 1.37 0.78 1.30 1.28 0.92 1.17 1.25 1.13 1.19 1.63 1.06

MAM 1.41 0.88 1.02 1.56 1.32 1.23 1.33 1.37 1.29 1.28 1.55 1.42

JJA 1.62 0.38 1.46 2.01 1.47 1.69 1.46 1.59 1.64 1.35 1.50 1.77

SON 1.24 0.87 1.14 1.43 1.25 1.26 1.21 1.58 1.22 1.13 1.28 1.23

50th , Ro , 70th DJF 0.81 1.10 0.79 0.89 1.14 0.73 0.89 0.96 0.95 0.92 1.24 1.02

MAM 0.94 0.90 1.00 1.08 1.17 0.92 1.10 0.92 1.03 1.08 1.31 1.06

JJA 0.92 0.44 1.06 1.36 1.16 1.18 1.08 0.97 1.14 1.07 1.25 1.11

SON 0.93 0.90 0.88 1.08 1.08 0.95 0.99 0.91 1.06 1.01 1.11 1.03

70th , Ro , 90th DJF 0.76 1.07 0.81 0.75 0.95 0.69 0.84 0.86 0.92 0.91 1.00 0.93

MAM 0.78 1.11 0.80 0.90 1.00 0.89 0.94 0.93 0.96 0.98 1.04 0.98

JJA 0.74 0.68 0.89 1.09 1.02 0.93 0.89 0.82 0.99 0.96 1.04 0.94

SON 0.76 1.03 0.87 0.87 1.02 0.90 0.88 0.83 0.95 0.95 1.01 0.97

Ro . 90th DJF 0.77 1.22 0.76 0.61 0.95 0.77 0.84 0.83 0.92 0.85 0.96 0.92

MAM 0.77 1.14 0.73 0.83 0.98 0.90 0.92 0.86 0.92 0.95 1.03 0.95

JJA 0.67 0.77 0.74 0.91 1.02 0.84 0.84 0.75 0.84 0.87 0.83 0.82

SON 0.77 1.13 0.83 0.84 0.97 0.83 0.83 0.81 0.89 0.90 1.00 0.89
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and 2) the transition between Z–R relations. In Fig. 13

we show the same correlation statistic but only being

bound on the lower end of the condition. Figure 13 is

shown for comparison to past studies and reveals how

there can be differences in correlation values depending

on how the distributions are bound. We also note that at

larger rainfall rates the correlations increase, with the

largest correlations in the eastern RFCs as well as the

TABLE 5. Correlation (Pearson) for each RFC for each season (DJF, MAM, JJA, and SON) based on the 11-yr study period (2002–12).

Statistics are computed for gauge (USCRN) and radar pixels. Boldface values are the largest correlations and italic values are the smallest

correlations for a given season and condition.

Type Season

Correlation

RFC

NW CN CB MB AB WG NC OH LM NE MA SE

Ro $ 0 DJF 0.90 0.94 0.82 0.64 0.95 0.86 0.84 0.83 0.91 0.89 0.91 0.94

MAM 0.87 0.89 0.75 0.82 0.96 0.89 0.90 0.84 0.95 0.96 0.89 0.90

JJA 0.82 0.68 0.78 0.86 0.93 0.86 0.90 0.79 0.89 0.92 0.90 0.87

SON 0.90 0.93 0.86 0.85 0.95 0.88 0.91 0.80 0.93 0.94 0.87 0.93

0 , Ro , 50th DJF 0.25 0.34 0.30 0.23 0.48 0.37 0.35 0.31 0.51 0.44 0.45 0.55

MAM 0.22 0.27 0.24 0.33 0.52 0.36 0.41 0.30 0.53 0.57 0.51 0.36

JJA 0.28 0.00 0.22 0.41 0.39 0.31 0.45 0.32 0.43 0.46 0.36 0.40

SON 0.22 0.42 0.25 0.38 0.39 0.35 0.37 0.26 0.50 0.60 0.54 0.44

50th , Ro , 70th DJF 0.21 0.31 0.18 0.06 0.14 0.13 0.22 0.17 0.36 0.33 0.49 0.29

MAM 0.17 0.18 0.10 0.12 0.37 0.23 0.32 0.28 0.35 0.34 0.37 0.30

JJA 0.17 0.15 0.19 0.21 0.34 0.22 0.26 0.21 0.18 0.32 0.17 0.23

SON 0.13 0.26 0.31 0.16 0.59 0.32 0.29 0.26 0.33 0.43 0.46 0.42

70th , Ro , 90th DJF 0.37 0.58 0.35 0.27 0.59 0.45 0.36 0.36 0.55 0.47 0.50 0.60

MAM 0.36 0.38 0.35 0.34 0.58 0.47 0.46 0.38 0.62 0.53 0.49 0.59

JJA 0.31 0.29 0.33 0.39 0.44 0.38 0.44 0.28 0.47 0.50 0.42 0.38

SON 0.37 0.53 0.37 0.39 0.64 0.40 0.48 0.34 0.41 0.63 0.48 0.53

Ro . 90th DJF 0.84 0.84 0.70 0.39 0.90 0.75 0.70 0.69 0.75 0.73 0.72 0.84

MAM 0.78 0.78 0.54 0.68 0.91 0.72 0.83 0.72 0.90 0.92 0.70 0.77

JJA 0.78 0.37 0.57 0.74 0.87 0.79 0.79 0.63 0.75 0.83 0.83 0.75

SON 0.84 0.90 0.75 0.76 0.86 0.78 0.81 0.60 0.88 0.86 0.72 0.84

TABLE 4. FSE for each RFC for each season (DJF, MAM, JJA, and SON) based on the 11-yr study period (2002–12). Statistics are

computed for gauge (USCRN) and radar pixels. Boldface values are the largest FSEs and italic values are the smallest FSEs for a given

season and condition.

Type Season

FSE (%)

RFC

NW CN CB MB AB WG NC OH LM NE MA SE

Ro $ 0 DJF 79 79 92 127 56 90 81 77 59 64 60 48

MAM 81 108 90 96 48 80 64 79 48 47 69 63

JJA 96 204 100 91 64 96 65 85 70 58 69 72

SON 79 103 75 91 53 89 67 85 57 50 96 64

0 , Ro , 50th DJF 186 231 135 213 145 134 148 257 142 140 167 131

MAM 192 207 224 234 164 240 163 212 152 129 168 238

JJA 260 234 275 278 280 294 192 255 216 191 198 246

SON 166 191 199 208 210 235 154 340 172 109 128 177

50th , Ro , 70th DJF 71 79 85 113 86 98 80 101 58 57 72 79

MAM 83 91 150 96 77 72 78 72 55 55 91 67

JJA 100 107 88 117 65 97 81 79 76 55 86 74

SON 90 75 69 91 50 86 71 59 67 46 60 54

70th , Ro , 90th DJF 56 53 64 74 45 59 60 56 34 45 46 30

MAM 54 94 58 64 35 48 43 57 33 35 44 36

JJA 63 99 59 65 47 52 44 61 45 39 43 44

SON 60 79 59 64 35 56 46 56 44 31 49 40

Ro . 90th DJF 45 45 53 76 17 44 44 42 34 39 33 25

MAM 47 56 50 51 20 37 35 46 22 25 39 36

JJA 53 88 59 42 26 44 34 45 37 31 39 39

SON 47 49 39 46 23 41 36 49 27 30 57 34
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southern RFCs. The largest correlation is 0.92 for the

NERFC in the spring but large correlations exist for

SERFC, NERFC, LMRFC, and ABRFC for all seasons

for heavy rainfall.

c. Discussion and areas for improvement

In this section we try to put this study in context with

past studies of the stage IV product at the daily scale.

There have been relatively few studies of the stage IV

product over the CONUS for a long period of record.

In fact, we find only three that provide a CONUS-wide

evaluation. Prat and Nelson (2015) evaluated several

rainfall products over the CONUS for the period

2002–12, Wu et al. (2012) evaluated both the MPE

product along with the NSSL’s Multiradar/Multisensor

System (MRMS) product, and Hou et al. (2014) at-

tempted to adjust the stage IV product with the Climate

Prediction Center’s gauge-based product. Of these

three, only Prat and Nelson (2015), as well as this study,

evaluate the stage IV product over a long-term period

(2002–12).We note that theHou et al. (2014) study is for

the period 2002–09. Several other studies have evalu-

ated the stage IV product for a longer period but only for

one RFC or one region. Westcott et al. (2008) compared

the MPE products to gauges, but they degraded the

spatial resolution at the daily scale and their period of

FIG. 10. Bias [radar-to-gauge ratio (R/G)] for four conditions of rain rate for each RFC for each season: winter (DJF), spring (MAM),

summer (JJA), and fall (SON). The conditions of the rain rate correspond to light rainfall, where 0 , Go , 50th percentile; light-to-

moderate rainfall, where 50th percentile , Go , 70th percentile; moderate-to-heavy rainfall, where 70th percentile , Go , 90th per-

centile; and heavy rainfall, where 90th percentile , Go (as in Table 2).
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record was 2002–05. Young and Brunsell (2008) evalu-

ated MPE products for a longer period (1998–2004) for

the Missouri basin RFC. Habib et al. (2013) evaluated

several of theNWS operational products includingMPE

but for a small basin and only for a 2-yr period (2005–06).

For the aforementioned studies we provide some

comparison to the three CONUS-wide studies. Prat and

Nelson (2015) found a general underestimation of the

radar at the annual average scale and they found that

this is due to the radar missing rain events with in-

creasing threshold. At low rain rates they found the ra-

dar detects more events (so higher accumulation and

overestimation) while at higher rain rates (RRs), the

radar detects fewer events (so lower accumulation and

underestimation). Next, the Wu et al. (2012) study is

most closely related to the current study (CONUS-wide

comparison of daily MPE estimates with rain-gauge

observations), and hence we have evaluated the corre-

lation andRMSE values of our study in amanner similar

to their study (Figs. 13 and 14). In Wu et al. (2012)

(Fig. 10), they evaluate correlation and RMSE for warm

and cool seasons but do not parse values by RFC. A

comparison of Fig. 13 shows a decreasing correlation

with increasing rain rate that compares quite well with

Wu et al. (2012). In addition the RMSE values from

Fig. 14 compare quite well with those inWu et al. (2012).

In addition, Wu et al. (2012) (Fig. 2) provide correlation

values by RFC but lumped for the entire study period.

FIG. 11. As in Fig. 10, but for the FSE (%).
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They have similar highs and lows for correlation by

RFC, with the lowest correlations at the western RFCs

and highest correlations at the AB, WG, LM, and SE

RFCs. And finally Hou et al. (2014) provide one map of

RMSE that loosely compares with the RMSE values

from the current study.

Given the overview of the biases in the stage IV

product and the error analysis, we provide five major

areas for improving the NCEP stage IV precipitation

product:

1) We recommend separating out the western RFCs

from the rest of the RFCs. Until there is better

coverage of the NEXRAD network in the western

RFCs, those three RFCs should use a consistent

algorithm. Consistent in this case meaning the same

implementation of the process to generate precipita-

tion estimates. Similarly, the rest of the RFCs (where

there is mostly good coverage of the NEXRAD

network) should use a consistent algorithm. This will

reduce or eliminate biases induced by generating

precipitation estimates using different algorithms.

2) An improvement needs to be implemented in the

merging of data from adjacent radars and adjacent

RFCs. An improved method of merging data in

overlapping regions will reduce or eliminate this

possible cause of spatial discontinuities in precipita-

tion estimates.

3) There is a need for an improvement in the estimation

of both light and heavy precipitation. The existing

FIG. 12. As in Fig. 10, but for the sample Pearson correlation.
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estimation algorithm at most RFCs uses an optimal

estimation technique that does not account for

conditional biases in precipitation. An improved

method of estimation such as conditional penalized

biased kriging (CPBK) has shown improvement in

the estimation of heavy precipitation while adjusting

for light precipitation at the same time (Seo 2013).

4) It is unlikely at this time that additions to the

NEXRAD network will be made. However, it is

our recommendation that the coverage in the west-

ern RFCs needs to be improved. If more NEXRAD

sites are not added, then a much denser rain gauge

network should be addressed or the state of satellite

QPE estimation should be vastly improved.

5) Given the lack of coverage of the NEXRAD net-

work in the western RFCs, an improvement in the

estimation algorithm should be accelerated. In addi-

tion, satellite QPE could help improve data in

these RFCs.

5. Conclusions

In this paper, we provide an overview of the NCEP

stage IV precipitation product. The product consists of

hourly, 6-hourly, and 24-hourly maps of precipitation

at the 4 km 3 4 km scale. In this analysis we only

evaluate the 24-hourly maps of precipitation. The

maps of precipitation are generated by the NCEP

using a mosaicking technique that combines data from

the 12 RFCs in the CONUS. We have provided an

overview of the NWS precipitation processing system

that generates quantitative precipitation estimates at

the RFCs. The stage IV product is currently the only

operational product that provides high-resolution ra-

dar-based precipitation estimates over the CONUS,

and thus is used in many studies for comparison of

precipitation products (i.e., satellite QPE). Our find-

ings indicate that the stage IV product could be useful

for certain types of studies but should be used with

FIG. 13. As in Fig. 12, but for rain rates corresponding to light rainfall, where Go $ 0 percentile; light-to-moderate rainfall, where Go .
50th percentile; moderate-to-heavy rainfall, where Go . 70th percentile; and heavy rainfall, where Go . 90th percentile (as in Table 2).
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caution in other types of studies. We outline the

strengths and weaknesses here.

a. Advantages

1) Although we have shown a general underestimation

of the stage IV at high rain rates, the FSE is reduced

with increasing rain rates and the correlation increases.

Thus, the stage IV estimate has shown good perfor-

mance at high rain rates. The only caution is that the

radar has a higher percentage of missed events with

increasing rain rate (Prat and Nelson 2015).

2) The stage IV product is operational and provided in a

common data format [gridded binary (GRIB)]. Thus,

the product is useful for studies that need high-

resolution data spatially (4 km). There is also an

ease-of-use factor with the product, as it can be trans-

ferred and processed easily (due to size and format).

3) Quantitatively for certain locations and certain con-

ditions the stage IV product has shown good perfor-

mance and similar statistics to previous studies. The

stage IV product has been shown to have improving

performance as it relates to correlation and FSE at

increasing rain rates (section 4). In gauge-sparse

areas and in areas of limited elevation change with

adequate NEXRAD site coverage the product can

be useful for convective-type precipitation estima-

tion and thus for comparison to other products (i.e.,

satellite QPE). We caution that stage IV tends to

underestimate precipitation at increasing rain rates,

partly as a result of a higher rate of missed events.

4) The stage IV product has the advantage of being able

to better capture convective precipitation as com-

pared to rain-gauge observations. As compared to

satellite-based QPEs like TRMM, CMORPH, and

FIG. 14. As in Fig. 13, but for the RMSE for the four conditions of rain rate.
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GPCP, the stage IV product has a higher spatial

resolution (Prat and Nelson 2015), and as an opera-

tional product it is bias adjusted in near–real time as

compared to a lengthy delay of adjustment for the

satellite-based QPE.

b. Disadvantages

1) The quality control at the hourly scale implemented

at the RFCs is automated, and often this process

cannot identify bad rain-gauge reports. Therefore,

bad rain-gauge reports are going to be merged in the

multisensor precipitation estimation algorithm. The

hourly stage IV precipitation estimates should be

used with caution, especially when comparing them

to other datasets (i.e., satellite QPE).

2) Hourly data from the western RFCs (CNRFC,

CBRFC, and NWRFC) should be used with caution.

The gauge-only algorithm used at these RFCs does

not provide enough nonautomated quality control to

remove bad gauges. Figure 4b shows the bull’s-eyes

that are not flagged in the automated process as an

example. In addition, the NWRFC does not provide

hourly precipitation estimates to the stage IV

process.

3) Data in overlapping regions outside of an RFC

should also be used with caution. NCEP details the

process for mosaicking data in an overlap region of

two or more RFCs. An example of a discontinuity

due to compositing data in overlapping regions is

found in the data from the coast of South Carolina

and Georgia.

4) Because each RFC uses different algorithms to

generate QPEs, and because they use different pro-

cesses to identify bad gauge reports or bad radar

estimates, there are biases that exist between RFCs.

The best example of this is at the junction of five

RFCs: Southern Illinois, Missouri, Kentucky, Ten-

nessee, and Arkansas. This is the junction of the

Missouri, North Central, Ohio, Lower Mississippi,

and Arkansas–Red RFCs. The borders of the RFCs

can be seen in the long-term average of the QPE

(Fig. 3d).

5) Finally, the underlying issues related to radar-based

precipitation estimation are still evident in the stage

IV product. This is an important point that should

not be lost when using the stage IV product. Asmany

studies have used and will be using the stage IV

product because it is a consistent CONUS-wide

product, these studies still need to refer to the fact

that radar rainfall estimation has inherent problems

and that the algorithms used at the RFCs try to

reduce these problems but they cannot eliminate

them altogether. Inherent biases in radar estimation

are due to anomalous propagation, brightband

contamination, beam blockage, range-dependent

detection of rainfall, lack of radar coverage, and

representativeness bias due to the physical nature

of rainfall. The biases that exist in the algorithms

used by the RFCs are due to the radar merging

technique, the automated process for identifying

bad gauge reports, and the use of only gauges (by

certain RFCs).
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