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ABSTRACT

Substantial freezing rain or drizzle occurs in about 24% of winter weather events in the continental United

States. Proper preparation for these freezing rain events requires accurate forecasts of ice accumulation on

various surfaces. TheAutomated SurfaceObserving System (ASOS) has become the primary surfaceweather

observation system in the United States, and more than 650 ASOS sites have implemented an icing sensor as

ofMarch 2015. ASOS observations that included ice accumulationwere examined from January 2013 through

February 2015. The data chosen for this study consist of 60-min periods of continuous freezing rain with

precipitation rates$ 0.5mmh21 (0.02 in. h21) and greater than a trace of ice accumulation, yielding a dataset

of 1255 h of observations. Ice:liquid ratios (ILRs) were calculated for each 60-min period and analyzed with

60-min mean values of temperature, wet-bulb temperature, wind speed, and precipitation rate. The median

ILR for elevated horizontal (radial) ice accumulation was 0.72:1 (0.28:1), with a 25th percentile of 0.50:1

(0.20:1) and a 75th percentile of 1.0:1 (0.40:1). Strong relationships were identified between ILR and pre-

cipitation rate, wind speed, and wet-bulb temperature. The results were used to develop a multivariable

Freezing Rain Accumulation Model (FRAM) for use in predicting ice accumulation incorporating these

commonly forecast variables as input. FRAM performed significantly better than other commonly used

forecast methods when tested on 20 randomly chosen icing events, with a mean absolute error (MAE) of

1.17mm (0.046 in.), and a bias of 20.03mm (20.001 in.).

1. Introduction and background

Branick (1997) found that notable freezing rain or

freezing drizzle occurs in about 24% of all winter

weather events across the continental United States.

Proper preparation by utility, transportation, and public

safety entities for these freezing rain events requires

accurate forecasts of ice accumulation on various sur-

faces. As icing takes place during a freezing rain event, it

ultimately results in two different types of ice accumu-

lation that contribute to the majority of impacts: on

roadways and sidewalks, and on tree branches and

power lines. The impacts caused by reduced friction on

roads and sidewalks are typically driven by the small

amounts of ice accumulation that are required to coat

the affected surface, while any additional icing results in

similar impacts to that of the initial icing. In these cases,

forecasting the initial ice accumulation sufficient to coat

the surface may be the most important part of the

forecast. Predicting ice accretion on the roadways and

sidewalks depends on many factors such as surface, air,

and soil temperatures; insolation; an elevated or non-

elevated surface; exposure to wind; amount of traffic;

and the presence of treatment chemicals. Reduced-

friction impacts as well as ice accumulating on tree

branches and power lines are of great importance to

public safety. It is the ice accumulation on these elevated

surfaces that can cause significant damage to property

and infrastructure across a widespread region. These

impacts are a direct result of the magnitude of the ice

accumulation, and damage can quickly occur after

structural stress thresholds are exceeded. The effects of

ice on electrical transmission and distribution lines can

cause power outages that last several weeks in some

areas, according to Changnon and Creech (2003). Ac-

curate forecasts for ice accumulation magnitude are of

the utmost importance in predicting and appropriately

planning for these potentially catastrophic ice storm

impacts. A record of standardized and accurate ice
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thickness measurements is also important to accurately

describe the outcome of these events.

Ice accretions have been classified according to source

and outward appearance (Makkonen 1984). Glaze and

rime ice, which occur in many freezing rain events, form

out of supercooled water droplets. Glaze is a hard,

nearly bubble-free and clear homogeneous ice with a

density close to 0.92 g cm23, the density of pure bubble-

free ice. Glaze ice grows ‘‘wet,’’ and liquid may pool or

run along or off the surface. Rime ice, on the other hand,

grows ‘‘dry,’’ that is, water droplets impinging on the

structure freeze on impact. Hard rime is a rather hard,

granular, white or translucent ice with a density between

0.6 and 0.9 g cm23. Soft rime is white ice with a loose

structure and a density less than 0.6 g cm23. The density

of pure liquid water is 1.0 g cm23 at a temperature of

08C, therefore, making it denser than ice. Ackley and

Templeton (1979) identified variables necessary to

quantify the amount and character of accreted ice on a

surface: 1) ambient air temperature, 2) cloud liquid

water content and droplet size distribution, 3) wind

speed, and 4) cross-sectional area and shape of the ob-

ject. When an object or surface is exposed to icing

conditions, the rate of ice accretion is governed by two

processes that depend on the above variables: the im-

pingement of supercooled water droplets on the surface

and the thermodynamics at the surface, which de-

termines what portion of the impinging liquid freezes,

runs off the surface, and melts previously accreted ice.

Ice accretion efficiency is also dependent upon the ma-

terial on which accretion is occurring, the temperature

of that object, orientation relative to the wind, and color

and albedo effects.

In essence, heat must be removed from the impinging

water to allow it to freeze, and as ice develops, heat must

continue to be removed from the ice surface. Adding

heat to the water and ice surface takes place through

1) shortwave solar radiation during the daytime, 2) re-

lease of heat during fusion of water, 3) sensible heat

transfer between accreting drops and the surface,

4) viscous heating from airflow around the object, 5) ki-

netic energy transferred from the falling drops to the

ice, and 6) longwave radiation from the ground surface

below. Removing heat from the water and ice surface

takes place through 1) loss of heat due to wind near the

surface or free convection in the absence of wind, 2)

cooling due to evaporation of the impinging water that

does not immediately freeze to the surface, and 3)

longwave radiative cooling emitted from the ice surface.

The aforementioned ice accretion methods that make up

this process (e.g., cloud liquid water content, droplet size

distribution, solar radiation, latent heat, kinetic energy,

evaporational cooling) are not typically forecasted by

the meteorological community, rendering some ice

accretion models difficult to use in an operational

environment.

Freezing rain accretion is substantially regulated by

the total mass flux, the vector sum of the vertical and

horizontal mass fluxes, as it contributes to the amount of

water collected on a surface. Vertical mass flux is well

approximated by the precipitation rate, but can be more

definitively computed by the amount of water falling

vertically at terminal velocity in the absence of wind.

Horizontal mass flux is influenced by wind velocity and

the drop size distribution or liquid water content. The

magnitude of the horizontal mass flux onto a surface will

vary based on the orientation of the object relative to the

wind vector, which will be maximized when an object is

perpendicular to the wind. (i.e., a power line that is

orientated perpendicular to the wind has more surface

area for the horizontal mass flux than if the power line

was parallel to the wind. The same is true for tree

branches, but their orientation can vary greatly within

the tree). A robust examination of freezing rain pro-

cesses by Jones (1996, hereafter J96), of the Cold Re-

gions Research and Engineering Laboratory (CRREL),

showed that ice accretion is highly dependent upon the

wind speed, which contributes to removing heat from

the ice surface while also increasing the horizontal mass

flux of the falling precipitation. Additionally, water that

does not immediately freeze to an elevated surface can

freeze during the process of running off to form icicles.

Icicles do not contribute to the ice accretion thickness,

making this thickness difficult to predict, but they do

contribute to the mass of the ice, which the object will

have to support. J96 explains that icicles are more likely

to form in conditions with near-freezing temperatures

and light wind speeds versus colder or windier scenarios.

Over the past 50 years there have been several at-

tempts to model ice accretion, most in the interest of

governing wind-on-ice loads (i.e., engineering designs)

for electric power transmission lines and communication

towers. The Châıné model (Châıné and Castonguay

1974) was developed based on wind tunnel tests to in-

vestigate sea spray icing. While effective in its initial

intent, this model made a number of assumptions and

extrapolations in order to convert sea spray icing data

into a formulation for freezing rain. Makkonen (1998)

investigated the modeling of power line icing in freezing

precipitation. The work of J96 also led to the develop-

ment of a pair of ice accretion models. One of these

models developed by Jones was a complete heat-balance

model, hereafter referred to as the CRRELHBM, while

the second was a simple flux model (Jones 1998, here-

after J98), hereafter referred to as the CRREL SM.

More recently, DeGaetano et al. (2008) developed an
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ice accumulation method using forecasted precipitation

amount, wind speed, and the thermodynamic profile of

the lower atmosphere from the Weather Research and

ForecastingModel in combination with the ice accretion

model described by J98 and a modified precipitation-

type algorithm. Musilek et al. (2010) described an ice

accretion forecasting system based on a numerical

weather prediction (NWP) model combined with a

precipitation-type classifier and ice accretion model.

In a joint effort between theAmerican Society of Civil

Engineers (ASCE), CRREL, the National Climatic

Data Center [NCDC; now known as the National Cen-

ters for Environmental Information (NCEI)], the Air

Force Combat Climatology Center, the National

Weather Service (NWS), and the Federal Aviation

Administration, a climatology of extreme ice thick-

nesses from freezing rain and concurrent wind speeds

was developed for a 50-yr return period for the eastern

half of the country (ASCE 2002). This information is

utilized for national electric safety codes, guidelines for

electric transmission line structural loading, and struc-

tural standards for steel antenna towers and supporting

structures. Ultimately, the CRREL HBM and CRREL

SMdeveloped by J96 and J98 were used to replicate past

ice storms in combination with the peaks-over-threshold

method with the generalized Pareto distribution

(Hosking and Wallis 1987) to develop the wind-on-ice

loads for a 50-yr return period. The CRREL SM was

developed for use with data inputs commonly measured

in real time via existing instrumentation, presumably

giving it value as a forecast tool, while the CRREL

HBM requires input variables not commonly measured

in real time or forecast in operations. All of the past

studies involved extensive computer modeling, labora-

tory, and field tests, and describe in great detail the

complexity of ice accretion. One thing lacking from

some of these findings is how this information can be

utilized in an operational forecasting setting. Of course,

NWP model-derived ice accumulation can be useful for

ice forecasting, but these values rely heavily on model

output, biases, and precipitation-type algorithms.

The ice:liquid ratio (ILR) is the ratio of the accumulated

ice depth on a particular surface to the accumulated liquid

depth that, by definition, is on a horizontal surface. In-

vestigation into ILR could reveal ice accretion efficiencies

and the effects of these aforementioned commonly mea-

sured weather variables. Recall that the bulk densities of

both liquid water and ice suggest that theoretically this

ILRon horizontal surfaces should be close to 1.09:1 at 08C,
but can be highly variable because of the many complex-

ities. Given a minimal amount of research dedicated to-

ward the operational prediction of ice accretion efficiency,

some commonly used operational forecaster techniques

include a simple 1.0:1 ILR, raw output fromNWPmodels,

or use of a more arbitrary ILR to produce ice accumula-

tion forecasts. The authors have also noted that some

operational forecasters have adopted the CRREL SM to

compute ice accumulation forecasts based on the use of

commonly forecast weather variables; therefore, it has

been chosen for further analysis within this study.

It is imperative that ice accumulation predictions all

implement descriptors of the type of ice thickness being

addressed, as any preparations to be made will depend

substantially on the details of the predicted ice thickness

and associated impacts. Furthermore, ILR changes

meaning depending upon how the ice accumulation is

measured. There are four unique ice thickness measure-

ments related to freezing rain and drizzle, as shown in

Fig. 1, which will be referred to during this study. These

include ice thickness on an elevated horizontal surface Ti,

equivalent radial ice thickness on an elevated surface Req,

equivalent diameter ice thickness on an elevated surface

Deq, and ice thickness on a horizontal ground surface Gi.

These measurements have, to some extent, been used in-

terchangeably and without specificity in the operational

realm, including ice storm reports contained in numerous

data archives. Variations in the shape of the ice accumu-

lation also occur as a result of wind speed and direction,

precipitation rate, freezing rate, wet versus dry growth, and

icicle development. Ice accreting on tree branches and

power lines can form a nonuniform depth around the ob-

ject, giving one side a greater thickness, as seen in Fig. 2a.

Under certain conditions, icicles can form on the bottom

or side of an object, and occasionally the ice thickness is

negligible compared to the amount of icicles, as shown in

Fig. 2b. As a result of varying geometry, flux exposure (i.e.,

sensible heat from the ground), and ice growth (i.e., wet

and dry ice growth), the ice accretion efficiency for various

types of icing and associated ILRs can be quite different

and in some cases not directly comparable. Within this

work, Ti and Req are used exclusively in defining ILR,

which can be directly related to the ice mass.

A majority of the ice accretion model verification

studies do not provide any information regarding ILRs,

which are very applicable to operational forecasting.

There has been no attempt to collect an extensive ice

thickness measurement dataset, similar to the one

deployed during the Automated Surface Observing

System (ASOS) ice sensor project (covered in more

detail in section 2), for utilization in a forecast verifica-

tion study. This has resulted in a lack of applicable and

detailed information available to the meteorological

community regarding ILRs. More specifically, the

knowledge base of the operational forecasting commu-

nity is lacking regarding the physical processes of ice

accretion and how they directly affect these ILRs.
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The focus of this study is on investigating how ILRs

change in varying environmental conditions using a

large, geographically diverse, and objectively observed

set of ASOS data. These data are analyzed to identify

any relationships between ILR and various meteoro-

logical observations including precipitation rate, wind

speed, temperature, and moisture. This information will

be used to develop improved forecast methods and

provide comparison to existing commonly used ice ac-

cretion forecast models. More importantly, the analysis

from the data collected could be used to increase the

knowledge of ice accretion efficiency and, ultimately,

improve the ice accumulation forecast process within

the NWS and the meteorological community as a whole.

2. Data and methodology

a. ASOS ice measurements

The first step in better understanding and forecasting

ice accretion is to obtain a robust, diverse, and objective

dataset of ice thickness measurements during freezing

rain events, collocated with observations of other me-

teorological variables. Unfortunately, recent ice accre-

tion model verification studies have only utilized

manually collected observations from a relatively small

number of freezing rain events. The authors have found

that NCDC Storm Data does contain a large number of

ice measurements from past events, but the measure-

ments can be subjective and often do not specify the type

of measurement taken (Ti, Req, Deq, or Gi). Storm Data

is often vague regarding ice shape or measurement

surface, and at times only includes a brief description of

measurements over a large geographic area (e.g., one

entire county), making it difficult to determine actual

amounts of both ice and liquid at a specific location as

well as the time frame during which ice accumulated. All

of these factors contribute to the subjective nature of the

Storm Data measurements, with plenty of uncertainty

and potential for inaccuracy; therefore, this dataset has

not been included in the observational database for

this work.

Technological advancements have recently provided

an opportunity to measure real-time ice accretion in

FIG. 1. Visual representation of commonly used ice thickness measurements. (a) Elevated (1.5m) horizontal ice

thickness for vehicle surfaces and grounded airplane wings, (b) elevated radial ice accumulation for power lines and

tree branches, (c) elevated diameter ice accumulation or total ice accumulated on power lines and tree branches,

and (d) ground-level horizontal ice accumulation for roadway and sidewalk surfaces. Conversions shown here

between Req, Ti, and Deq were derived in RR07.
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combination with meteorological conditions during

freezing rain events. The ASOS has become the primary

surface weather observation system in the United States

with more than 880 sites commissioned. As of March

2015, at least 650 ASOS sites were equipped with the

Goodrich Sensor System (formerly Rosemount) 872C3

icing sensor (Fig. 3), providing ASOS the ability to re-

port freezing rain in real time (Ramsay and Laster 1995).

The icing sensor detects ice by sensing ice mass on a

25-mm-long by 6-mm-diameter vertical probe that vi-

brates longitudinally at a nominal 40 kHz when ice free.

Ice mass on the sensor is determined by monitoring the

minute-to-minute frequency of the icing sensor and

multiplying the net frequency change (NFC) or decrease

(from 40kHz) by a manufacturer-specified ice-thickness

factor (NWS 1995). An algorithm based on raw data

from the icing sensor has demonstrated reliable quan-

titative estimates of ice accretion (Ryerson and Ramsay

2007, hereafter RR07). The goal of RR07 was to com-

pare and calibrate the ASOS ice sensor during the

winters of 1995–2002 and in doing so they demonstrated

the capabilities of the sensor.

RR07 focused on collecting and comparing ice sensor

measurements to manual measurements of ice thickness

as well as mass on a standard surface in proximity to

ASOS test sites. For comparison and calibration pur-

poses, ice mass was manually monitored on aluminum

cylinders suspended horizontally at 1.5m above ground

level, and a separate horizontal aluminum plate at the

same height was also used to take measurements of ice

mass and ice thicknessTi. Figure 4 fromRR07 shows the

actual ice mass measurements for one particular icing

event (14–15 January 1999) during the study, as well as

the ice mass approximated by each ice sensor deployed

throughout the entirety of the event. The study ulti-

mately identified a direct relationship between the sen-

sor frequency changes and ice accretion magnitude

when comparing ASOS-reported ice depths with the

measurements taken during the field study. During the

FIG. 3. Goodrich Sensor Systems (Rosemount) Model 872C3 icing

sensor used at all ASOS stations equipped with ice detectors.

FIG. 2. (a) Ice-covered trees near Kearney, NE, 29 Dec 2006. (Photograph courtesy of the NWS Weather

Forecast Office in Hastings, NE.) (b) Ice accumulation on power lines and trees in Jefferson City, MO, on 8 Dec

2007. (Photograph courtesy of the NWS Weather Forecast Office in St. Louis, MO.)
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observational period of four winter seasons, data were

obtained during approximately 188h of icing conditions.

The final analysis revealed there was a correlation co-

efficient of 0.98 between the cumulative cylinder ice

mass and NFC detected by the ice sensor through the

entire study Fig. 5a. Ice thickness factors used for con-

versions were found for each possible measurement.

Ultimately, ice thickness on an elevated horizontal

surface (Ti) was chosen as the final output of this sensor.

Using each measurement of ice mass concurrent with

NFC during the field study, RR07 derived the Req to be

compared to the corresponding ice thickness of Ti.

Figure 5b from RR07 shows the relationship between

Req andTi for the 537 data pairs with a linear expression:

R
eq
5 0:394T

i
. (1)

Therefore, ice depth Ti may be used to infer ice accre-

tion on elevated cylindrical objects in terms of Req. This

relationship essentially bridges the gap between the two

types of ice measurements and can be used to convert

ASOS ice accumulations to equivalent radial accumu-

lations. This is a slightly different conversion compared

to the relationship betweenGi and Req, which is a factor

of 1/p through simple geometry, since Ti is an elevated

surface and susceptible to runoff.

There are five limitations of the ASOS ice sensor and

algorithm described in detail by RR07. Limitations of

greatest importance to this work include the following.

1) Goodrich Sensor Systems were delivered if they

passed a manufacturer’s ‘‘rate test,’’ in which a sensor’s

response to a specific ice amount and icing rate was re-

quired to be within 20% of a nominal value. 2) Ice ac-

cretion below the reporting frequency threshold was

identified (i.e., a minimum frequency decrease of 33Hz,

with a concurrent rate of decrease of at least 13Hz in

15min), which provides a ‘‘cushion’’ to ensure that the

system will not issue a false alarm of freezing rain. This

only accounted for 6% of all RR07 recorded icing.

3) The ASOS reporting algorithm for freezing rain ex-

tends the weather type of freezing rain ‘‘FZRA’’ within

the aviation routine weather report (METAR) for an

additional 15min after the ice sensor no longer detects

accretion. This accounts for intermittent showers and

eliminates the need for multiple special reports.

4) Clamping, or the increase in frequency caused by ice

FIG. 5. (a) Relationship between NFC (Hz) and ice mass accumulated on ice-rack horizontal aluminum rods. (b) Linear relationship

between equivalent uniform radial ice thickness Req and horizontal planar ice thickness Ti. (These figures were taken from RR07.)

FIG. 4. The 14–15 Jan 1999 icing event at the NWS Sterling, VA,

Research andDevelopment Center (SRDC) showingmeasured ice

mass increase during the storm, as well as ice mass increases pre-

dicted from each of the four ice detectors. Note that the best

matches are among the ice detectors that are collocated at SRDC.

Correlations between the measured ice mass and the predicted

masses were all greater than r 5 0.98, with standard errors of less

than 37.3. (This figure was taken from RR07.)
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bridging at the base of the probe, affects estimates of ice

accretion, which only accounted for 4% of all RR07

recorded icing. 5) A slow deicing cycle recovery time

when the sensor may fail to report ice accretion for up to

30–45min, which only accounted for 2% of all RR07

recorded icing. RR07 ultimately provided incentives

not to change the ASOS ice-thickness factor given the

less than 20% sensor variability allowance due to

manufacturing specifications. This variability allowance

was also uniformly allowed to be 620%, resulting in no

appreciable bias when utilizing a number of sensors.

Limitations of the ice accretion algorithm were thor-

oughly examined by the NWS and were deemed ac-

ceptable, resulting in a formal directive to proceed with

the ice sensor implementation (NWS 2000). ASOS

software version 3.07 was released in November 2012,

featuring the dissemination of ice accumulation obser-

vations within the remarks section of the METAR re-

ports. This was followed up with the release of ASOS

software version 3.10 in May 2013, which provided this

capability to a greater number of ASOS sites. Given

these results were being disseminated and deemed ac-

ceptable, an analysis of ASOS icing data, in conjunction

with standard weather observations, could allow an in-

depth examination of ILR.

b. ASOS ice data and processing

The 5-min observations from every ASOS with a

Goodrich icing sensor were obtained from NCDC for

the period from January 2013 through March 2014 and

also from October 2014 through February 2015. Data

were gathered for all of these ASOS sites regardless of

location, resulting in a geographically diverse dataset.

This set of observations was reduced to only those 5-min

observations that contained an ice measurement or

freezing precipitation, a total of 81 256 observations. It

was determined that 5min was too short a duration to

identify meaningful ILR due to trivial ice accumula-

tions. To reconcile this limitation, 60-min periods of

continuous freezing rain with no mixed precipitation

were identified, resulting in 2445 observation periods.

For comparison, utilizing 30-min periods would have

resulted in a 27% increase in the total time of ice ac-

cretion in the dataset, but would have also resulted in a

much less diverse population of ILR (e.g., a far greater

count of round 1:1 or 2:1 ILR), similar to what occurs

with 5-min observations. Another reason the 60-min

periods were chosen was that current operational fore-

casts are created in hourly increments, and certain NWP

models compute output in hourly increments as well.

The 60-min periods were allowed to begin at any

5-min observation time as long as they satisfied the cri-

teria of nonmixed freezing precipitation (FZ) reported

in consecutive 5-min observations for 60min (Fig. 6).

Using 5-min observations provides higher temporal

resolution than a singular hourly ASOS observation in

identifying persistent pure freezing rain events, and also

provides greater temporal detail in othermeteorological

data measured byASOS over the course of the full hour.

Liquid precipitation and ice accumulation were summed

over the 60-min period, while nonprecipitation observa-

tions (temperature, wind speed, wet-bulb temperature,

etc.) were recorded as the mean in order to represent the

entirety of the 60-min period.

The intent of this work was to examine freezing rain

events that have the potential to cause notable in-

frastructure interruptions, so any 60-min periods with

precipitation rates , 0.50mmh21 (0.02 in. h21) were

removed from the dataset. Any 60-min periods with

trace amounts of ice accretion were also removed as a

trace did not offer a reliable measurement for which to

calculate the ILR. Finally, every 60-min period of ob-

servations underwent a manual quality control process

to remove any periods during which the sensor failed to

FIG. 6. The 60-min freezing rain observation period selection criteria. In these examples, abbreviations are

identical to those used in METAR code (ZR, freezing rain; UP, unknown precipitation type, and S, snow).

Example 1 illustrates how two 60-min observation periods are extracted from 120min of continuous freezing rain.

Examples 2–4 illustrate various situations for which nonfreezing rain precipitation is introduced within the 5-min

observations.
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record any of the meteorological data required to cal-

culate the mean sustained wind speed or wet-bulb

temperature data, or if the recorded data were not me-

teorologically reasonable (e.g., .10:1 ILR during a

freezing rain event). The final dataset consisted of 1255

quality-controlled, 60-min periods of consecutive 5-min

ASOS freezing rain observations for which the pre-

cipitation rate was $0.50mmh21 (0.02 in. h21) and the

ice accumulation rate was $0.25mmh21 (0.01 in. h21).

ASOS icing locations from the final dataset and the

number of 60-min freezing rain observations per site are

displayed in Fig. 7.

The 1255h of freezing rain data were further sepa-

rated during the development of the predictive model

addressed in section 4. An analysis dataset was used to

develop the predictive model, while a subset of data was

held separate to be used as a nonbiased control dataset

for objective analysis of predictive skill. This control

dataset consisted of 20 freezing rain events, randomly

selected at equal intervals across the unsorted dataset.

The control dataset is composed of ‘‘events’’ as the op-

erational meteorology community is typically focused

on the freezing rain accumulation over the course of a

weather event, while it provided analysis of the cumu-

lative error of predictive methods rather than that of

individual hours.An eventwas defined as the set of freezing

rain observations during a continuous precipitation event

at a single ASOS site satisfying the following criteria:

1) contained a period of $3h of continuous freezing rain,

2) any events occurring on the same date must be$300km

apart, 3) there were no temporal gaps of ASOS-recorded

precipitation .1h within the event, and 4) there were no

temporal gaps in ASOS-recorded freezing rain.12h. The

final analysis dataset consisted of 1161 h of freezing rain

while the control group of freezing rain events included

94 h of freezing rain.

3. Results

ILRs were calculated for elevated horizontal ice ac-

cumulations, while the radial and diameter ILRs were

derived based on the relationship from RR07 in Eq. (1).

Given that these thicknesses contribute to different

impacts, all of the values expressed in this section are in

terms ofTi (Req). Of the 1255 total hours of freezing rain

analyzed, a majority of the ILRs were between 0.50:1

(0.20:1) and 1.0:1 (0.40:1), which were the 25th and 75th

percentiles, respectively, as seen in Fig. 8. The median

value is 0.72:1 (0.28:1), while the mean value is slightly

higher at 0.87:1 (0.34:1). Recall that the density of ice is

approximately 8.3% less than liquid water, and that a

simple physical relationship would suggest the mean

ILR would be near 1.09:1 for horizontal surfaces. Con-

sidering the complexities of freezing rain accumulation,

FIG. 7. ASOS icing locations from the final dataset, and the number of 60-min freezing rain observations per site.
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this theoretical density-based ratio could be altered. It

is possible, depending on the wind speed and particle

size distribution, for the wind-driven component of the

liquid flux to be substantially greater than the pre-

cipitation component. Conditions with smaller parti-

cles and higher wind speeds can cause considerably

more ice on an elevated object than may be detected

on the ground (or in a precipitation gauge). Also, the

formation of both glaze and rime ice is possible, which

have varying densities that ultimately contribute to

varying ice thickness. The data clearly illustrate that

these factors are important and imply that physical

processes and atmospheric conditions influence icing

efficiency, typically toward decreased efficiency. RR07

documented that ice thickness on the elevated hori-

zontal plate in some cases would form an uneven surface,

becoming more susceptible to runoff. Furthermore,

using a standard 1.0:1 ILR in a forecast situation would

typically lead to an overestimation of ice accumulations

based on these results. It was found that ratios above

1.50:1 (0.60:1) and below 0.30:1 (0.12:1) were the least

frequent. Figure 8 shows there was no interquartile

overlap between the 75th percentile of the radial ILR

and the 25th percentile of the horizontal ILR, illus-

trating the substantial difference between the two types

of thicknesses.

Numerous previously discussed factors influence ice

accretion and ultimately determine ILR. Some of these

elements, such as heat and mass fluxes, are not typically

forecasted by the meteorological community, nor easily

measured with an abundance of commissioned sensors.

This study will only focus on the commonly forecast

weather elements measured by ASOS (e.g., precip-

itation rate, wind speed, temperature, and dewpoint),

given the goal of improving the prediction process.

Each weather element was examined independently to

identify any contribution to the ILR, as well as any

data trends.

a. Diurnal cycle

Investigation of the freezing rain observations

revealed a strong association between the time of day

and the frequency of freezing rain occurrence. Figure 9

shows an obvious minimum in freezing rain occur-

rence during the early afternoon, with a steady in-

crease through the evening, and a peak in occurrence

during the early morning. This may be due to a variety

of factors, including the diurnal flux of shortwave solar

radiation and surface temperatures that trend toward

a minimum during the overnight, creating an envi-

ronment more conducive to freezing rain and ice

accumulation.

FIG. 8. Box-and-whisker plot of all ILRs. The shaded box encompasses the 25th–75th per-

centiles for elevated horizontal Ti (blue), diameter Deq (yellow), and radial Req (green) ice

accumulations; the whiskers extend to the 10th and 90th percentiles with the median (hori-

zontal line) and mean (diamond) indicated.
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b. Precipitation rate

Precipitation rate is important for ice accretion and

ice accretion rates. Unfortunately, related variables such

as drop size distribution and liquid water content, which

also impact ice accretion, are not easily measured in the

field, making them difficult to analyze. Recall that this

methodology involved the removal of any 60-min ob-

servation with a precipitation rate , 0.5 mm h21

(0.02 in. h21) in an effort to eliminate the majority of

freezing drizzle, as well as the typically low-impact, very-

light-precipitation events. Out of the 1255 total hours of

observed freezing rain, precipitation rates tended to be

relatively light, with 1051 h containing ,2.54mmh21

(0.10 in. h21). This supports previous work by Sanders

et al. (2013), who found that major ice storms in the

central United States were relatively light precipitation

events that persisted over long durations, eventually

leading to substantial ice accumulations.

The observed precipitation rate data have a negative

relation to ILR, as seen in Fig. 10. In fact, the highest

ILRs tend to occur almost exclusively with the lighter

precipitation rates [,1.3mmh21 (0.05 in. h21)]. Exam-

ining the trend of the median value shows that ILR

decreases exponentially, approaching a lower bound as

the rates increase. Variability in the ILR also decreases

as the precipitation rate increases, which is most easily

visualized by the decreasing interquartile spread with

increasing precipitation rate. It is implied that the lower

ILRs with higher precipitation rates are due to a greater

likelihood of runoff as the liquid may not have time to

freeze before additional liquid is added to the ice sur-

face. It is also possible that sensible heat added from

excess liquid water on the ice surface affects the icing

efficiency as well.

c. Sustained wind speed

An examination of all hourly mean sustained wind

speeds revealed that 991h (78.9% of all freezing rain

observations) had wind speed, 10kt (1kt5 0.51ms21),

and about 46% of the mean 60-min wind speeds were

between 5 and 10kt. Figure 11 shows that there is a very

gradual increase in ILR as the wind speed increases,

particularly when analyzing the mean and 75th percen-

tiles at values . 9kt. ILRs increase the most at wind

speeds . 12kt, as seen by the increase in the mean and

75th percentile. Several of the highest ILRs in the dataset

were associated with a wind speed . 15kt, which ac-

counted for ,5% of all freezing rain observations. An-

other notable trend was a gradual increase in the 90th

percentile values with increasing wind speed, lending

support to previous research (J96). It is inferred that the

increasing wind speed replaces air near the ice surface

warmed by latent heat release, alters the droplet colli-

sion efficiency, increases the horizontal mass flux, and

promotes evaporational cooling. Although, the data

FIG. 9. The number of freezing rain observations per hour (LST).
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show that these processes are not as noticeable in the

ILRs until wind speed reaches.15 kt, and may rely on

the thermodynamic environment as well. Wind gusts

had a similar influence on ILR with an increasing trend

in ILR as wind gusts increased. However, the typical

characteristic of a wind gust being infrequent over

longer periods of time decreases its predictive ability in

determining ice accretion efficiency. Increasing wind

speed also enhances icing impacts once ice accretion

has begun by putting stress on objects that have accu-

mulated additional weight as a result of the ice load. In

this way, increased wind speed and gusts can be re-

sponsible for additional damage to tree branches,

power lines, and transmission towers during the freez-

ing rain, and even well after it has ended.

d. Temperature and wet-bulb temperature

ILRs were calculated for both air temperature and

wet-bulb temperature, and the analysis revealed these

two variables showed similar trends with the exception

of near-freezing conditions. While it may seem coun-

terintuitive, there were 403h (32.1% of all freezing rain

observations) for which the mean 60-min temperature

was $08C. While some of this may be attributed to mi-

nor errors in ASOS temperature sensor calibration or

icing surfaces that are colder than the ambient temper-

ature, it was interesting to find that only 14 of these 403h

(1.1% of all freezing rain observations) had a mean

60-min wet-bulb temperature $ 08C. The ILR also de-

creases substantially as the wet-bulb temperature ap-

proaches and exceeds 08C, as seen in Fig. 12. These

findings reveal that ice accretion is still possible at air

temperatures. 08C, but the icing is not as efficient as at
colder temperatures. Ice accretion in these conditions

may be highly dependent on the temperature of the icing

surface, and also the magnitude of evaporational cool-

ing, which is represented by the wet-bulb temperature.

Statistical comparison of air temperature and wet-bulb

temperature as a predictor of ILR (discussed in greater

detail in section 4a) indicated that the coefficient of

determination was greater for the wet-bulb tempera-

ture, and a t test comparing the mean error proved the

wet-bulb temperature to have less error than air tem-

perature at a greater than 98% confidence interval. This

study has thus focused on using wet-bulb temperature

as a predictive variable rather than air temperature.

Relative humidity was also evaluated as a possible proxy

for cooling due to evaporation, but had little to no effect

as a single predictor for the ILR.

Figure 12 shows that the ILR tends to increase as the

wet-bulb temperature decreases, and the greatest ILR

occurs between218 and248C with a median value near

0.80:1 within the given range. It is implied that lower

wet-bulb temperatures lead to a greater efficiency in

FIG. 10. As in Fig. 8, but for ILRs of elevated horizontal Ti and radial Req ice accumulations (purple) based on the

precipitation rate (in. h21). The total numbers of hours are located below each range bin.
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freezing liquid as opposed to a near-freezing tempera-

ture, and these data illustrate that this resultant increase

in ILR is most pronounced at wet-bulb temperatures

lower than 218C. One possibility is that more runoff is

occurring with a near-freezing temperature, which may

account for the lower ILR. Decreasing wet-bulb tem-

perature will likely help offset the latent heat released,

especially during increased wind speeds. Another

FIG. 12. As in Fig. 10, but based on hourly mean wet-bulb temperatures (8C).

FIG. 11. As in Fig. 10, but based on hourly mean wind speed (kt).
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temperature-related contributor to lower ILR may be

due to liquid drops warming as they fall through an el-

evated warm layer, as it will require a greater negative

heat flux from the water in order to freeze on contact. It

has been hypothesized by some operational forecasters

that during periods of near-freezing temperatures, high-

precipitation rates can actually cause a rise in surface

temperature through sensible heating of the drops that

fall through an elevated warm layer and, perhaps, via

downward advection of the warm-layer temperatures

toward the surface.

Only 7.7% of all the freezing rain observations had a

mean wet-bulb temperature , 248C, with only 1% of

the freezing rain observations occurring with a mean

wet-bulb temperature , 26.58C and none ,298C. The
data in this study indicate that despite the colder sur-

face conditions, ILR actually decreases for wet-bulb

temperatures,248C. Previous research by Stewart and
Crawford (1995) as well as Zerr (1997) has shown there

to be a greater likelihood of liquid drops refreezing into

ice pellets (sleet) in near-surface cold layers that are at

least 2.5 kft in depth and colder than258C. Rauber et al.

(2001) found there is a correlation of 20.44 between the

minimum temperature and depth associated with these

near-surface cold layers, suggesting that it is possible

to have a relatively shallow cold layer that is well be-

low 258C. In these situations it could be inferred that

the liquid drop is not allowed enough time to refreeze

before reaching the surface and instead remains freezing

rain. Perhaps these lower temperatures lead to at least

somemixture of ice pellets with the freezing rain, which is

not identified by the ASOS present weather sensor.

Even a small percentage of the precipitation falling as ice

pellets would lead to a reduction of ILR, meaning a

proportion of the precipitation produced in the cloud

would be utilized for the production of both ice pellets

and freezing rain. This effectively lowers the ratio of ice

to total liquid precipitation. Regardless of the reason, the

data consistently suggest that the ILRwill decrease as the

wet-bulb temperature decreases below 248C. These re-

sults show the important effect thatwet-bulb temperature

plays in ice accretion efficiency, especially during near-

freezing temperatures, and demonstrate the importance

of utilizing wet-bulb temperature information in accu-

rately forecasting ice accretion.

e. Comparison to CRREL SM

A further investigation into the CRREL SM reveals

that precipitation rate and wind speed greatly influence

ice prediction. While J98 demonstrated the CRREL

SM’s ability to create a quality forecast of ice load, there

are some important assumptions made in these calcu-

lations. CRREL SM calculates radial ice thickness on an

elevated cylindrical object (e.g., tree branches and

power lines), and is not intended for use in forecasting

ground-level icing or icing on horizontal surfaces, unless

converted. CRREL SM assumes the air temperature to

always be subfreezing, and that all water freezes im-

mediately on contact. It ignores the effect of latent heat

release, and also the possibility of water runoff to form

into icicles or leave the surface all together. These as-

sumptions could result in overforecasting ice accretion,

particularly in near-freezing temperatures, light wind

speeds, or with substantial dewpoint depressions (in-

troducing the likelihood for evaporative cooling). The

CRREL SM utilizes a droplet distribution adopted by

Best (1950), which was used in calculating the liquid

water content of the air during a typical rainfall. The Best

(1950) distribution is more suited for larger drops (i.e., rain)

and not smaller drops (i.e., drizzle), resulting in an un-

derestimation of horizontal flux during small drop events.

Another important assumption of the CRREL SM is that

the cylindrical object ratio of length to diameter is very

large, and that water spreads evenly over the entire surface.

However, radial ice accumulation on a cylindrical object is

independent of the diameter of the object, although an

object with a larger (small) diameter has a larger (smaller)

surface area, leading to a greater (lesser) mass of ice accu-

mulated (J96). Finally, CRREL SM assumes the cylindrical

object’s long dimension is always perpendicular to thewind,

which will maximize the horizontal mass flux. This makes

sense in terms of forecasting a maximum possible ice load,

but in a real-world scenario not every object will be per-

pendicular to the wind throughout the duration of an event.

Given its potential to be used in a forecast scenario, the

CRREL SM forecasts were compared to the observed

data. To examine the effects of precipitation rate and wind

speed on the CRREL SM, each weather element (e.g.,

precipitation rate) was held constant while the other is

adjusted (e.g., wind speed). Because of sample size

issues, a range of precipitation rates and wind speeds were

used to classify the ILR from the observed data as opposed

to using one particular wind speed or precipitation rate.

Since the CRREL SM forecasts radial ice thickness Req,

the observed results were converted to Req using Eq. (1).

Precipitation rate has a much different effect on the

CRREL SM results than on the observations, as seen in

Fig. 13. The CRREL SM shows only minor change in

ILR with increasing precipitation rates while the ob-

served data show a much larger decrease in ILR with

increasing precipitation rates. This can be accounted for

by the CRREL SM using precipitation rate as a proxy

for the liquid water content, resulting in a greater hori-

zontal mass flux onto the surface as the precipitation

rate increases. While the flux is indeed greater, this

practice may lead to potentially invalid assumptions of
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runoff and drop size distribution. Wind speed had a

similar effect on the observed data as it does on the

CRREL SM calculations, with ILR increasing with in-

creasing wind speed. Figure 14 shows that the stronger

wind speed causes a slightly greater increase in the pre-

dicted CRREL SM ILR than in the observed data. The

observations also illustrate greater variability of ILR

given uniform wind speed. Additional comparisons of

ASOS icing data to CRREL SM and CRREL HBM can

be found in Jones et al. (2004). In summary, the CRREL

SM tends to overestimate ice accumulation in comparison

to the observed data, and these overestimates are more

pronounced with increasing precipitation rate, and to a

lesser extent with increasing wind speed.

4. Freezing Rain Accumulation Model

a. Model development

One goal of this workwas to improve themeteorological

community’s ability to predict freezing rain accumulation.

In support of this, the analyses of individual weather ele-

ments and associated effects on ILR were further in-

vestigated and combined into a single predictive model.

The Freezing Rain Accumulation Model (FRAM) pre-

dicts the hourly ILR based on three input variables of

precipitation rate P, wind speed V, and wet-bulb

temperatureTw. The ILR is thenmultiplied by the amount

of liquid precipitation accumulation to predict the ice ac-

cumulation. The output of the FRAMwill be an ice depth

of Ti, but may be used to infer ice accretion on elevated

cylindrical objects in terms of Req using Eq. (1). Given the

1-h temporal increments of the data, the FRAM is in-

tended to also be used over 1-h predictive increments.

The initial step in the model creation was to analyze

the data to maximize the skill of the predictor variables.

We used various transformations on each predictor

variable in relation to ILR to linearize the data. The

preferred transformation model for each element was

determined by the greatest coefficient of determination

R2. In the event that a polynomial regression equation

produced the greatest R2, forward selection stepwise re-

gression was applied to ensure that the most significant

terms were used. Finally, each individual equation had to

be meteorologically reasonable. This final requirement

for meteorological reasoning beyond the statistical anal-

ysis applied to the wet-bulb temperature polyno-

mial regression equation. While the stepwise iteration

suggested a quadratic equation provided significant

results, a cubic regression better represented the sharp

decline in ILR between 08 and 18C given no freezing rain

data points atTw. 18C.Evenwith the stepwise regression
process suggesting the quadratic regression was suffi-

cient, it should also be noted that there was a substantial

FIG. 13. A box-and-whisker comparison of ILRs from the CRREL SM (pink) to the observational data results

(green) illustrating the effect of varying precipitation rates (in. h21) on ILRs. A wind speed range of 5–15 kt was

held constant for each precipitation rate bin.
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improvement for R2 in the transition to a cubic regression,

with much smaller improvements for a quartic regression.

Utilizing the cubic regression modeled a false increase in

ILR at Tw , 278C (,1% of total data points), which did

not represent the observed data for these wet-bulb

temperatures. For this reason, in the ILR calculation,

allTw,278C are set toTw5278C. The regressions for
each predictor variable can be seen graphically overlaid on

the box-and-whisker diagrams in Fig. 15. The ILR re-

gression equations for each predictor variable are defined

here, where precipitation rate is indicated by P (in.h21),

wet-bulb temperature byTw (8C), andwind speed byV (kt):

ILR
P
(precipitation rate)5 0:1395(P)20:541, (2)

ILR
Tw
(wet-bulb temperature)

520:0071(T
w
)3 2 0:1039(T

w
)2

2 0:3904(T
w
)1 0:5545, and (3)

ILR
V
(wind speed)5 0:0014(V)2 1 0:0027(V)1 0:7574.

(4)

The next step in the model development was to opti-

mally weight the predictive influence of each variable in

the predictive process to maximize model forecast

quality. An iterative analysis method using mean

absolute error (MAE) as a deterministic measure of

skill was used as the method for identifying the most

effective weighting for each variable to maximize

predictive ability. To identify the combination that

produced the lowest MAE across the entire dataset,

weighting of each individual regression equation was

analyzed at 1% intervals and compared to every

hour of the observational data until every possible

weighting combination was analyzed. Additionally,

anecdotal observations suggested that the impact of

Tw and V may be of situationally varied importance,

so regression weighting was further evaluated for

improvement when using different weights with var-

iations of Tw (iteratively analyzed at 0.058C intervals)

and V (iteratively analyzed at 1-kt intervals). While

all three variables are important to ice accretion, this

technique determined that there were situations for

which the wet-bulb temperature had a greater effect

on ILR than did the wind, and vice versa. This tech-

nique further reduced MAE by adjusting weighting

functions of each regression equation situationally

when the wet-bulb temperature is .20.358C or the

wind speed is .12 kt.

FIG. 14. As is Fig. 13, but illustrating the effect of varying wind speed (kt) on ILRs. A precipitation rate range of

0.02–0.08 in. h21 was held constant for each wind speed bin.
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FIG. 15. Nonlinear regression trend lines of ILRs based on (a) precipitation

rate (in. h21), (b) wind speed (kt), and (c) wet-bulb temperature (8C).
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The FRAM is defined as follows:

when Tw . 20.358C,

ILR5 (0:70ILR
P
)1 (0:29ILR

Tw
)1 (0:01ILR

V
); (5)

when Tw # 20.358C and V . 12kt,

ILR5 (0:73ILR
P
)1 (0:01ILR

Tw
)1 (0:26ILR

V
); (6)

and

when Tw # 20.358C and V # 12kt,

ILR5 (0:79ILR
P
)1 (0:20ILR

Tw
)1 (0:01ILR

V
) (7)

and

T
i
5 �

h

0

ILR3P . (8)

The quantity Ti represents the final ice accumulation

on an elevated horizontal surface, andEq. (1) can be used

to convert Ti toReq to best represent ice accumulation on

tree branches and power lines. The h represents the

number of hours over which the precipitation occurs.

For further detail regarding the robustness of the

method, it should be noted that other statistical analysis

methods were evaluated with less desirable results. An

analysis of covariance was performed on the data with

precipitation rate as a categorical variable, and the

others as continuous variables. Additionally, because of

the wide variation in precipitation rate, with a larger

amount of data at lower values, amultiple linear regression

was attempted using an equal number of data points across

the precipitation range. While all of these methods did

provide significant regressions, the results were nowhere

near as accurate or predictive as was the FRAM.

b. Model testing

The NWS and meteorological community often

rely on various methods or NWPmodels to predict ice

accumulations. Two of these commonly used methods

are a simple ILR (often 1.0:1) and the CRREL SM.

These two forecast methods and FRAM were tested

for their predictive ability using the control group of

20 randomly selected freezing rain events that had

not been included in the FRAM development pro-

cess. This control group of 20 icing events included

a total of 94 h of freezing rain accumulation with

observed total ice accumulations ranging from 1.27

to 14.48mm (0.05 to 0.57 in.) per event. To remain

consistent with the ASOS observations, all CRREL

SM–predicted icing amounts were converted as needed

to elevated horizontal ice accumulation Ti for di-

rect comparison using the relationship discussed in

TABLE 1. Forecast model performance is shown for each of the 20 freezing rain events, selected randomly based on criteria defined in

section 2. MAEs and total biases for the predictions of each forecast method are also displayed.

Case

ASOS

site City, state Date

Duration

(h)

Observed

ice

(in.)

Observed

liquid

precipitation

(in.)

Observed

ILR

FRAM

forecast

(in.)

FRAM

error

(in.)

CRREL

SM

forecast

(in.)

CRREL

SM

error

(in.)

1:1

ILR

forecast

(in.)

1:1

ILR

error

(in.)

1 AOO Altoona, PA 26 Nov 2013 6 0.29 0.87 0.333 0.384 0.094 1.035 0.745 0.870 0.580

2 BIV Holland, MI 21 Dec 2013 5 0.18 0.12 1.499 0.121 20.059 0.241 0.061 0.120 20.060

3 MTO Matoon, IL 17 Feb 2014 3 0.13 0.18 0.722 0.129 20.001 0.287 0.157 0.180 0.050

4 JLN Joplin, MO 21 Dec 2013 11 0.34 0.55 0.618 0.411 0.071 0.775 0.435 0.550 0.210

5 DNL Augusta, GA 12 Feb 2014 4 0.15 0.23 0.652 0.162 0.012 0.351 0.201 0.230 0.080

6 AUG Augusta, ME 1 Dec 2013 3 0.08 0.10 0.801 0.084 0.004 0.156 0.076 0.100 0.020

7 LBT Lumberton, NC 12 Feb 2014 6 0.24 0.51 0.471 0.340 0.100 0.739 0.499 0.510 0.270

8 VAY Mount Holly, NJ 14 Dec 2013 3 0.16 0.23 0.695 0.140 20.020 0.301 0.141 0.230 0.070

9 MEH Meacham, OR 24 Feb 2014 3 0.05 0.09 0.556 0.085 0.035 0.105 0.055 0.090 0.040

10 MHE Mitchell, SD 15 Dec 2014 4 0.17 0.22 0.773 0.151 20.019 0.382 0.212 0.220 0.050

11 IND Indianapolis, IN 11 Jan 2015 3 0.16 0.16 0.999 0.116 20.044 0.237 0.077 0.160 0.000

12 PSF Pittsfield, MA 4 Jan 2015 3 0.14 0.09 1.554 0.082 20.058 0.140 0.000 0.090 20.050

13 MSS Massena, NY 4 Jan 2015 9 0.57 0.64 0.891 0.401 20.169 0.876 0.306 0.640 0.070

14 FIG Clearfield, PA 2 Feb 2015 4 0.16 0.23 0.695 0.163 0.003 0.309 0.149 0.230 0.070

15 THV York, PA 12 Jan 2015 4 0.08 0.11 0.727 0.103 0.023 0.150 0.070 0.110 0.030

16 HGR Hagerstown, MD 9 Dec 2014 6 0.43 0.58 0.742 0.332 20.098 0.763 0.333 0.580 0.150

17 FWN Sussex, NJ 9 Dec 2014 3 0.15 0.33 0.455 0.171 0.021 0.419 0.269 0.330 0.180

18 INK Wink, TX 2 Jan 2015 6 0.24 0.54 0.444 0.319 0.079 0.676 0.436 0.540 0.300

19 FSM Fort Smith, AR 28 Feb 2015 5 0.15 0.18 0.833 0.153 0.003 0.276 0.126 0.180 0.030

20 LWS Lewiston, ID 4 Dec 2014 3 0.08 0.10 0.800 0.086 0.006 0.137 0.057 0.100 0.020

Mean 4.7 0.20 0.30 0.76 MAE 0.046 MAE 0.220 MAE 0.116

Bias 20.001 Bias 0.220 Bias 0.106
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J98, which uses a factor of 1/p derived by simple

geometry.

Examination of the total ice accumulation pre-

dictions from the FRAM for each of the 20 freezing

rain events showed an MAE of 1.17mm (0.046 in.)

with a bias of 20.03mm (20.001 in.). The FRAM

performed very well in comparison to the CRREL

SM, which had an MAE of 5.59mm (0.22 in.) and a

bias of 15.41mm (10.213 in.), while the 1.0:1 ILR

method had an MAE of 2.95mm (0.116 in.) and a bias

of 12.69mm (10.106 in.). The FRAM prediction of

total ice accumulation was superior to both the

CRREL SM and 1.0:1 ILR method for 17 of the 20

freezing rain events. Of the three events for which a

non-FRAM forecast was superior, the most accurate

forecast method only improved upon the FRAM

forecast by a mean of 1.73mm (0.068 in.). These re-

sults also further illustrate the tendency for the

CRREL SM and 1.0:1 methods to overestimate the

total icing amounts, particularly for events with

greater precipitation rates. One-tailed paired-sample

t tests showed that the FRAM MAE was less than

both the CRREL SM MAE and the 1.0:1 MAE with

greater than 99% confidence. The summary of results

for all of the freezing rain events is presented in Table 1

while Figs. 16 and 17 directly compare the forecast error

for the three techniques.

While FRAM performed very well over the test

freezing rain events as a whole, it is important to un-

derstand any potential model limitations when using it in a

forecast scenario.Regression equations for each individual

element were developed in a deterministic fashion, and

work together deterministically as well, but it is important

to remember that all meteorological conditions are

associated with a range of ILRs according to the

observed data, and a range of results is possible, as

evident in Fig. 15. It is important to note that FRAM

output is dependent on any potential erroneous data

input into the FRAM (e.g., NWP model with a P, Tw,

or V bias or a poor NWP model forecast). Further

attention may be needed when using FRAM during

meteorological conditions that were sampled by less than

2% of the observation dataset. These include 1) wet-bulb

temperature . 08C, 2) wet-bulb temperature , 268C, 3)
wind speed . 20kt, and 4) precipitation rate .
6.35mmh21 (0.25 in. h21). Finally, FRAM was developed

for freezing rain events with precipitation rates $

0.50mmh21 (0.02 in. h21). Very light precipitation rates

related to drizzle were not closely examined given the

scope of this work.

FIG. 16. Observed ice (in.) of the 20 randomly selected freezing rain events (total of 94 h) vs

model-predicted ice (in.) from the FRAM (blue), CRREL SM (pink), and 1.0:1 ILRs (dark

red). A perfect forecast is indicated by the heavy black line.
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5. Summary and conclusions

An analysis of 1255 ASOS 60-min icing, precipitation

rate, wind speed, and wet-bulb temperature observations

during freezing rain events revealed a relationship of

these elements to ILR. The median ILR for all of the

observations was 0.72:1, while the mean value was

slightly higher at 0.87:1. Each of the aforementioned

weather elements was investigated individually to

identify the effects on the ice accretion process. Pre-

cipitation rate had the strongest correlation to ILR,

and as the precipitation rate increases, ILR decreases.

Wind speed also affects the ILR, particularly at

speeds. 12 kt for which increasing wind speed results

in a higher ILR. While temperature and wet-bulb

temperature were both correlated to ILR, the wet-

bulb temperature was found to have a stronger correla-

tion and was particularly effective in near-freezing

conditions . 218C. The data showed that icing can com-

monly occur at air temperatures $ 08C, particularly when

the wet-bulb temperature is #08C. The greatest icing effi-

ciency occurred with wet-bulb temperatures between 218
and248C.Frequency of icing also followed a diurnal trend,
with observations of freezing rainmore frequent during the

late evening and earlymorning and less frequent during the

early afternoon.

A multivariable nonlinear regression Freezing Rain

Accumulation Model (FRAM) was developed using

the more than 1000 h of geographically diverse and

objectively measured freezing rain data obtained for

this study. FRAM was developed specifically with the

intent of predicting ice accumulation through the

use of commonly predicted meteorological variables,

specifically precipitation rate, wind speed, and wet-

bulb temperature. FRAM performance was tested

against two other commonly used forecast methods,

the CRREL SM and a 1.0:1 ILR, on 20 randomly se-

lected freezing rain events with total icing ranging

from 1.27 to 14.48mm (0.05 to 0.57 in.). The FRAM

was the most accurate forecast method for 17 of the 20

freezing rain events, with a total MAE of 1.17mm

(0.046 in.) and a bias of 20.03mm (20.001 in.). In

comparison, the CRREL SM had an MAE of 5.59mm

(0.22 in.) and the 1.0:1 ILR method had an MAE of

2.95mm (0.116 in.). One-tailed paired-sample t tests

showed that the FRAM MAE was less than both the

CRREL SM MAE and 1.0:1 MAE with greater than

FIG. 17. Model-predicted ice accumulation absolute error (in.) for each of the 20 randomly selected freezing rain

events from the FRAM (blue), CRREL SM (pink), and 1.0:1 ILRs (dark red). An absent bar indicates an error

of zero.

AUGUST 2016 SANDERS AND BAR JENBRUCH 1059



99% confidence. The results of FRAM testing are

encouraging and indicate that use of FRAM may be a

notable step forward in improving ice accumulation

forecasts for freezing rain events. Immediate future

plans related to this work include collaboration testing

during NWS operations and further investigation of

ILR and accumulation characteristics during mixed

precipitation and freezing drizzle events. Additional

work is planned around the analysis of impacts re-

sulting from damage, and the relation to ASOS ice

accumulation amounts, which may be used to convey

the severity of an icing event.
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