Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Prediction and Predictability of High-Impact Western Pacific Landfalling Tropical Cyclone Vicente (2012) through Convection-Permitting Ensemble Assimilation of Doppler Radar Velocity

Filetype[PDF-7.19 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Monthly Weather Review
  • NOAA Program & Office:
  • Description:
    The current study explores the use of an ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model to continuously assimilate high-resolution Doppler radar data during the peak-intensity stage of Tropical Cyclone (TC) Vicente (2012) before landfall. The WRF-EnKF analyses and forecasts along with the ensembles initialized from the EnKF analyses at different times were used to examine the subsequent evolution, three-dimensional (3D) structure, predictability, and dynamics of the storm. Vicente was an intense western North Pacific tropical cyclone that made landfall around 2000 UTC 23 July 2012 near the Pearl River Delta region of Guangdong Province, China, with a peak 10-m wind speed around 44 m s(-1) along with considerable inland flooding after a rapid intensification process. With vortex- and dynamics-dependent background error covariance estimated by the short-term ensemble forecasts, it was found that the WRF-EnKF could efficiently assimilate the high temporal and spatial resolution 3D radar radial velocity to improve the depiction of the TC inner-core structure of Vicente, which in turn improved the forecasts of the track and intensity along with the associated heavy precipitation inland. The ensemble forecasts and sensitivity analyses were further used to explore the leading dynamics that controlled the prediction and predictability of track, intensity, and rainfall during and after its landfall. Results showed that TC Vicente's intensity and precipitation forecasts were largely dependent on the initial relationship between TC intensity and location and the initial steering flow.
  • Source:
    Monthly Weather Review, 144(1), 21-43.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26