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Abstract: Case-based reasoning uses old information to infer the answer of new problems. 

In case-based reasoning, a reasoner firstly records the previous cases, then searches the 

previous case list that is similar to the current one and uses that to solve the new case.  

Case-based reasoning means adapting old solving solutions to new situations. This paper 

proposes a reasoning system based on the case-based reasoning method. To begin, we show 

the theoretical structure and algorithm of from coarse to fine (FCTF) reasoning system, and 

then demonstrate that it is possible to successfully learn and reason new information. Finally, 

we use our system to predict practical weather conditions based on previous ones and 

experiments show that the prediction accuracy increases with further learning of the FCTF 

reasoning system. 
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1. Introduction 

Case-based reasoning (CBR) is a problem-solving method, not only making connections between 

problem descriptors and conclusions, but also is able to utilize the specific previous knowledge to infer 

new solutions for new problem situations (cases) [1,2]. A new problem is solved by finding a similar 

past case, and reused in this new problem situation. The CBR field has grown rapidly in recent years, as 

evidenced by the emergence of several international case-based reasoning conferences in European and 

other CBR workshops, by the usage of available commercial tools, and successful applications in  

daily use [3–6]. 

In the early 1980s, CBR traces back to the work of Roger Schank, whose model of dynamic memory 

was the basis for the earliest CBR systems [7]. Other types of CBR emerged in the 1980s, aiming at 

topics such as legal reasoning, reasoning from massively parallel machines cases, and combinations of 

CBR with other machine learning techniques. CBR technology resulted in deployment of a number of 

successful systems, such as the system for controlling composite parts to be baked in a convection oven 

and the system of health application area [8]. 

There is one type of CBR system called Conversational Case-based Reasoning (CCBR) [9], which 

provides a mixed-initiative dialog for guiding users to construct their problem description incrementally 

through a question. For each time running a CBR, the users are confronted with a new dialog or a new 

query that is used to decide to terminate the whole process or just go on. This is a kind of “multistep 

CBR” that means applying CBR and improving the query, and reapplying CBR, etc. The common 

features of our system and CCBR is “multistep”. Our CBR system is a kind of CCBR. 

The main contribution of the paper is to use previous information to infer new information based on 

case based “from coarse to fine” (FCTF) reasoning system. Specifically, the system starts with the cases 

with the least features/feature to learn and predict, if it could not get the expected accuracy of the 

prediction, the system would increase osne feature, and then repeat the step for many times. This process 

stops when it reaches to the expected accuracy. 

The organization of this paper is as follows. In Section 2, we briefly introduce the preliminaries of 

the paper: case-based reasoning and Occam’s razor theory. Section 3 is the description of the case-based 

FCTF reasoning system. Section 4 presents how to use the case-based FCTF reasoning system to predict 

the precipitation. Finally, we make the conclusion. 

2. Preliminaries 

2.1. Case-Based Reasoning 

Case-based reasoning learns from experience. A reasoner uses old experience to suggest solutions for 

new problems [10]. Specifically, the reasoner solves new problems by recording and reusing the most 

similar one or one set [11,12]. It interprets new situations by remembering old similar situations and 

contrasting the new one to old ones to see which one fits best. Case-based reasoning could be used as 

the diagnostic assistant to help users diagnose problems on their computer systems [13]. When a user 

describes his problems, the closest cases in the case base will be retrieved. The diagnostic system can 

recommend some of these to the user, adapting each case to each user’s particular situation, such as 

changing recommendations based on what operating system the user has, what software the user uses, 
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what internet connection method they choose, and the printer brand. If none of the cases is suitable, some 

other problem-solving method can be done to solve the problem, perhaps by having a human help 

diagnose the problem. When the problem is finally fixed, the case would be added to the case base. 

Case-based reasoning is a method that combines learning with reasoning. In case-based learning, the 

training samples, the cases, are stored and accessed to solve a new problem [14,15]. It is very important 

to find a way to represent the data. To trigger this method, a distance is required to measures the closeness 

of two examples. Suppose e(Xi) (shown in Table 1) is the value of feature Xi for the example e;  

(e1(Xi) − e2(Xi)) is the feature difference between example e1 and example e2. The Euclidean metric can 

be used as the distance between two objects and can be calculated as the square root of the sum of the 

squares of the feature differences. One issue is the importance of different features; increasing the weight 

of one feature increases the importance of that feature. Let wi be a non-negative real-valued parameter 

that specifies the weight of feature Xi. The distance between examples e1 and e2 is then  

d(e1,e2) = sqrt(∑iwi × (e1(Xi) − e2(Xi))2). The feature weights can be provided as input. 

Table 1. Values of feature Xi for the example e1 and e2. 

Examples/Featues X1 X2 X3 X4 X5 Xi Xn 
e1 e1(X1) e1(X2) e1(X3) e1(X4) e1(X5) e1(Xi) e1(Xn) 
e2 e2(X1) e2(X2) e2(X3) e2(X4) e2(X5) e2(Xi) e2(Xn) 

After the situations or cases are properly represented and stored, the new situation (case) will enter 

into the system memory that is used for reasoning for the next time. In case-based reasoning, to get a 

prediction for a new case, we choose the case that is similar, or close to, the new case to predict the value 

of the target features of the new case. In general, the second time solving the problem is easier than the 

first because we are more competent since we remember our mistakes and, therefore, can avoid them. 

A case-based reasoning algorithm to predict whether the user will or will not read this article must 

determine the relative importance of the dimensions. One of the problems in case-based reasoning is 

accessing the relevant cases. To finish this work as quickly as possible, a kd-tree [16] is a way to number 

the training examples so that chosen examples can be found quickly. Just like a decision tree, a kd-tree 

splits on input features. In building a kd-tree from a set of examples, the learner tries to find a suitable 

feature that can split the examples into several sets that have approximately equal size, then builds  

sub-kd-trees for the cases in each partition. The exact matches will be found at the leaf. Case-based 

reasoning can be expressed as a four-step process shown in Figure 1 [17]. 

 

Figure 1. Case-based learning process. 
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Retrieve: Remembering is the process of retrieving a case or set of cases from memory. In general, 

it consists of two sub-steps: recall previous cases and select the best case. The goal of the first step is to 

retrieve suitable cases that can support reasoning that occurs in the following step. Good cases are those 

that have the potential ability to make a correct prediction on the new case. Given a new case, we retrieve 

a similar case/cases from the case base, and then select the best subset. This step selects the most 

promising case/cases to reason with from those generated in the recall step of previous cases. The 

purpose of this step is to narrow the set of relevant cases to a few candidates worthy of intensive 

consideration. Sometimes it is appropriate to choose one best case, sometimes a small set.  

Reuse: Adapt the retrieved case or cases to match with the new case, and propose a solution.  

Revise: Evaluate and revise the solution based on how well it works. The revision can involve other 

reasoning techniques, such as using the proposed solution as a basic point to come up with a more 

suitable solution, which can be done by a human interactive system.  

Retain: Decide whether to keep this new case and its solution in the case base.  

2.2. Occam’s Razor 

Occam’s razor traces its root to the work of William Ockham, a principle of succinctness used for 

solving problem [18–20]. It states that the one with the fewest assumptions should be selected among a 

number of hypotheses. Other more complicated solutions may ultimately be proved correct, but the fewer 

assumptions that are made, the better, in the case of certainty absence. 

Occam’s razor is also called the parsimony principle [21–23]. Recently, it is usually interpreted as 

something like “the simpler the explanation, the better”. Occam’s razor, as a principle that is frequently 

used, establishes the criteria for choosing among choices that have equal opportunities. For example, 

Occam’s razor can be used to support creationism over evolution since evolution is much more complex 

than having God create everything, which indeed is much simpler than evolution. After all, evolution is 

a very complex process. 

However, Occam’s razor does not say that the more simple a hypothesis, the better [24]. We don’t 

assume that the simpler theory is correct and the more complex one is false. We know from experience 

the theory that requires complicated machinations is often to be proved wrong. However, until proved, 

the more complex theory competing with a simpler explanation should still be considered. We should 

not safely assume that the simpler one is absolutely right. Occam’s razor is useless when a rational person 

should make a choice between an implausible explanation and a probable one since the answer is 

obvious, but if the principle is minimalist, then it seems to imply that the more simplification the better. 

If so, then the principle of parsimony might better have been called Occam's Chainsaw, for its main use 

looks like a clear-cutting action [25,26]. 

3. Case-Based “FCTF” Reasoning System 

As mentioned before, Occam’s razor is a principle of succinctness used for solving problems, which 

means that the one with the fewest assumptions or features should be selected. Among the scientific 

methods, Occam's razor is not considered as an irrefutable existence [27–29]; the preference for 

simplicity is based on the falsifiability criterion [30,31]. For each accepted explanation of a phenomenon, 

although there is always a number of possible and more complex alternatives, simpler theories are 
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preferable to more complex ones since they are better testable and falsifiable. Case-based FCTF 

reasoning system is based on such a theory. FCTF, just as the name implies, means “from coarse to fine” 

and starts with the least feature or features to reason. 

When performing analysis of complex data, one of the major problems is the number of involved 

variables; in other words, the number of features. Generally speaking, analysis with a large number of 

variables demands a large amount of memory, time, and computation time to generate an answer of a 

problem. Feature extraction is a key point for constructing the variables to solve these problems while 

still describing the data with sufficient accuracy. 

In case-based reasoning, feature extraction is a primary step. When the input data is too complicated 

to be processed or suspected of having redundant information, then the input data will be transformed 

into a reduced representation set of features. Using the set of features to represent the input data is called 

feature extraction. If the features extracted are carefully chosen, it is expected that the features set will 

perform the desired task using this feature extraction representation. 

Best results are achieved when an expert constructs a set of application-dependent features. 

Nevertheless, if no such expert knowledge is available, general dimensionality reduction techniques  

may help. 

3.1. Case-Based Reasoning Problem Definition 

Generally speaking, a case in case-based reasoning system can be represented by the three steps 

conceptually below: 

Problem definition: the expression of the problem that needed to be solved at one time. 

Solution definition: the expression of the solution to the problem specified in the problem  

definition step. 

Outcome: the resulting state after the solution was carried out. 

A new case only has the problem definition part. The similarity measurement between a query and a 

stored case is based on the comparison of the problem definition parts of them. 

3.2. Case-Based “FCTF” Reasoning System 

Case-based FCTF reasoning system is shown in Figure 2. 

 

Figure 2. Case-based FCTF reasoning system. 



Appl. Sci. 2015, 5 830 

 

 

As shown in Figure 2, the system starts with the least number of features; one, for example.  

If the prediction accuracy cannot be reached, we increase the number of features and do the case-based 

learning again. 

Retrieve: Remembering is the process of retrieving a case or set of cases from memory. The case 

element may be a crisp number or a more complicated one. 

Reuse: If we find the same case, we just set the solution of the case in the case base as the solution 

of the new case, if we cannot, we find the nearest case and output according to this case.  

Revise: Evaluate the solution and revise it based on the real situation. 

Retain: Keep this solution to the basement. 

The following is the pseudocode of the reasoning algorithm. 

Crisp reasoning algorithm: (1) n = 1; (2) while(accuracy > α); (3) for j = 1 to r do; (4) for i = 1 to n 

do; (5) Computedist(A(r+1)i, Aji); (6) Endfor; (7) Compute dist(R(r+1), Rj); (8) Endfor; (9) Find the rule 

number with the minimum value of dist(R(r+1), Rj): minj; (10) Output(y(Rminj)); (11) n++; (12) End while. 

In a case-based reasoning system, one key point is to compute the similarities between a query and 

old cases to decide which case is most similar to the new coming one. Normally, the similarity between 

a query and an old case is calculated by the accumulated similarities on all counted features. 

The similarities are also influenced by the calculation methods. For example, in one method, two 

cases can be treated as similar, while in another method, two cases with various values on one nominal 

feature can possibly be considered as similar through exploring general domain knowledge. There are 

many methods to compute the similarities between a query and old cases. 

Here, we just give an example of a calculation method, the Euclidean metric, to compare the similarity 

of the cases if the case is a set of features, each of which is a crisp number. 

Assume that there are r rules in the rule set with the same structure, we first compute the distance 

between the prerequisite of the R(r+1) and Rj, denote it as dist(A(r+1)i, Aji), which can be calculated as  

(A(r+1)i − Aji). Then, we find the rule number with the minimum value of dist(R(r+1), Rj) and denote it as 

minj. To calculate the Euclidean metric of the prerequisite between two rules, we compute the distance 

between one variable value in one rule and the corresponding variable value in the other rule, and then 

do the same to the next variable value and the corresponding variable value in the other rule, and so on. 

Finally, we calculate the dist(R(r+1), Rj) according to the equation following: 

dist(R(r+1), Rj) = sqrt(∑i * (A(r+1)i − Aji)2) (1) 

For example, if we want to compare the Euclidean metric between R1 and R2, we should compute the 

distance between the first element of the prerequisite in R1 “A11” and the first element of the prerequisite 

in R2 “A21” yielding dist(A11, A21). We then do the same for the second element of the prerequisite in R1 

and the second element of the prerequisite in R2 yielding dist(A12, A22). At this point, we use the equation 

above to calculate dist(R1, R2). α in line 1 is a user-specified threshold to control the reasoning process. 

Its value determines the accuracy of the reasoning system: if α is bigger, the reasoning system is  

more accurate. 

Interval reasoning algorithm: (1) n = 1; (2) while (accuracy > α); (3) for j = 1 to r do; (4) for i = 1  

to n do; (5) Computedist(avg(A(r+1)i), avg(Aji)); (6) Endfor; (7) Compute dist(R(r+1), Rj); (8) Endfor;  

(9) Find the rule number with the minimum value of dist(avg(A(r+1)i), avg(Aji)): minj;  

(10) Output(y(Rminj)); (11) n++; (12) End while. 
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If the case of the feature is an interval, we average the values in the interval and use the averaged, 

crisp number to denote the interval. Afterwards, the interval reasoning algorithm is the same as the crisp 

reasoning algorithm. 

4. Experiments and Analysis 

We took the most common time series predicting weather forecast for example, to test the effects of 

different number of input atmosphere conditions on the rainfall forecasting accuracy of our case-based 

FCTF Reasoning System. 

Expert systems in meteorological area are expressed using rules in the following way: 

Given a rule base of r rules, e.g., n-input 1-output, the jth control rule is described in the following 

form: Rj: IF x1 is Aj1 AND x2 is Aj2 , AND xn is Ajn, THEN y is Bj, where j is a rule number, n is the total 

number of inputs. Rule-based expert systems can only deal with rules that is in the rule set. 

When we want to deduce another rule that is not in the rule set above (denoted as Ra): “Ra: IF x1 is A1 

AND x2 is A2, AND xn is Arn, THEN y is ?”. 

We can translate this rule-based expert system into a case-based reasoning system: one complete case 

is one complete rule; one incomplete case is one partial rule. Thus, a rule-based expert system can be 

transferred to a case-based reasoning system, which can deal with rules that are not in a rule set. This is 

somewhat like partial-rule matching algorithm [32]. 

In our experiments, we take Euclidean distance and cosine similiarity to measure the similarities 

between the two instances. In our experiments, there is no difference between these two methods when 

we use them. 

4.1. Data Collection 

From Shanxi Meteorological Administration, China, we got the ground surface meteorological 

observation data in Taiyuan, a city of Shanxi Province, China from May 2007 to October 2007, May 

2008 to October 2008, and May 2009 to October 2009, which are the rainy seasons in that city. The 

specific meteorological elements included the day’s atmospheric pressure, relative humidity, dry and 

wet bulb temperature, wind speed, and accumulated precipitation at 20 o’clock (Beijing Time, equivalent 

to 1200 UTC), which we took into our experiments. 

4.2. Experimental Section 

We took the day’s atmospheric pressure, relative humidity, dry and wet bulb temperature, and wind 

speed observations at 20 o’clock (Beijing Time) as input conditions. Before the experiments, we 

classified the input meteorological conditions into different levels according to their rating, which is 

shown in Table 2. Atmospheric pressure falls into four levels shown in the first two columns of Table 2; 

dry and wet bulb temperature falls into four levels shown in the third and fourth columns; relative 

humidity falls into five levels, shown in the fifth and sixth columns; and wind speed falls into five levels 

shown in the last two columns. 
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Table 2. Levels classification of input conditions. 

Atmospheric Pressure 
Dry and Wet Bulb  

Temperature 
Relative Humidity Wind Speed 

Rating Value (hPa) Rating Value (°C) Rating Value (%) Rating Value (MPH)

Moderate >940 Lowest <−10 Dry [0,30) Calm (0,2) 

Lower  

slightly 
[930, 940) 

Lower [−10,5) Less dry [30,50) Light Air [2,4) 

Moderate [5,30) Less 

humid 
[50,70) 

Light Breeze [4,7) 

Lower [920,930) Higher [30,45) Gentle Breeze [7,11) 

Lowest <920 Highest >45 Humid [70,100) Moderate Breeze [11,17) 

We tested our case-based FCTF reasoning systems with different numbers of input conditions in these 

experiments to discover the effects of number of input conditions on the case-based FCTF reasoning 

systems’ predicting accuracy. Table 3 shows the detailed experiment section: in experiment number one, 

we took only one input condition which is atmospheric pressure; in experiment number two, we took 

two input conditions which are atmospheric pressure and relative humidity; in experiment number three, 

we took three input conditions which are atmospheric pressure, relative humidity, and dry and wet bulb 

temperature; and in experiment number four, we took four input conditions which are atmospheric 

pressure, relative humidity, dry and wet bulb temperature, and wind speed. Since the same 

meteorological premises may lead to several different conclusions, which are different meteorological 

levels. In those cases, we choose the most probable level. 

Table 3. Case-based FCTF Reasoning Systems’ experiments with different numbers of input conditions. 

Experiment 
Number 

Input Conditions 

Atmospheric 
Pressure 

Dry and Wet Bulb 
Temperature 

Relative 
Humidity 

Wind Speed 

1 × ○ ○ ○ 
2 × × ○ ○ 
3 × × × ○ 
4 × × × × 

Notes: “×” denotes “including” and “○” denotes “not including”. 

We also took the accumulated precipitations in the next 24 h as outputs for the weather prediction 

models, and used the precipitation observations to verify the prediction results of Case-based FCTF 

Reasoning Systems’. Numbers from zero to four inclusively is given to represent light rain, moderate 

rain, heavy rain, rainstorm, and heavy rainstorm, respectively. Thus, precipitation values falls into five 

levels shown in Table 4. 

Table 4. Levels classification of precipitation outputs. 

Precipitation Rating Precipitation Value (mm) 

Light rain (0,10.0) 
Moderate rain [10.0,24.9) 

Heavy rain [24.9,49.9) 
Rainstorm [49.9,99.9) 

Heavy rainstorm [99.9,249.0) 
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Since people concern forecasting rainfalls more than forecasting sunny days [33,34], we defined 

Hitrate as: 

Hitrate = Correctp/Totalp (2) 

where Correctp is times of correct prediction in observed rainfall days and number of observed rainfall 

days as Totalp. We defined Error as: 

Error = Predictp − Observp (3) 

where Predictp is the predicted precipitation values and the observed precipitation values as Observp. 

|Error| denotes the absolute value of Error. For the same reason as above, we also only considered 

observed rainfall days in calculating average |Error|. 

4.3. Experiment Results and Error Analysis  

After four experiments completed, we calculated their errors and hitting rates, shown in Table 5. We 

also drew comparison charts between predicted values and observed values (panels (a) in Figures 3–6), 

and time sequence diagrams of prediction errors (panels (b) in Figures 3–6). 

(a) (b) 

Figure 3. Testing results of the Case-based FCTF Reasoning System in experiment number 

one. (a) Comparison between Observation and Prediction; (b) Prediction error.  

 
(a) (b) 

Figure 4. Testing results of the Case-based FCTF Reasoning System in experiment number 

two. (a) Comparison between Observation and Prediction; (b) Prediction error. 
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(a) (b) 

Figure 5. Testing results of the Case-based FCTF Reasoning System in experiment number 

three. (a) Comparison between Observation and Prediction; (b) Prediction error. 

(a) (b) 

Figure 6. Testing results of the case-based FCTF reasoning system in experiment  

number four observed rainfall days in calculating average |Error|. (a) Comparison between 

Observation and Prediction; (b) Prediction error. 

Firstly, the case-based FCTF reasoning systems with only one input condition and with two input 

conditions are used to predict the precipitation levels for weather forecasting, but lead to the non-accuracy 

of the prediction outputs. Table 5 shows that hitting rates in experiments number one and number two 

are both equal to zero, which means that the rates of prediction accuracy are zero. Figures 3a and 4a 

show that the case-based FCTF reasoning systems with only one input condition and with two input 

conditions never successfully forecasted any rainfalls during the experimental time period. However, 

they had forecast no rainfalls in all the days during the whole experiment, which makes the errors are 

always equal to or less than zero as shown in Figures 3b and 4b. Therefore, we believe that the  

case-based FCTF reasoning systems with only one input condition and with two input conditions are 

completely impossible to forecast precipitation. These results can also be explained on meteorology. 

Meteorologists point out that the conditions of rainfall formation are complex [35,36], and using only 

one or two kinds of input conditions cannot forecast precipitation. 
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Table 5. Comparisons among the case-based FCTF reasoning systems with different number 

of input conditions. 

Experiment 

Number 

Number of Input 

Conditions 

Minimum 

Error 

Maximum 

Error 

Minimum 

|Error| 

Maximum 

|Error| 

Average 

|Error| 
Hit Rate

1 1 −4 levels 0 level 0 level 4 levels 1.52 levels 0.00 

2 2 −4 levels 0 level 0 level 4 levels 1.52 levels 0.00 

3 3 −4 levels 1 level 0 level 4 levels 1.25 levels 0.27 

4 4 −4 levels 1 level 0 level 4 levels 1.16 levels 0.36 

The case-based FCTF reasoning system with three input conditions improved heavily compared to 

experiments one and two, just after adding the relative humidity as the new input condition. Figure 5 

shows that it can forecast some of the rainfall events. Hit rate, as shown in Table 5, which increased to 

0.27, is much better than those in experiments one and two, which are both equal to zero. Average |error| 

plummeted from 1.52 levels to 1.25 levels, decreasing by 17.8%. This result preliminary notes that when 

the case-based FCTF reasoning system forecasts a complex system (such as weather system), adding a 

new input condition is one of the important and useful methods to increase the accuracy. This is also 

evident in the meteorology area. Compared with the atmospheric pressure and temperature, relative 

humidity has greater effect on precipitation [37–39]. However, this forecast result is still far from  

our expectations. 

We continued with the case-based FCTF reasoning system with four input conditions, which is the 

improvement of our system with three input conditions. At this time, we added wind speed as a new 

input condition. Table 5 shows that after average |error| dropped from 1.25 levels to 1.16 levels, there 

are plenty of rises in hit rate, from 0.27 to 0.36. Compared with other three experiments, the  

case-based FCTF reasoning system with four input conditions is the best of these four experiments. Such 

improvement is also very easy to explain using meteorological knowledge. That is, a larger surface wind 

can bring a steady stream of moisture from other place, which makes a rain sustainable and precipitation 

increasing [40]. 

However, Figure 6a shows that this system often makes mistakes at predicting the rainfall levels, 

especially for the high magnitude of precipitation, often erroneously forecasted as a low magnitude of 

precipitation; this is because the entire weather system is very complicated. The purpose of these 

experiments was to predict precipitation by inputting atmospheric pressure, temperature, relative 

humidity, and wind force is only to demonstrate that adding input conditions can increase the accuracy 

of the case-based FCTF reasoning systems. We just added two input conditions in experiment number 

four compared with experiment number two, and the forecast accuracy improved by 0.36 in hit rate. We 

believe that, in the practical meteorological services, we can choose more suitable input conditions to 

improve the accuracy of precipitation forecasts dramatically. 

4.4. Analysis of Our System 

Assuming that there are n features from X1 to Xn, enew is the new coming instance, enearest is the closest 

instance to the new coming one, and we take Euclidean distance as the similarity measure method: 

Distnearest = sqrt(∑ iwi × (enew(Xi) − enearest(Xi))2) (4) 
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Algorithm starts from X1, 

Distnearest = sqrt((enew(X1) – enearest(X1))2) = |enew(X1) − enearest(X1)| (5) 

If X1 is not related to the problem (X1 ∉ Pf, where Pf is the set of the problem features), the hit rate 

would be very low regardless whether Dist is below our threshold. Otherwise, if Distnearest < α,  

Output enearest(Y), And we add another X2, 

Distnearest = sqrt((enew(X1) – enearest(X1))2 + (enew(X2) – enearest(X2))2) (6) 

Analysis: if Xi ∈ Pf and Distnearst < α, Hitting rate would increase at the ideal conditions; if Xi ∈ Pf 

and Distnearst > α, Hitting rate may increase through increasing the value of α. If Xi ∉ Pf and  

Distnearest < α, Distnearest is not influenced by adding the noisy attributes. However, the hit rate of the 

system would not increase; If Xi ∉ Pf and Distnearest > α, Distnearest is influenced by adding the noisy 

attributes, and the results would be proved as a failure. 

5. Conclusions 

This paper presents a new reasoning system that can reason new information based on case-based 

reasoning. Our system is based on a case-based reasoning, but unlike previous case-based reasoning, it 

starts reasoning with the least number of features. This model is more convenient for some applications 

when we do not know which feature or features are highly related to the reasoning problem. As 

mentioned before, Occam's razor is a principle of succinctness used for solving problems. FCTF means 

that the one with the fewest assumptions or features should be selected. Other more complicated 

solutions may ultimately prove correct, but if there is less certainty, the fewer assumptions, the better. 

We show that the new system is suitable for reasoning. That is, we can reason the solution of a new 

example based on the previous examples. Most important of all, our experiments show that increasing 

the number of features would result in more accurate prediction results. However, we have to confess a 

fact that if a feature is not a key point to a problem, adding the feature to analyze the problem would not 

result in any improvement of the prediction accuracy. 

As we know, case-based learning is important because most real world problems are better 

characterized as an unknown-feature model. Thus, developing models may better describe real  

world systems. 

Our system is an expansion of the case-based reasoning system, thus, the problem that can be handled 

by the case-based reasoning system can be solved by our system too. It is suitable when we do not know 

the features of the problem which we use the case-based reasoning system to deal with, and not suitable 

when we know the exact influential factors or to any problem that cannot be solved by using case-based 

reasoning system. 
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