Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Relationship between Automated Low-Level Velocity Calculations from the WSR-88D and Maximum Tornado Intensity Determined from Damage Surveys

Filetype[PDF-2.40 MB]



Details:

  • Journal Title:
    Weather and Forecasting
  • Description:
    The relationship between automated low-level velocity derived from WSR-88D severe storm algorithms and two groups of tornado intensity were evaluated using a 4-yr climatology of 1975 tornado events spawned from 1655 supercells and 320 quasi-linear convective systems (QLCSs). A comparison of peak velocity from groups of detections from the Mesocyclone Detection Algorithm and Tornado Detection Algorithm for each tornado track found overlapping distributions when discriminating between weak [rated as category 0 or 1 on the enhanced Fujita scale (EF0 and EF1)] and strong (EF2-5) events for both rotational and delta velocities. Dataset thresholding by estimated affected population lowered the range of observed velocities, particularly for weak tornadoes while retaining a greater frequency of events for strong tornadoes. Heidke skill scores for strength discrimination were dependent on algorithm, velocity parameter, population threshold, and convective mode, and varied from 0.23 and 0.66. Bootstrapping the skill scores for each algorithm showed a wide range of low-level velocities (at least 7 m s(-1) in width) providing an equivalent optimal skill at discriminating between weak and strong tornadoes. This ultimately limits identification of a single threshold for optimal strength discrimination but the results match closely with larger prior manual studies of low-level velocities.
  • Source:
    Weather and Forecasting, 30(5), 1125-1139.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26