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Abstract 1 

 2 

An analysis of atmospheric rivers (ARs) as defined by an automated AR detection tool based on 3 

integrated water vapor transport (IVT) and the connection to heavy precipitation in Southeast U. 4 

S. (SEUS) is performed. Climatological water vapor and water vapor transport fields are compared 5 

between the U. S. West Coast (WCUS) and the SEUS, highlighting stronger seasonal variation in 6 

integrated water vapor in the SEUS, and stronger seasonal variation in IVT in the WCUS. The 7 

climatological analysis suggests that IVT values above ~500 kg m-1 s-1 (as incorporated into an 8 

objective identification tool such as the AR detection tool used here) may serve as a sensible 9 

threshold for defining ARs in the SEUS.   10 

AR impacts on heavy precipitation in the SEUS are shown to vary on an annual cycle, and a 11 

connection between ARs and heavy precipitation during the non-summer months is 12 

demonstrated. When identified ARs are matched to heavy precipitation days (>100 mm day-1), an 13 

average match rate of ~41% is found. 14 

Results suggest that some aspects of an AR identification framework in the SEUS may offer benefit 15 

in forecasting heavy precipitation, particularly at medium-longer range forecast lead times. 16 

However, the relatively high frequency of SEUS heavy precipitation cases in which an AR is not 17 

identified necessitates additional careful consideration and incorporation of other critical aspects 18 

of heavy precipitation environments such that significant predictive skill might eventually result. 19 

  20 
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1. Introduction 21 

1.1. Motivation 22 

Many studies have documented the important role of atmospheric rivers (ARs) in producing 23 

extreme precipitation and flooding in the western U.S. (e.g., Neiman et al. 2008; Dettinger et al. 24 

2011; Ralph and Dettinger 2012), however, relatively little research has been conducted on this 25 

topic in the Southeast U.S.  Evidence suggests that some high-impact flood events in this region, 26 

such as the severe flooding in Tennessee in May 2010, have been partially driven by the presence 27 

of an AR (Moore et al. 2012; Lackmann 2013), but comprehensive understanding of the linkage 28 

between AR conditions and central/eastern U.S. precipitation remains undocumented. Part of the 29 

challenge in assessing the role of ARs in producing extreme precipitation is the very definition of 30 

AR conditions and the applicability of such a definition across different regions. 31 

 32 

A recent extreme precipitation climatology produced as part of the NOAA Hydrometeorology 33 

Testbed (HMT) pilot project in the Southeast U.S. (HMT-SE) identified and categorized a collection 34 

of heavy precipitation cases and demonstrated that the causes of heavy precipitation in the 35 

Southeast United States (SEUS) are quite varied and diverse, but that some events may be linked 36 

to ARs (or AR-like features; Moore et al. 2015). In order to investigate the relevance of ARs in the 37 

SEUS, a newly-developed AR detection tool (ARDT; Wick 2014) based on vertically-integrated 38 

horizontal water vapor transport (IVT) is tested for the SEUS. ARs identified by the ARDT based on 39 

IVT are then compared with observed heavy precipitation events in order to quantify their 40 

relationship. In testing this identification tool and precipitation-matching technique we examine 41 

the applicability of an integrated water vapor (IWV)-based AR definition in a region outside of the 42 
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West Coast U.S. (WCUS) where the IWV-based AR definition was first developed (Ralph et al. 43 

2004). We in turn consider how to account for the generally higher levels of background moisture 44 

and a more diverse array of precipitation generation mechanisms in the SEUS relative to the 45 

generally drier background environment and more orographically-focused precipitation found 46 

along the WCUS. 47 

 48 

This manuscript will describe linkages between objectively-identified ARs and heavy precipitation 49 

events in the SEUS, as well as compare definitions and characteristics of ARs between the WCUS 50 

and SEUS.  Our objectives in conducting this analysis are to: (i) examine how (and whether) ARs 51 

should be defined in the SEUS, (ii) compare definitions and characteristics of AR climatologies and 52 

precipitation linkages between the WCUS and SEUS, (iii) describe linkages between objectively-53 

identified ARs and heavy precipitation events in the SEUS, and (iv) provide insight on whether 54 

defining synoptic-scale water vapor transport features as ARs in the SEUS provides any potential 55 

operational, applied, or research benefits to anticipating or understanding SEUS heavy 56 

precipitation events.  57 

 58 

 59 

1.2. Previous research 60 

Atmospheric rivers (ARs) are typically described as narrow, filamentary regions of enhanced water 61 

vapor transport, the presence of which has been observed to closely coincide with extreme 62 

precipitation and major flooding events along the west coast of North America, as well as many 63 

other regions around the globe (e.g., see Gimeno et al. 2014 and references therein). ARs are most 64 
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often associated with moisture transport in the warm sector of mid-latitude cyclones.  A number 65 

of studies have recently investigated the linkage between ARs (or features that can be related to 66 

ARs, e.g. warm conveyor belts, tropical moisture exports, etc.) and precipitation worldwide 67 

(Eckhardt et al. 2004; Knippertz and Martin 2007; Knippertz and Wernli 2010; Lavers and Villarini 68 

2013; Neiman et al. 2013; Phfal et al. 2014; Rutz et al. 2014; Alexander et al. 2015; Lavers and 69 

Villarini 2015, and others).  70 

WCUS-focused AR studies have found that ARs making landfall in California explain 20% - 50% of 71 

WCUS annual precipitation in the state (Dettinger et al. 2011), and that for some specific WCUS 72 

locations, nearly all extreme precipitation can be associated with landfalling ARs (e.g., Ralph and 73 

Dettinger 2012). Figure 1 summarizes results from previous studies which demonstrate that 74 

particularly high-intensity precipitation events (i.e., 72-h precipitation totals exceeding 500 mm) 75 

occur preferentially in both the SEUS and the WCUS regions of the United States, but the 76 

contribution of ARs to annual and extreme precipitation is best documented in the WCUS.  The 77 

seasonality of heavy precipitation events in the western and eastern U.S. has also been shown to 78 

starkly differ, with cool (warm) season events being markedly more prominent in the western 79 

(eastern and central) U. S. (Fig. 1c; Ralph and Dettinger 2012). 80 

ARs have been considered for their role in contributing to high-impact precipitation events in the 81 

SEUS as well. Moore et al. (2012) detail the role of an AR-like feature in supplying moisture to the 82 

2010 Tennessee Floods. Moore et al. (2012) also point out how transport of water vapor from the 83 

tropics into the central and southeastern United States can occur in connection with ARs, but that 84 

due to the basic geography and associated synoptic-scale weather climatology of the North 85 

American continent (e.g., Hobbs et al. 1996), the processes associated with central and eastern 86 
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U.S. ARs likely differ in significant ways from those associated with “classic” pre-cold-frontal ARs 87 

over open-ocean basins. As such, the dynamical differences in which synoptic-scale cyclones are 88 

known to develop and impact the WCUS relative to the SEUS further motivates this work.  89 

 90 

While there are certainly well-known, specific heavy precipitation cases featuring connections to 91 

ARs (or AR-like features, as described previously) in the SEUS, it is important to consider such 92 

events in a context recognizing that the SEUS experiences heavy precipitation events during all 93 

seasons and associated with a variety of atmospheric phenomena (e.g., Moore et al. 2015 and 94 

references therein). In contrast with the WCUS, corridors of strong water vapor transport (i.e., ARs 95 

or related terminologies) may extend from multiple different moisture source regions: the Gulf of 96 

Mexico, the Caribbean Sea, and the Atlantic Ocean (e.g., Pfahl et al. 2014). These corridors of water    97 

vapor transport provide moisture to areas of heavy precipitation produced in conjunction with a 98 

variety of potential precipitation triggering mechanisms [e.g., synoptic-scale frontal systems (e.g., 99 

Businger et al. 1990), land-falling tropical cyclones (e.g., Shepherd et al. 2007), mesoscale 100 

convective systems (e.g., Letkewicz and Parker 2010), orographic forcing along the Appalachian 101 

Mountains (e.g. Smith et al. 2011), and/or topographically-induced baroclinic zones (e.g. Koch and 102 

Ray 1997).] A number of previous studies have investigated various characteristics of heavy 103 

precipitation affecting the SEUS (e.g., Keim 1996; Konrad 1997, 2001; Brooks and Stensrud 2000; 104 

Schumacher and Johnson 2006; Mahoney and Lackmann 2007; Shepherd et al. 2007; Srock and 105 

Bosart 2009; Moore et al. 2015, and others), but none to our knowledge have focused on the 106 

specific role that ARs may play in the region’s complex heavy precipitation climatology.  107 

 108 
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2. Data and methods  109 

Past studies have established criteria for the visual identification of ARs based on fields of 110 

integrated water vapor (IWV) from either satellite retrievals (e.g., Neiman et al. 2008; Wick et al. 111 

2013a) or numerical weather prediction (NWP) models (e.g., Lavers and Villarini 2013; Wick et al. 112 

2013b; Rutz et al. 2014). In order to make AR identification both automated and objective, an 113 

Atmospheric River Detection Tool (ARDT; Wick et al. 2013a) was developed based on thresholds 114 

of width, length, and IWV content of a given enhanced-IWV feature as informed by earlier, visual-115 

identification-based studies. The ARDT based on IWV (ARDT-IWV) has been demonstrated to agree 116 

remarkably well with visual identification of ARs on the WCUS, as well as to be successful in 117 

reproducing climatologies of landfalling AR events. It has also been employed in evaluating the 118 

ability of NWP models to forecast the characteristics and landfall of ARs along the west coast of 119 

North America (Wick et al. 2013b).  120 

While highly valued for its ability to be employed on fields directly available from satellite 121 

retrievals, the ARDT-IWV does not address the water vapor transport that most directly 122 

characterizes an AR. An enhanced version of the ARDT has now been developed for application to 123 

fields of IVT (i.e., ARDT-IVT) derived from NWP models and reanalyses. This enhancement further 124 

invokes the river analogy by accounting for the speed of the flow (wind), imposing a new 125 

requirement that the IVT be aligned with the primary axis of the feature itself, and thus better 126 

distinguishes the moisture transport corridor in environments of large background moisture, such 127 

as the SEUS. Figure 2 illustrates fields of IWV and IVT for two different extreme precipitation 128 

events: one in which the differences in feature identification are slight (3 May 2010; Fig. 2a, c) and 129 

one in which large background moisture highlights visually an advantage of using IVT to identify 130 
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the moisture transport feature (22 September 2003; Fig. 2b, d). Daily accumulated precipitation 131 

in both cases corresponds closely to the points identified by the ARDT-IVT (Fig. 2e, f). For additional 132 

details regarding the design, implementation, and initial evaluation of the ARDT-IVT, the reader is 133 

pointed to Wick et al. (2016).  134 

For this study, the ARDT-IVT was applied to the NCEP Climate Forecast System Reanalysis (CFSR; 135 

Saha et al. 2010) for the period January 2002 – April 2014. The CFSR, produced at T382L64 spectral 136 

resolution (~38 km), was obtained on a 0.5° latitude × 0.5° longitude global grid with 37 isobaric 137 

levels at 6-h temporal resolution. The ARDT-IVT employed a minimum IVT threshold of 500 kg m-1 138 

s-1 (for discussion of the basis for selecting this threshold see section 3), a maximum feature width 139 

of 1500 km, and a minimum length of 1500 km. The ARDT-IVT produces a number of output 140 

variables that are useful for analysis, including time, location, IVT, AR width, and AR orientation 141 

angle. Location is defined by axis points along the length of the AR, and IVT, width, and angle of 142 

AR axis orientation are provided at each axis point.  143 

In order to match identified ARs with heavy precipitation events, the Livneh et al. (2013) 144 

precipitation dataset was analyzed over the SEUS region (31°N – 39°N, 90°W – 75°W) from January 145 

2002 – December 2011. The Livneh et al. (2013) dataset documents daily precipitation on a 1/16° 146 

grid based on approximately 20,000 NOAA cooperative observer (COOP) stations. Heavy daily 147 

precipitation was defined using gridpoint values in excess of 100 mm day-1. Mean event locations 148 

for each event were computed using all heavy precipitation gridpoints for a given day; gridpoints 149 

that occurred outside of a 2° standard deviation of latitude and longitude from the computed 150 

mean location were eliminated in order to consolidate geographical areas and thus focus on 151 

coherent regions of precipitation. After this screening procedure, 249 heavy precipitation events 152 



9 
 

were identified over the 2002 – 2011 period. These events very closely match those identified by 153 

analyzing the radar-based Stage IV precipitation dataset in Moore et al. (2015), demonstrating the 154 

fidelity of the precipitation event identification process in both studies. A portion of these events 155 

were further subset into a “larger-spatial scale” heavy precipitation event category by establishing 156 

a size requirement based on the 90th percentile of the number of gridpoints exceeding the heavy 157 

threshold across the 249 identified events. Thus, the resulting 25 “larger-spatial scale” heavy 158 

precipitation events all possessed greater than 171 gridpoints (~7000 km2) in which precipitation 159 

exceeded 100 mm day-1.   160 

Once ARs and heavy precipitation events were identified, the matching of heavy precipitation 161 

events and ARs was defined by evaluating various space- and time-matching criteria. While several 162 

matching criteria were evaluated, the two used in this study are: (i) the minimum distance 163 

between a precipitation event’s average center point and at least one AR axis location must be 164 

less than 250 km; and (ii) the heavy precipitation event must have occurred within a 24-hour 165 

period of AR identification. The rationale for selecting these specific criteria is further discussed in 166 

the following section.  167 

Finally, numerical model quantitative precipitation forecast (QPF) skill for AR-matched events (i.e., 168 

heavy precipitation events found to be associated with an identified AR) and AR-unmatched events 169 

(i.e., heavy precipitation events not found to be associated with an identified AR) was assessed for 170 

the NOAA second-generation Global Ensemble Forecast System (GEFS) reforecast dataset (Hamill 171 

et al. 2013) following the same methods used in Moore et al. (2015). The GEFS reforecast dataset 172 

is an archive (1985 – present) of 0 – 16-day global ensemble forecasts initialized daily using a fixed 173 

model configuration consistent with the 2012–14 version of the operational NCEP GEFS. The 174 
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“fixed” status of the dataset allows one to evaluate forecast performance over an extended period 175 

of time without having to account for changes in operational modeling systems.  176 

 177 

3. IWV and IVT climatological comparison between the western and southeast U.S. 178 

WCUS ARs have been defined in many past studies using IWV as the main metric of identification 179 

(e.g., Neiman et al. 2008, and many others); however, originally (Newell et al. 1992; Zhu and 180 

Newell 1998) and again more recently IVT has also been used to identify ARs (e.g., Moore et al. 181 

2012; Lavers and Villarini 2013; Rutz et al. 2014; Wick et al. 2016, and others).  How (and perhaps 182 

whether) one should define an AR in the SEUS is itself a relatively complex question. Identification 183 

based on water vapor versus water vapor transport (e.g., Fig. 2), and the need to account for the 184 

larger background IWV values in the SEUS relative to the WCUS, present questions with respect to 185 

how to appropriately and most effectively identify AR features in this region.  186 

Building on previously-discussed WCUS work, we first compare climatologies of IWV and IVT 187 

between the SEUS and WCUS regions to identify salient regional differences in moisture and 188 

moisture transport using the CFSR (Fig. 3). Monthly IWV and IVT percentiles are calculated at each 189 

grid point and are averaged within a Pacific region and a SEUS region that includes portions of 190 

both the Gulf of Mexico and the Atlantic Ocean (see boxes in Fig. 4). Though all area-averaged IWV 191 

percentiles (50th – 99th) peak during the warm season in both regions, a markedly stronger 192 

seasonal variation is clear in the SEUS (Fig. 3). The annual average for all percentiles also tends to 193 

be larger in the SEUS.  194 
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The area-averaged climatological IVT percentiles differ in several ways from the IWV percentiles: 195 

in the SEUS, most IVT percentiles are relatively steady throughout the year (with a notable 196 

exception of a September peak in the 95th percentile, which aligns with the climatological peak of 197 

tropical cyclone activity), illustrating a negative correlation between water vapor (more moist in 198 

the warm season) and kinematic forcing (stronger in the cool season). In contrast, there is a 199 

noticeable annual cycle in IVT in WCUS domain, with the largest transports occurring in the cool 200 

season.  Additionally, IVT decreases more markedly from the cold season to the warm season at 201 

higher percentiles of IVT in the Pacific region relative to the SEUS, showing the shortage of 202 

transient mid-latitude baroclinic disturbances affecting this region during the summer months 203 

(Fig. 3). Such regional differences are rather stark even considering that the Pacific region averages 204 

mostly over the upstream (Pacific Ocean) moisture region, but by virtue of geography, the SEUS 205 

region includes a large area over land as well. Comparing maps of upper (95th) percentiles of IWV 206 

and IVT across cool (e.g, January) and warm (e.g., July) months again underscores the advantage 207 

of using IVT to characterize ARs in the warm season in the SEUS in particular, where warm-season 208 

background values of IWV are comparable to those found at Tropical latitudes (Fig. 4.)   209 

In addition to the comparison of percentile-based regional IWV and IVT climatologies, a SEUS-210 

specific analysis of IWV and IVT based on heavy precipitation events identified in Moore et al. 211 

(2015) demonstrates a very poor correlation of IWV and IVT themselves during heavy precipitation 212 

events (Fig. 5, and Moore et al. (2015)). Furthermore, the relationship between IWV, IVT, and 213 

precipitation amount also reveals no significant correlation, and further demonstrates that SEUS 214 

heavy precipitation events can still occur when IVT is relatively weak. This additional analysis 215 

(featuring both an independent precipitation event dataset and characterization of IWV and IVT) 216 
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further underscores differences between the SEUS and WCUS, the latter of which possesses a very 217 

strong IWV-IVT correlation (e.g., Ralph et al. 2004; 2011; Neiman et al. 2014).  [Though due to the 218 

inclusion of storm kinematic processes which focus moisture transport, advantages of IVT over 219 

IWV have been recently demonstrated for the WCUS (and other regions) as well (see Wick et al. 220 

2016).] While past studies of ARs over the Pacific Ocean and the WCUS have used 250 kg m-1 s-1 as 221 

an IVT threshold (e.g., Rutz et al. 2014; 2015), based on this comparative climatological analysis, 222 

we elect to use a threshold of 500 kg m-1 s-1 with the intent to identify the strongest systems that 223 

would be most likely to affect large-scale heavy precipitation in the SEUS. A threshold of 500 kg m-224 

1 s-1 falls approximately between the 90 – 95th percentiles of SEUS monthly average IVT values (Fig. 225 

3c). 226 

Changing the threshold from 500 kg m-1 s-1 to 250 kg m-1 s-1 results in a roughly 80% increase in 227 

the number of gridpoints and times identified as having an AR present.  Use of the lower threshold 228 

significantly increases the number of potential AR events found to not correspond to extreme 229 

precipitation.  Recent NOAA Hydrometeorology Testbed experience in the WCUS interacting with 230 

National Weather Service forecasters and other stakeholders also suggests that the 250 kg m-1 s-1 231 

threshold is too low to be useful in identifying the most significant precipitation threats associated 232 

with ARs.  Use of the 500 kg m-1 s-1 threshold has been chosen to focus on identification of the 233 

most hydrologically significant events and is now also being employed in a suite of real-time AR 234 

forecast diagnostics over the entire CONUS, presently used by forecasters at the NOAA Weather 235 

Prediction Center.  The results are also sensitive to the specific length and width criteria employed, 236 

but not to the degree of the primary IVT threshold.  Changing the length and width criteria thus 237 

impacts the number of detected ARs, but does not significantly change the primary conclusions of 238 
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this study.  A detailed analysis of the sensitivity of identified AR events to the ARDT thresholds and 239 

identification criteria will be contained in Wick et al. (2016).  240 

These regional moisture parameter comparisons illustrate several compelling reasons to define 241 

SEUS ARs by water vapor transport instead of solely by water vapor, particularly if the purpose is 242 

to identify storm systems with strong kinematic forcing from environments that may be moisture-243 

rich but are not dominated by dynamics. This choice also acknowledges that we are interested in 244 

storms whose internal dynamics contribute to precipitation production (e.g., synoptic-scale frontal 245 

systems, tropical cyclones, mesoscale convective systems) rather than precipitation depending on 246 

external triggering mechanisms (e.g., topography). The necessity of carefully considering IWV 247 

versus IVT and various associated threshold values to account for kinematic forcing relative to a 248 

moist background state is in considerable contrast to the WCUS, where mountains generally act 249 

as static orographic termini that can directly force precipitation given adequate moisture 250 

convergence and favorable winds. Though the dynamics of the very system transporting the water 251 

vapor are of critical importance regardless of region, the SEUS is known to feature a highly variable 252 

array of precipitation triggering mechanisms (e.g., Moore et al. 2015), in which direct orographic 253 

influence from the Appalachian Mountains affects a relatively small fraction of events observed 254 

across the larger region of interest.  255 

 256 

4. Connection between SEUS ARs and heavy precipitation 257 

  258 

4.1 Sensitivity to AR matching criteria and seasonality of AR-matched events 259 
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With a working definition of a SEUS AR established, the next step is to connect defined ARs with 260 

observed heavy precipitation events. As described in section 2, a “match” occurs between a given 261 

AR and an associated heavy precipitation event if at least one AR axis point is located within a 250-262 

km radius of a heavy precipitation point and occurs within the same 24-hour period. However, it 263 

is important to show that describing the degree of linkage between the 249 heavy precipitation 264 

events (identified as described in section 2) to ARs is understandably sensitive to such imposed 265 

requirements. Figure 6 shows this relationship as a function of space and time criteria; the highest 266 

rate of matching (i.e., AR-associated heavy precipitation events; 63%) occurs when matching 267 

criteria is most flexible, allowing ARs and heavy precipitation events to be separated by up to 500 268 

km and occur within a common 48-hour period. Lower rates of AR-heavy-precipitation event 269 

matching occurs when criteria become more restrictive: e.g., a matching distance allowance 270 

threshold of 100 km and a time period restriction of 24 hours yields a match rate of just 29%.  To 271 

best fit the space- and time- scales in which we are most interested (i.e., daily precipitation 272 

associated with a single synoptic weather system), we adopt the criteria that at least one AR point 273 

be located within a 250-km radius of a heavy precipitation point and occur within the same 24-274 

hour period. This definition yields an average match rate of ~41% [i.e., 41% (102 events) of the 275 

identified 249 heavy precipitation events are matched with an identified AR.]   276 

Having established an AR/heavy-precipitation matching definition, the seasonality and salient 277 

features of AR-associated heavy precipitation events can be described. On an annual cycle, while 278 

SEUS heavy precipitation events peak in the warm season (May – Oct; Fig. 7a), AR- and heavy 279 

precipitation event matches tend to peak in the cool season and transition months, with a notable 280 

minimum in July and August in particular (Fig. 7b). These results likely reflect the combined effects 281 
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of the SEUS warm season peak in IWV, relative decrease in synoptic-scale dynamic forcing, and 282 

dominance of small-scale convection, and the finding is quite consistent with many past studies of 283 

SEUS precipitation patterns (including Moore et al. (2015) and others.)  Climatological and physical 284 

characteristics of all identified AR events reveal some differences between ARs that are matched 285 

with a heavy precipitation event versus those that are not.  Matched events have a mean IVT of 286 

853 kg m-1 s-1 relative to 759 kg m-1 s-1 for unmatched AR events. The width of AR features is on 287 

average 854 km and 584 km for matched and unmatched AR events, respectively.  Thus, for most 288 

months of the year, both AR intensity and width tend to be greater in events matched with heavy 289 

precipitation (Fig. 8).  290 

The seasonal distribution of matched events also reveals a few notable geographic trends (Fig. 9). 291 

Winter (DJF) and spring (MAM) events most commonly occur in the western portion of the SEUS 292 

domain, suggesting the influence of strong synoptic weather systems transporting water vapor 293 

from the Gulf of Mexico during these months (e.g., Mahoney and Lackmann 2007; Moore et al. 294 

2015). There is a more general and varied distribution of summer (JJA) events slightly favoring 295 

southern and eastern locations within the SEUS domain. Multiple fall (SON) matched event 296 

clusters are also evident, such as in western North Carolina near the Appalachian Mountain 297 

foothills and eastern North Carolina (hinting at the possible role of landfalling tropical systems; 298 

see Brun and Barros (2014) and further analysis below), and in the far western portion of the 299 

domain as Gulf of Mexico moisture is again tapped by stronger synoptic systems in the fall season 300 

months. Small-to-moderate sized matched events (1 – 500 gridpoints) occur in all seasons, while 301 

only the spring and fall transition seasons show large-scale events (501 – 1500 gridpoints). Fall has 302 

the greatest number of large-scale events (likely due to the influence of tropical systems), and 303 
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summer has the most small-scale events, suggesting the dominance of less-organized, convective 304 

modes of precipitation. Many of these results are also in qualitative agreement with recent studies 305 

such as Lavers and Villarini (2015), which examine the role of ARs across Europe and the United 306 

States and find similar seasonality and levels of AR attribution in the SEUS.  307 

 308 

4.2 Larger-spatial scale heavy precipitation events and connection to tropical systems  309 

As ARs and the systems that drive them are generally large- (synoptic-) scale features, “larger-310 

spatial scale” heavy precipitation events are also separately analyzed in order to determine to 311 

what extent there exists a preferential connection between ARs and larger-scale heavy 312 

precipitation events. Considering heavy precipitation events of all sizes, events matched with ARs 313 

are larger on average than those without (an average of 91 gridpoints or ~3700 km2 for AR-314 

matched events vs. 61 gridpoints or ~2500 km2 for events not matched with an AR.) Because 315 

larger-spatial scale precipitation events may affect more people and property (depending on 316 

where they occur), and thus be of potentially greater societal impact, a focus on this larger-spatial 317 

scale event subset is of particular interest. Figure 7b illustrates that larger-spatial scale heavy 318 

precipitation events (defined in section 2 to be those events in which greater than 171 gridpoints 319 

(~7000 km2) exceed 100 mm day-1) are also more often matched with ARs than smaller-scale 320 

events; ~52% (13 events) of all of the 25 larger-spatial scale heavy precipitation events identified 321 

in the precipitation climatology are matched with identified ARs within 250-km and 24-h. This 322 

relationship is strongest during the cool season months (October – May; not shown due to small 323 

sample sizes in some months).  324 
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It is also of potential significance that of the 25 larger-spatial scale heavy precipitation events 325 

identified, 18 were tropical in origin (i.e., linked with a system that began as a named tropical 326 

cyclone (TC) according to the National Hurricane Center’s Hurricane Database (HURDAT) 327 

reanalysis). Of these 18 tropical system-linked, large-scale heavy precipitation events, 10 events 328 

had ARs identified by the ARDT-IVT during or immediately following the extratropical transition 329 

(ET; Jones et al. 2003)) process. One example of such an occurrence was during the ET of Tropical 330 

Storm Nicole (2010) (Fig. 10), in which the interaction of TS Nicole and a mid-latitude trough 331 

resulted in over 500 mm (~20 inches) of rain in parts of North Carolina over a five-day period. The 332 

linear feature identified by the objective ARDT-IVT algorithm shows clearly the uninterrupted 333 

connection to the Caribbean Sea moisture source during this period (Fig. 10b,c). A relatively steady 334 

conduit of deep, tropical moisture was indeed evident and identified by the ARDT in all 10 of the 335 

larger-spatial scale heavy precipitation events that exhibited both an original TC connection and 336 

an identified AR. The AR framework may thus offer a means to track and display a traceable, 337 

objectively-detectable mechanism for sustained infusion of water vapor capable of fueling the 338 

intense and often long-duration precipitation associated with some ET systems.  339 

Recent studies have demonstrated that heavy rainfall produced by extratropical-transitioning TCs 340 

can be produced by a variety of related, but distinguishable mechanisms ranging from 341 

precipitation stemming from the transitioning TC itself to precipitation displaced well poleward of 342 

the TC, as is the case in predecessor rain events (PREs; Galarneau et al. 2010; Moore et al. 2013) -343 

- the latter of which also describes the precipitation associated with the ET of TS Nicole discussed 344 

above. This potential TC connection presents another difference between SEUS and WCUS ARs: 345 

while connections of North Pacific TCs to ARs in the ET transition process have been shown 346 
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(Cordeira et al. 2013; Knippertz et al. 2013), this is not necessarily an oft-considered (or at least 347 

not a well-documented) part of the Pacific AR climatology. The exploratory analysis performed 348 

here only scratches the surface of this question as it relates to SEUS heavy precipitation, but 349 

suggests that the connection of ARs, transitioning TCs, and larger-spatial scale heavy precipitation 350 

events may be a noteworthy aspect of the AR-precipitation climatology in this region, and may 351 

offer a framework useful for defining and tracking sustained, linear connections between mid-352 

latitude heavy precipitation events and tropical moisture reservoirs.  353 

 354 

4.3 Precipitation events unassociated with ARs 355 

If the identification of ARs in the SEUS is undertaken in the context of evaluating its potential utility 356 

in forecasting heavy precipitation, then we should also consider situations in which (a) an AR is 357 

identified but heavy precipitation does not result and (b) heavy precipitation is produced in the 358 

absence of a defined AR. As such, in order to understand connections between SEUS ARs and low, 359 

moderate, and high precipitation rate events, we slightly modify the matching technique 360 

described in section 2. A proxy for low, moderate, and high precipitation rates in the SEUS region 361 

is created by first defining a regional daily maximum precipitation threshold as the mean of the 362 

highest ten daily precipitation gridpoint values from the Livneh et al. (2013) data set for a given 363 

day over the entire SEUS domain. The distribution over the 10-year period of these daily maximum 364 

precipitation mean values enables definition of a spectrum of regional daily precipitation rate 365 

intensities: lower-intensity rates below the 5th percentile (6.66 mm/day), moderate-intensity rates 366 

around the 50th percentile (37.96 mm/day), and higher-intensity rates above the 95th percentile 367 
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(98.74 mm/day).  We then assess the impact that identified ARs may have on these precipitation 368 

thresholds for the SEUS region by identifying the percentage of daily AR detections associated with 369 

days above and below each percentile level.  AR detections are defined here by the identification 370 

of at least one axis point by the ARDT-IVT anywhere within the detection region and within the 24-371 

hour precipitation period. Note that as no direct matching of ARs to the precipitation location was 372 

done for this more general regional assessment, this particular means of analysis does not 373 

guarantee a direct physical link to the precipitation in SEUS region but rather seeks to define a 374 

more general level of potential impact of an AR-producing environment. 375 

Figure 11 shows percentages of region-wide AR detection occurring in precipitation events above 376 

or below the 5th, 50th, and 95th percentile levels. The plot shows a general increase in AR detection 377 

percentage for higher precipitation days: the percentage of AR detections for precipitation days 378 

above the 95th percentile is 61%. The percentage of AR detections in the SEUS region for the lowest 379 

precipitation days (below the 5th percentile) is just 2%.  While AR conditions are obviously more 380 

likely to occur in the SEUS region on days when heavy precipitation occurs, this analysis clearly 381 

demonstrates the degree to which the presence of an AR is not a necessary condition. [However, 382 

the 25 – 30% difference in the AR detection percentage above and below each percentile level 383 

shows a significant AR influence on higher precipitation rates and is indeed greatest for the 384 

heaviest (95th percentile) precipitation events.]  The 61% detection rate shown above is also 385 

significantly lower than that observed for WCUS ARs associated with extreme precipitation (Ralph 386 

and Dettinger 2012) but higher than the ~41% detection rate discussed previously using more 387 

stringent, direct matching of ARs with precipitation events. This further suggests that AR 388 

conditions in the SEUS may frequently have a less direct influence on heavy precipitation (e.g., 389 
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instead “priming” the larger-scale environment by supplying ample background moisture, or 390 

simply being too transient to have a definitively-linked effect on precipitation), and may be often 391 

secondary to the many other potential forcing mechanisms known to produce heavy rainfall in this 392 

region.   393 

Seasonal variation of the regional AR detection percentages across various precipitation intensity 394 

thresholds sheds further light on the association of ARs with winter extratropical storms and the 395 

lesser influence of ARs on high precipitation rates produced by smaller-scale warm season 396 

convection.  Figure 11b shows a monthly climatology of AR detection percentages above the 95th 397 

percentile and below the 5th percentile.  For high precipitation rate cases exceeding the 95th 398 

percentile, AR detection percentage is generally ~60% or higher, with notable exceptions in July, 399 

August, and September, during which the detection rate reduces to less than 50%.  Therefore, the 400 

61% annual rate of detection above the 95th percentile is reduced significantly by a decrease in 401 

detection rates during the summer when localized convection and landfalling tropical storms (e.g., 402 

those in which the TC itself produces the rainfall and never forms an ARDT-IVT detectable feature 403 

) are more likely to produce heavy precipitation.   404 

Regarding identified ARs that are not associated with significant precipitation, AR detections on 405 

the lowest precipitation days (below the 5th percentile) occur only four times in our analysis period. 406 

All four instances occur in either February or October, and all are associated with mature 407 

extratropical storms in which the high precipitation rates have exited the SEUS domain and moved 408 

over the Atlantic Ocean [i.e., where no data exists in the Livneh et al. (2013) dataset], but where 409 

the southwestern region of the AR still intersects a portion of the SEUS region. Therefore, while 410 

ARs (as defined herein) are indeed identified on a significant percentage of non-“extreme” days 411 
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(i.e., <100 mm day-1), we find little-to-no evidence of cases in which an AR is detected by our 412 

algorithm but does not produce precipitation equal to or greater than the 5th percentile day values, 413 

or ~6.66 mm day-1, somewhere in the SEUS region.   414 

Finally, as discussed in section 1, it is well known that the SEUS features a diverse portfolio of heavy 415 

precipitation triggering mechanisms and event types. It is beyond the scope of this study to further 416 

characterize or classify heavy precipitation events that are not linked to ARs, and the reader is 417 

encouraged to consult the significant body of literature that already exists on precipitation in the 418 

SEUS [including Moore et al. (2015) and references therein.]  419 

 420 

5. Predictive skill of AR-matched and AR-unmatched heavy precipitation cases 421 

Based on prior research demonstrating increased forecast skill in environments characterized by 422 

strong synoptic-scale forcing (e.g., Stensrud and Fritsch 1994; Jankov and Gallus 2004; 423 

Hohenegger et al. 2006; Schumacher and Davis 2010; Moore et al. 2015) and the degree of 424 

synoptic-scale forcing that characterizes most AR-matched events, we hypothesize that numerical 425 

model QPF skill is generally greater for heavy precipitation events that are matched with ARs 426 

relative to those events that are not matched to an AR feature. To test this hypothesis, we use the 427 

method of Moore et al. (2015) to inspect deterministic 24-h precipitation accumulation forecasts 428 

from the GEFS reforecast control member at 12-h – 132-h lead times for the  30 heaviest 429 

precipitation events matched with ARs and the 30 heaviest precipitation cases without matched 430 

ARs. Equitable threat score (ETS; Schaefer 1990) and multiplicative bias (BIA; Wilks 2011) are 431 

evaluated.  432 
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Confirming our hypothesis, an ETS analysis (Fig. 12a) reveals greater skill at all lead times for a 433 

moderately heavy (>40-mm/24h; following Moore et al. 2015) category of precipitation events 434 

that were matched with ARs relative to cases in which no identified AR was linked. The difference 435 

in skill between the two event categories is relatively consistent across forecast lead times, with 436 

ETS for the AR-matched events remaining consistently higher than non-AR-matched events even 437 

as skill in both event categories decreases steadily with time. Consistent with the relative 438 

differences in the ETS between the two categories, as well as with the general results found in 439 

Moore et al. (2015) for events separated according to IVT strength, BIA values for the AR-matched 440 

category are less (i.e., closer to one) than those for the non-AR-matched category at precipitation 441 

amounts above 40 mm (Fig. 12b). The brief analysis performed here is not intended to be 442 

exhaustive but is included to demonstrate a type of QPF verification analysis that could be further 443 

undertaken to more specifically identify forecast challenges and improvement opportunities for 444 

AR- or non-AR-matched events. 445 

 446 

6. Conclusions 447 

An analysis of ARs as defined by an automated detection tool based on integrated water vapor 448 

transport and the connection to heavy precipitation in the SEUS is performed. Climatological IWV 449 

and IVT fields are compared between the WCUS and the SEUS, highlighting stronger seasonal 450 

variation in IWV in the SEUS, and stronger seasonal variation in IVT in the WCUS. The climatological 451 

analysis suggests that IVT values above ~500 kg m-1 s-1 (as incorporated into an objective 452 
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identification framework provided by the ARDT-IVT) serves as a sensible threshold for defining ARs 453 

in the SEUS.   454 

AR impacts on heavy precipitation in the SEUS are shown here to vary throughout the year, and a 455 

reasonably clear connection between ARs and heavy precipitation during the non-summer months 456 

is demonstrated. When identified ARs are matched to heavy precipitation days [gridpoint values 457 

>100 mm day-1 in the Livneh et al. (2013) precipitation dataset] according to the constraint that at 458 

least one AR point be located within a250-km radius of a heavy precipitation point and occur 459 

within the same 24-hour period, an average match rate of ~41% is found. ARs matched to heavy 460 

precipitation were found to have a larger mean IVT and AR width then ARs not associated with 461 

heavy precipitation. 462 

Larger-spatial scale heavy precipitation events (in which greater than 171 gridpoints (~7000 km2) 463 

in the SEUS domain exceed 100 mm day-1) are matched with ARs at a rate of 52% over the course 464 

of the year, with a slight increase in matching rates occurring in cool/transition season months 465 

(October – May) when both large-scale moisture and synoptically-driven transport mechanisms 466 

are relatively common.  A significant portion of larger-spatial scale heavy precipitation events 467 

linked with ARs were also associated with a TC (i.e., originated from a named TC according the 468 

National Hurricane Center). The connection to tropical moisture via tropical-extra-tropical 469 

transitions is also a notable departure from the usual characteristics of WCUS ARs, and as such, 470 

may present new criteria that future research – as well as future versions of the ARDT-IVT – may 471 

wish to consider. 472 
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Two types of unmatched AR/precipitation cases are also briefly considered: (a) identified ARs that 473 

do not result in particularly heavy precipitation, and (b) heavy precipitation events unassociated 474 

with an AR. With respect to (a), an analysis of regional light-, moderate-, and heavy- precipitation 475 

days shows that while AR conditions are more likely to occur in the SEUS region on days when 476 

heavy precipitation occurs relative to days when only moderate or light precipitation occurs, it is 477 

not a necessary condition. Furthermore, we find little-to-no evidence of cases in which an AR is 478 

detected by our algorithm but measurable precipitation (>~6.66 mm day-1) is not found 479 

somewhere in the SEUS.  With respect to the 60% of heavy precipitation events unassociated with 480 

ARs, these are likely better described in terms of other forcing mechanisms (e.g., mesoscale 481 

convective systems, orographic forcing, baroclinic boundary interactions), many of which are 482 

thoroughly investigated by previous studies. Overall, results suggest that AR conditions in the SEUS 483 

may frequently have an influence – but a decidedly less direct influence relative to the WCUS - on 484 

heavy precipitation. In other words, it is likely that ARs or AR-like-features often “prime” the larger-485 

scale environment but may be secondary to the many other potential forcing mechanisms known 486 

to produce heavy rainfall in this region.  487 

A precursory comparison of forecast performance metrics for heavy precipitation events with and 488 

without associated ARs suggests that there is a slight increase in forecast skill and decrease in bias 489 

for areas of heavy precipitation with an associated AR. While it is beyond the scope of this study 490 

to systematically assess precipitation forecast skill in AR vs. non-AR environments, the rudimentary 491 

analysis included here indicates that using a tool such as the ARDT-IVT may be one way to increase 492 

forecaster situational awareness at extended lead times and take better advantage of the 493 
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generally more inherently-predictable large-scale atmospheric patterns most often associated 494 

with identified ARs.      495 

Certain aspects of the study findings thus suggest that the AR framework in the SEUS may offer 496 

QPF improvement opportunities. The qualitative analysis of ARs identified during ET events, as 497 

well as related recent work on tropical moisture exports (Knippertz and Wernli 2010; Knippertz et 498 

al. 2013) suggests utility in defining and tracking sustained, linear connections between mid-499 

latitude heavy precipitation potential and tropical moisture reservoirs associated with TCs.  500 

Though an AR-tropical connection may not yield forecast utility in isolation, the relationship 501 

suggests that identifying specific water vapor transport features that provide continuous tropical 502 

moisture transport during the ET process may help identify environments conducive to 503 

exceptionally heavy rainfall.   In addition to the possible connection to the ET process of TCs, there 504 

is work ongoing to create AR diagnostics which account for the temporal persistence of AR-like 505 

features, particularly at the mid- to extended range forecast periods. Moore et al. (2012) in 506 

particular highlight the importance of a relatively static or stationary atmospheric connection 507 

supplying the SEUS midlatitude environment with moisture from a low-latitude moisture reservoir, 508 

and as such, this idea is the basis for ongoing research and testing.  Finally, however, the relatively 509 

high frequency of heavy precipitation cases in which an AR is not identified (or is not closely 510 

enough matched in space and time) necessitates additional research to more reliably connect 511 

identified ARs with other critical aspects of heavy precipitation environments such that a 512 

significant increase in predictive skill may potentially result. 513 

  514 
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Figure Caption List 664 

Figure 1.  a) From Ralph and Dettinger (2012), their Fig. 3: Maximum 3-day precipitation totals at 665 

5,877 COOP stations in the conterminous United States during 1950–2008, color shaded by rain 666 

category (“R-CAT”) as shown in legend; b) From Dettinger et al. (2011), their Fig. 6: Contributions 667 

of precipitation during wet-season (November–April) days on which atmospheric rivers made 668 

landfall on the West Coast to overall precipitation from water year 1998 through 2008 at COOP 669 

weather stations in the western US. Inset map shows the ratio of average precipitation on the AR 670 

days (including concurrent day and following day) to climatological means for the same 671 

combination of days; c) From Ralph and Dettinger (2012), their Fig. 4: Seasonality of extreme 672 

precipitation events in the eastern versus western United States. Number of 3-day episodes 673 

achieving the highest rainfall categories, east (pink) and west (blue) of 105°W, by month of year, 674 

normalized to the number of COOP sites in each region. Two thresholds are used: light shading for 675 

R-Cat 2 (i.e., >300 mm, or approximately 12 in.), and dark shading for R-Cat 3–4 (i.e., >400 mm, or 676 

approximately 16 inches). 677 

Figure 2. a) CFSR IWV (cm, as shaded) at 1200 UTC  03 May 2010, b) as in a) except for 1200 UTC 678 

22 September 2003; c)  IVT (kg m-1 s-1, as shaded) at 1200 UTC  03 May 2010; d) as in c) except for 679 

1200 UTC 22 September 2003; e) 24-h precipitation (from Livneh et al. (2013) dataset, mm, as 680 

shaded) with identified AR (white dots are AR axis points as identified by the ARDT-IVT at 1200 681 

UTC within 24h precipitation accumulation period); f) as in e) except for 1200 UTC 22 September 682 

2003. 683 
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Figure 3. Regional comparison of CFSR-based IWV and IVT by percentile (50, 75, 85, 90, 95, and 684 

99th percentiles as labeled) using regions as shown in Fig. 3. a) Southeast region IWV (mm); b) 685 

Pacific region IWV (mm); c) Southeast region IVT (kg m-1 s-1) ; d) Pacific region IVT (kg m-1 s-1).  686 

Figure 4. a) 95th percentile of January climatological value of IWV (mm; shaded as in legend); b) as 687 

in a) except for IVT (kg m-1 s-1; shaded as in legend); c) as in a) except for July; d) as in b) except for 688 

July. All data from CFSR, 1980 - 2010. Boxes on each panel show geographic regions used for 689 

climatological averaging of integrated water vapor (IWV) and integrated water vapor transport 690 

(IVT) analysis: Pacific (western box) and Southeast US (eastern box) regions. 691 

Figure 5. a) IWV (mm; x-axis) versus IVT (kg m-1 s-1; y-axis) values during 196 extreme precipitation 692 

events identified in Moore et al. (2015).  IWV and IVT values were derived following the method 693 

of Moore et al. (2015) and represent 24-h temporal averages (1200–1200 UTC), spatially averaged 694 

within a 5° latitude × 5° longitude box centered on the location of maximum 24-h precipitation for 695 

each heavy precipitation event. The coefficient of determination R2 = 0.08. Dot color indicates 696 

magnitude of the 24-h average precipitation amount at all qualifying gridpoints according to 697 

legend at upper left.  b) As in a) except dot color indicates magnitude of the 24-h gridpoint 698 

maximum precipitation amount according to legend at upper left.  699 

Figure 6. Percentage of heavy precipitation events that are associated with ARs delineated by 700 

separation distance (x-axis) and time range (red/24h vs. green/48h). 701 

Figure 7. a) Heavy precipitation event frequency by month for all heavy precipitation events 702 

(green) and larger-spatial scale heavy precipitation events (red); b) Percentage of heavy 703 

precipitation events associated with an AR by month for all heavy precipitation events (green) and 704 
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annual average/total for larger-spatial scale heavy precipitation events (red). Large spatial scale 705 

events not shown by month in (b) due to small sample sizes in some months. 706 

Figure 8. a) Average AR width (defined by IVT = 500 kg m-1 s-1 contour) for AR events matched 707 

with heavy precipitation events (black) and AR events not matched with heavy precipitation events 708 

(gray); b) as in a) except for average IVT (in kg m-1 s-1) at all AR-identified gridpoints.  709 

Figure 9. Season of occurrence (winter/DJF = dark blue, spring/MAM = pink, summer/JJA = gold, 710 

fall/SON = light blue) of heavy precipitation events matched with ARs within 250-km and 24-h, 711 

plotted over terrain (elevation, m, shaded as in legend). Location indicated by circle is the center 712 

point of the heavy precipitation. Circle size indicates size (in number of gridpoints) as shown in 713 

legend at lower right. Black plus signs indicate heavy precipitation events in which no AR was 714 

matched.  715 

Figure 10: a) IVT (shaded and vectors) of extra-tropical transition of TS Nicole (2010) valid 1200 716 

UTC 30 September 2010; b) as in a) but for IWV (mm); c) 24-h precipitation (from Livneh et al. 717 

(2013) dataset, mm, as shaded) with identified AR (white dots are AR points as identified by the 718 

ARDT-IVT at 1200 UTC 30 September 2010). 719 

Figure 11: a) Percentage of region-wide AR detection during heavy precipitation events above 720 

(blue) and below (orange) the 5th, 50th, and 95th heavy precipitation percentile levels; b) 721 

Percentage of region-wide AR detection during heavy (>95th percentile; blue) precipitation events 722 

and lighter events (<5th percentile; orange) by each month. 723 

Figure 12. (a) ETS and (b) BIA for deterministic 24-h accumulated precipitation forecasts 12-h to 724 

132-h lead time from the GEFS reforecast control member for the top 30 heavy precipitation 725 
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events with a matched AR (black) and top 30 heavy precipitation events without a matched AR 726 

(red). 727 

 728 
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Figure 1.  a) From Ralph and Dettinger (2012), their Fig. 3: Maximum 3-day precipitation totals at 5,877 COOP stations in the conterminous United States 
during 1950–2008, color shaded by rain category (“R-CAT”) as shown in legend; b) From Dettinger et al. (2011), their Fig. 6: Contributions of precipitation 
during wet-season (November–April) days on which atmospheric rivers made landfall on the West Coast to overall precipitation from water year 1998 
through 2008 at COOP weather stations in the western US. Inset map shows the ratio of average precipitation on the AR days (including concurrent day 
and following day) to climatological means for the same combination of days; c) From Ralph and Dettinger (2012), their Fig. 4: Seasonality of extreme 
precipitation events in the eastern versus western United States. Number of 3-day episodes achieving the highest rainfall categories, east (pink) and west 
(blue) of 105°W, by month of year, normalized to the number of COOP sites in each region. Two thresholds are used: light shading for R-Cat 2 (i.e., >300 
mm, or approximately 12 in.), and dark shading for R-Cat 3–4 (i.e., >400 mm, or approximately 16 inches).
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Figure 2. a) CFSR IWV (cm, as shaded) at 1200 UTC  03 May 2010, b) as in a) except for 1200 UTC 22 September 2003; c)  IVT (kg s-1 m-1, as shaded) at 1200 
UTC  03 May 2010; d) as in c) except for 1200 UTC 22 September 2003; e) 24-h precipitation (from Livneh et al. (2013) dataset, mm, as shaded) with identified 
AR (white dots are AR axis points as identified by the ARDT-IVT at 1200 UTC within 24h precipitation accumulation period); f) as in e) except for 1200 UTC 22 
September 2003.



Figure 3. Regional comparison of CFSR-based IWV and IVT by percentile (50, 75, 85, 90, 95, and 99th percentiles as labeled) 
using regions as shown in Fig. 4. a) Southeast region IWV (mm); b) Pacific region IWV (mm); c) Southeast region IVT (kg m-1 s-1) 
; d) Pacific region IVT (kg m-1 s-1). 
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Figure 4. a) 95th percentile of January climatological value of IWV (mm; shaded as in legend); b) as in a) except for IVT (kg m-1 s-1; 
shaded as in legend); c) as in a) except for July; d) as in b) except for July. All data from CFSR, 1980 - 2010. Boxes on each panel show 
geographic regions used for climatological averaging of integrated water vapor (IWV) and integrated water vapor transport (IVT) 
analysis: Pacific (western box) and Southeast US (eastern box) regions.



IWV vs. IVT: Event-average precipitation IWV vs. IVT: Event-max precipitationa b

Figure 5. a) IWV (mm; x-axis) versus IVT (kg/m/s; y-axis) values during 196 extreme precipitation events identified in Moore et al. 
(2015).  IWV and IVT values were derived following the method of Moore et al. (2015) and represent 24-h temporal averages 
(1200–1200 UTC), spatially averaged within a 5° latitude × 5° longitude box centered on the location of maximum 24-h precipitation 
for each heavy precipitation event. The coefficient of determination R2 = 0.08. Dot color indicates magnitude of the 24-h average 
precipitation amount at all qualifying grid points according to legend at upper left. b) As in a) except dot color indicates magnitude 
of the 24-h grid point maximum precipitation amount according to legend at upper left.



Figure 6. Percentage of heavy precipitation events that are associated with ARs delineated by separation distance (x-axis) and 
time range (red/24h vs. green/48h).
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Figure 7. a) Heavy precipitation event frequency by month for all heavy precipitation events (green) and large spatial scale events (red); b) 
Percentage of heavy precipitation events associated with an AR by month for all heavy precipitation events (green)  and annual 
average/total for large spatial scale events (red). Large spatial scale events not shown by month in (b) due to small sample sizes in some 
months.



a b

Figure 8. a) Average AR width (defined by IVT = 500 kg m-1 s-1 contour) for AR events matched with heavy precipitation events (black) and 
AR events not matched with heavy precipitation events (gray); b) as in a) except for average IVT (in kg m-1 s-1) at all AR-identified grid 
points. 



Figure 9. Season of occurrence (winter/DJF = dark blue, spring/MAM = pink, summer/JJA = gold, fall/SON = light blue) of heavy 
precipitation events matched with ARs within 250-km and 24-h, plotted over terrain (elevation, m, shaded as in legend). Location indicated 
by circle is the center point of the heavy precipitation. Circle size indicates size (in number of grid points) as shown in legend at lower right. 
Black plus signs indicate heavy precipitation events in which no AR was matched. 
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Figure 10: a) IVT (shaded and vectors) during the ET of TS Nicole (2010) valid 1200 UTC 30 September 2010; b) as in a) but for IWV (mm); 
c) 24-h precipitation (from Livneh et al. (2013) dataset, mm, as shaded) with identified AR (white dots are AR points as identified by the 
ARDT-IVT at 1200 UTC 30 September 2010).
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Figure 11: a) Percentage of region-wide AR detection during heavy precipitation events above (blue) and below (orange) the 
5th, 50th, and 95th heavy precipitation percentile levels; b) Percentage of region-wide AR detection during heavy (>95th 
percentile; blue) precipitation events and lighter events (<5th percentile; orange) by each month.
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Figure 12. (a) ETS and (b) BIA for deterministic 24-h accumulated precipitation forecasts 12-h to 132-h lead time from the GEFS 
reforecast control member for the top 30 heavy precipitation events with a matched AR (black) and top 30 heavy precipitation 
events without a matched AR (red).


