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ABSTRACT

The analysis produced by the ensemble Kalman filter (EnKF) may be dynamically inconsistent and contain

unbalanced gravity waves that are absent in the real atmosphere. These imbalances can be exacerbated by

covariance localization and inflation. One strategy to combat the imbalance in the analyses is the incremental

analysis update (IAU), which uses the dynamic model to distribute the analyses increments over a time

window. The IAU has been widely used in atmospheric and oceanic applications. However, the analysis

increment that is gradually introduced during a model integration is often computed once and assumed to be

constant for an assimilation window, which can be seen as a three-dimensional IAU (3DIAU). Thus, the

propagation of the analysis increment in the assimilation window is neglected, yet this propagation may be

important, especially for moving weather systems.

To take into account the propagation of the analysis increment during an assimilation window, a four-

dimensional IAU (4DIAU) used with the EnKF is presented. It constructs time-varying analysis increments

by applying all observations in an assimilation window to state variables at different times during the as-

similation window. It then gradually applies these time-varying analysis increments through the assimilation

window. Results from a dry two-layer primitive equation model and the NCEP GFS show that EnKF with

4DIAU (EnKF-4DIAU) and 3DIAU (EnKF-3DIAU) reduce imbalances in the analysis compared to EnKF

without initialization (EnKF-RAW). EnKF-4DIAU retains the time-varying information in the analysis

increments better than EnKF-3DIAU, and produces better analysis and forecast than either EnKF-RAW or

EnKF-3DIAU.

1. Introduction

Data assimilation seeks to find the best estimate of the

state of a dynamical system given a forecast model and

observations of the system (Kalnay 2002). The ensemble

Kalman filter (EnKF; Evensen 1994; Burgers et al.

1998), a Monte Carlo approximation to the traditional

Kalman filter (KF; Kalman 1960), uses an ensemble of

forecasts to estimate the covariances between state

variables and observations, which determines the in-

crement to the state estimate given the observations.

Because of its simplicity of implementation and main-

tenance and its ability to estimate the flow-dependent

background-error covariances, the EnKF has been in-

creasingly used in numerical weather prediction (e.g.,

Whitaker et al. 2008; Houtekamer and Mitchell 2005;

Buehner et al. 2010a,b).

However, the analysis produced by the EnKF may be

dynamically inconsistent and contain gravity waves that

are absent in the real atmosphere and may contaminate

the subsequent forecast. These imbalances can be gen-

erated by covariance localization and inflation. Co-

variance localization was introduced by Houtekamer

and Mitchell (2001) and Hamill et al. (2001) to mitigate

the impact of spurious correlations due to limited en-

semble sizes (Mitchell et al. 2002; Houtekamer and

Mitchell 2005) but can degrade balances between
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variables in the background ensemble (Kepert 2009;

Greybush et al. 2011). Covariance inflation inflates the

prior or posterior ensemble to avoid the filter divergence

(Anderson and Anderson 1999) but can degrade bal-

ances if different inflation factors are applied to differ-

ent state variables, which can occur in the methods

described by Zhang et al. (2004), Anderson (2009), and

Whitaker and Hamill (2012).

Several strategies to combat the imbalance in the

EnKF analyses have been developed. Normal mode

initialization (Machenhauer 1977; Baer and Tribbia

1977) and digital filtering (DFI; Lynch and Huang 1992;

Huang and Lynch 1993) employ a balancing procedure

after the data assimilation step. Besides the post-

processing methods, several approaches have been

proposed to render the assimilation procedure more

dynamically consistent. Bloom et al. (1996) introduced

the method of incremental analysis update (IAU) that

distributes the analyses increments over a fixed time

window. Bergemann and Reich (2010) proposed a

‘‘mollified’’ EnKF, which creates balanced analyses by

using a continuous formulation of the Kalman filter. Lei

et al. (2012a,b) developed a hybrid nudging EnKF that

applies the EnKF gradually in time via nudging-type

terms to achieve better temporal smoothness and reduce

the data insertion shocks. Gottwald (2014) introduced a

weak constraint on the imbalance and controlled the

unbalanced fast dynamics in the EnKF. Kepert (2009)

modified the covariance localization in EnKF to better

preserve geostrophic balance in the ensemble.

Since the IAUwas originally proposed by Bloom et al.

(1996), it has been frequently used in atmospheric data

assimilation (e.g., Zhu et al. 2003; Rienecker et al. 2007).

Later, diverse varieties of IAU have been developed in

oceanic data assimilation (e.g., Carton et al. 2000;

Ourmières et al. 2006). It has been demonstrated that

the IAU scheme that incorporates the analysis in-

crement in a gradual manner can keep the mass and

momentum fields in dynamical balance and reduce the

spurious oscillations produced in the data assimilation.

One difference among the IAU techniques is the time

window of the increment application. For instance,

Carton et al. (2000) computed the increment at the

center of the assimilation window and applied this in-

crement in the assimilation window. Ourmières et al.

(2006) and Huang et al. (2002) computed the increment

at the end of assimilation window, but the former ap-

plied the increment inside the current assimilation

window while the latter applied the increment inside the

next assimilation window. Another difference among

the IAU techniques is the weighting function

(Polavarapu et al. 2004). Yan et al. (2014) compared

different IAU implementations, including variations in

the time window and the weighting function, using an

EnKF applied to an ocean circulation model.

All of the IAU schemes just discussed use a single in-

crement that is assumed constant over an assimilation

window during model integration. We call this three-

dimensional IAU (3DIAU). The propagation of the in-

crement in the assimilation window is neglected, yet this

propagationmay be important, especially for fast-moving

weather systems (such as recurving tropical cyclones).

To remedy this, a four-dimensional IAU (4DIAU) was

recently proposed by Lorenc et al. (2015). In a 6-h assim-

ilation window, hourly analysis increments without time

interpolation were used to filter out the high-frequency

oscillations introduced by the four-dimensional ensemble

variational method (4DEnVar) at the Met Office. The

4DIAU used with 4DEnVAR performed well compared

to the 4DVAR that applies a digital time filter to the in-

crement trajectory by including a penalty term Jc. The

4DVAR Jc term is not applicable for 4DEnVAR, since

the increments of 4DEnVAR are not explicitly propa-

gated with a tangent linear model. Buehner et al. (2015)

discussed the replacement of the existing full-field digital

filter with the 4DIAU for the 4DEnVar at the Environ-

ment Canada. They found that the 4DIAU significantly

reduced the model spinup and produced an improved

representation of the semidiurnal tide.

Comparing to 3DIAU, 4DIAU constructs time-

varying analysis increments by applying all observa-

tions in an assimilation window to state variables at

different times during the assimilation window. These

time-varying analysis increments translate into time-

varying forcing terms in the forecast model integration

during the application of IAU. The 4DIAU is in-

vestigated with the EnKF in this study. The 4DIAU

helps to reduce the imbalance caused by the EnKF and

retain the propagation of analysis increments compared

to 3DIAU. A dry two-layer primitive equation model

(Zou et al. 1993) and the NCEPGlobal Forecast System

(GFS) are used here. Using the two-layer model, the

differences between 3DIAUand 4DIAUwith EnKF are

examined, and the sensitivities of the 3DIAU and

4DIAU with EnKF on observation network, model er-

ror, ensemble size, and frequency of analysis increment

are also explored. Then the 3DIAU and 4DIAU are

further compared using the NCEP GFS with real ob-

servations, and they are also compared to a DFI that is

the same as that in the operational Global Data As-

similation System (GDAS).

The structure of this paper is as follows. Section 2

describes the 4DIAU method. Section 3 describes the

two-layer model and experimental design. The results

from the two-layer model are discussed in section 4. The

design of experiments with the NCEP GFS is explained
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in section 5, and results from the NCEP GFS experi-

ments are presented in section 6. The conclusions are

summarized in section 7.

2. Methodology

Figure 1 displays the schematic of the 4DIAU. For the

current assimilationwindow (0300–0900UTC), a forecast

(or an ensemble of forecasts) is made from the analysis

(analyses) at the end of previous assimilation window

(0300 UTC). Observations (red bars) are inhomoge-

neously distributed during the assimilation window. As

an example, three analyses (blue dots) are constructed by

applying all observations in the assimilation window to

the state variables at the beginning, middle, and end of

the assimilation window, respectively. More frequent

analyses during the assimilation window could be con-

structed to better represent the time variation of analysis

increments (the sensitivity of the 4DIAU to the analysis

increment frequencywill be discussed in sections 4 and 6).

Any four-dimensional data assimilation approach can be

used to construct the analyses, including ensemble-based

methods (e.g., Anderson 2001; Whitaker and Hamill

2002; Hunt et al. 2007), variational methods (e.g., Lorenc

1986; Courtier et al. 1998; Thepaut et al. 1993), and

ensemble-variationalmethods (e.g., Buehner et al. 2010a,b;

Wang et al. 2013; Wang and Lei 2014). Let x f
t and xat

denote the forecast and analysis at time t, and the analysis

increment at time t is Dxt 5 xat 2 x f
t . Linearly interpolate

the three analysis increments (Dx0300, Dx0600, and Dx0900)
to every model time step from 0300 to 0900 UTC to ob-

tain the time-varying analysis increments Dxt for the

current assimilation window. The time-varying IAU

forcing terms Dxt/Dt (blue arrows) where Dt denotes the
length of the assimilation window are then added to the

tendency terms during the model integration from 0300

to 0900 UTC. Free model integration continues through

the next assimilation window. These procedures repeat

for each assimilation cycle.

For comparison, 3DIAU (Bloom et al. 1996) only uses

the analysis increment in the middle of the window

(0600 UTC) and translates this increment into constant

forcing terms along the model integration from 0300 to

0900 UTC, while 4DIAU uses multiple analysis in-

crements in the assimilation window and considers the

propagation of the analysis increment during the

assimilation window.

Bloom et al. (1996) and Polavarapu et al. (2004) used a

linear model to analyze the filtering properties of

3DIAU. Since IAU acts only to filter the increments and

not the background state, the filter response function is

usually computed as the ratio of the increment in-

tegrated over the assimilation window for IAU and in-

termittent assimilation [the second terms of Eqs. (11)

and (12) of Polavarapu et al. (2004)]. Here we consider

the filtering properties of 4DIAU relative to 3DIAU by

computing the ratio of the increment integrated over the

assimilation window for 3DIAU and 4DIAU.

In Polavarapu et al. (2004) a general linear model is

considered, to simplify the analysis we consider a simple

oscillation equation with a single frequency v, and as-

sume the weights used for the IAU forcing are constant

through the assimilation window. The model state at

time t is

f (x, t)5A cos

�
kx2v

�
t2

Dt
c

2

��
, (1)

where A, k, v, and Dtc are constants. The true state is

shifted relative to the model state by Dtc, and is given by

f t(x, t)5A cos

�
kx2v

�
t1

Dt
c

2

��
. (2)

The forecast error at time t is

Df (x, t)5 f t(x, t)2 f (x, t)5 2A sin(kx2vt) sin

�
v
Dt

c

2

�
.

(3)

Following Polavarapu et al. (2004), the integral of the

3DIAU forcing Df (x, tc) over the assimilation window

(tc 2 t/2, tc 1 t/2), where t is the forecast length, is

D~f (x)
3DIAU

5

ðt5tc1t/2

t5tc2t/2

Df (x, t
c
)

t
dt

5 2A sin(kx2vt
c
) sin

�
v
Dt

c

2

�
, (4)

FIG. 1. Schematic illustration of the 4DIAU algorithm.
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where t in the denominator is a normalization factor to

apply the analysis increment at every time step within

the assimilation window.

In 4DIAU, if there are N increments within the as-

similation window, the integral of the forcing Df (x, t)
can be approximated with the trapezoidal rule as

D~f (x)
4DIAU

5
1

N2 1
�
N21

j51

Df

�
x, t

c
2

t

2
1
( j2 1)t

N2 1

�
1Df

�
x, t

c
2

t

2
1

jt

N2 1

�
2

. (5)

Substituting (3) into (5) and dividing by (4) gives

D~f (x)
4DIAU

D~f (x)
3DIAU

5R5
1

N2 1

(
11 cosu1 2 �

[(N21)/2]21

i51

cos

�
i

(N2 1)/2
u

�)
, (6)

where u5v(t/2).

The ratio of 4DIAU and 3DIAU forcing integrated

over the assimilation window is a function ofN and u. To

isolate the impact of the number of time levels used to

compute the IAU forcing (N), we average over all pos-

sible u to obtain the following:

ðuNyquist

0

D~f (x)
4DIAUðuNyquist

0

D~f (x)
3DIAU

5 ~R5

ðuNyquist

0

1

N2 1

(
11 cosu1 2 �

[(N21)/2]21

i51

cos

�
i

(N2 1)/2
u

�)
du

ðuNyquist

0

du

5

u
Nyquist

N2 1
1

sin(u
Nyquist

)

N2 1
1 �

[(N21)/2]21

i51

1

i
sin

�
i

(N2 1)/2
u
Nyquist

�
u
Nyquist

, (7)

where uNyquist is the Nyquist frequency (determined by

the forecast model time step).

Figure 2 shows ~R as a function ofN for uNyquist 5 2000p.

4DIAU acts as a weaker time filter than 3DIAU, and the

degree of filtering decreases as N increases. The time

filtering of analysis increments in 4DIAU arises from the

smoothing associatedwith the interpolation of the forcing

from the discrete number N of times at which it is avail-

able to the model time step. As the interval at which the

analysis increment is computed approaches the model

time step, the filtering effects of 4DIAU vanish. There-

fore, the ultimate choice ofN is likely to reflect a balance

between choosing N small enough to filter out unwanted

high-frequency oscillations excited by the analysis in-

crements, and choosing N large enough to avoid ad-

versely affecting the propagation of the true ‘‘signal’’

associated with the propagation of predictable, synoptic-

scale analysis increments through the assimilation

window. The time filtering of 4DIAU can be possibly

retained with a large N, if the weights for the analysis

increments of 4DIAU are nonuniform through the as-

similation window. If there is significant propagation of

analysis increments within the assimilation window,

3DIAU will always adversely impact the phase and am-

plitude of those increments.

3. Design of idealized two-layer model experiments

a. Two-layer model

The first model used to examine the EnKF with

4DIAU is a dry two-layer primitive equation model

(Zou et al. 1993), which was used in Hamill et al. (2001)

and Hamill and Whitaker (2005) for ensemble data as-

similation experiments. The model is spectral, and the

model state vector consists of vorticity and divergence

spectral coefficients at two levels and coefficients of

layer thickness Dp for each layer, where p is the Exner

function. The sum of the layer thicknesses is the total

mass. The temporal evolution of the total mass tendency

averaged over the domain can be used as a measure of

external mode gravity wave amplitude. We will use this

diagnostic to measure the amplitude of imbalances in-

troduced in the data assimilation.

The model parameters are briefly described here.

There is a zonal wavenumber-2 terrain, which has a
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maximum (minimum) amplitude of 2000 (22000)m at

latitudes of 458N and 458S and longitudes of 08 and 1808
(908 and 2708) and smoothly decreases to 0m at the poles

and equator. The model is forced by Newtonian re-

laxation to a prescribed interface Exner function with a

damping time scale of 20 days. There is =8 hyper-

diffusion with a 12-h e-folding time scale used. The other

model parameters are the same as in Hamill and

Whitaker (2005). The model is run at two triangular

truncations: T32 and T42. A fourth-order Runge–Kutta

scheme is used for numerical integration, and the steps

are 15min for both resolutions. The error-doubling time

of the model at T32 is approximately 4 days.

b. Experimental design

Observing system simulation experiments (OSSEs)

are conducted in the two-layer model. Nature runs are

created at T32 and T42 resolutions separately. The dif-

ference between these two model resolutions will be

used to introduce model error due to insufficient model

resolution. The ensembles with default size 20 are ini-

tialized with random draws from the model climatology.

Observations of interface height (unit: m) are generated

by adding errors randomly drawn fromNormal(0, 1000)m2

to spatially interpolated values from the nature runs.

The observation error variance is about 1% of the

globally averaged climatological variance in 12-h fore-

casts form the natural run at T32. The observations are

taken every 12 h at a set of 500 locations that are ran-

domly drawn from 5000 nearly uniformly distributed

locations on the sphere. Another set of observations that

distribute the 500 observations every 3 h during the 12-h

period is also tested, which leads to qualitatively similar

results (not shown).

The serial ensemble square root filter (EnSRF;

Whitaker and Hamill 2002; Whitaker et al. 2008) is used

to assimilate the observations every 12h. To mitigate

spurious correlations due to small ensembles, localiza-

tion is used to localize the impact of observation on state

variables as a function of separation distance. The

Gaspari–Cohn (GC; Gaspari and Cohn 1999) localiza-

tion is adopted here. Covariance inflation is used to

maintain appropriate ensemble spread and avoid fil-

ter divergence. Multiplicative covariance inflation

(Whitaker andHamill 2012), which inflates the posterior

ensemble in proportion to the amount that observa-

tions reduce the ensemble spread (relaxation-to-prior

spread), is used. Hamill and Whitaker (2005) demon-

strated that additive inflation (Mitchell et al. 2002;

Houtekamer andMitchell 2005) wasmore effective than

multiplicative inflation to parameterize the model error

resulting from insufficient model resolution. Therefore,

additive inflation is applied for the imperfect model

experiments (see details below), where perturbations

randomly drawn from the climatology of 12-h forecast

model error and scaled by the additive inflation value

are added to the ensemble prior before the EnSRF up-

date. A database of 12-h forecast model errors is created

by computing the difference between 12-h forecasts with

the T32 forecast model initialized from the T42 nature

run truncated to T32, and the T42 nature run truncated

to T32 12h later.

Three assimilation experiments are conducted:

EnKF-RAW, EnKF-3DIAU, and EnKF-4DIAU (de-

tails in Table 1). The assimilation experiments are con-

ducted at T32, although the assimilated observations are

TABLE 1. List of experiments.

Expt Description

EnKF-RAW Control experiment without any initialization

EnKF-3DIAU 3DIAU is applied, which incorporates the analysis increment at the middle of the assimilation window

that is assumed constant over the whole assimilation window

EnKF-4DIAU 4DIAU is applied, which incorporates 3-hourly analysis increments over the whole assimilation window

EnKF-4DIAUxH Same as EnKF-4DIAU, but using x-hourly (x 51 or 6) analysis increments during an assimilation window

EnKF-DFI A digital filter with a span of 6 h centered on the 3-hourly forecast is applied

FIG. 2. The ratio ~R of the integral of IAU forcing for 4DIAU and

3DIAU over the assimilation window and all possible waves as

a function of the number of times of the analysis incrementsN. See

(7) in section 2 for more details.
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generated from the T32 (T42) nature runs for the perfect

(imperfect) model experiments. The assimilation pa-

rameters (localization, multiplicative inflation, and ad-

ditive inflation for imperfect model) are tuned to be

optimal for each assimilation experiment separately.

Each assimilation experiment runs for 3475 update cy-

cles, and the last 2000 cycles are used for verification.

4. Two-layer model results

a. Perfect model experiments

To evaluate the results, the spectral coefficients of

vorticity and divergence at two levels and layer thick-

ness for each layer are transformed to u and y winds at

two levels and surface and interface pseudoheight. The

time-mean value of the root-mean-square error

(RMSE) relative to the nature run is computed for en-

semble mean winds at each level, surface, and interface

pseudoheight separately. Pseudoheight (which is equal

to geometric height in an isentropic atmosphere) is re-

lated to Exner function p by z5 u1(Cp 2 p)/g, where u1
is the potential temperature of the lower layer, g is

gravity, and Cp is the specific heat of air at constant

pressure.

The 3-hourly mean RMSE in the current and next

assimilationwindows are shown in Fig. 3. During current

assimilation window (26 # t , 6), EnKF-RAW has an

instantaneous error reduction at t 5 0 h due to the in-

sertion of analysis increments. The RMSE for EnKF

with IAU evolves during the assimilation window as the

IAU procedure gradually introduces the analysis in-

crements. During the assimilation window, the error

with IAU first decreases and then increases, reaching a

minimum close to the middle of the assimilation win-

dow. One might expect the error to be minimized at the

end of the assimilation window, after the application of

the IAU forcing is complete. The fact that the error has

started to increase before the full IAU forcing has been

applied indicates that there is a trade-off between

forecast error growth and the inclusion of observation

information via the IAU forcing. EnKF-4DIAU has

smaller errors than EnKF-3DIAU throughout, demon-

strating the advantage of considering the propagation of

analysis increments in the assimilation window. EnKF-

4DIAU also has smaller errors than EnKF-RAWduring

FIG. 3. Mean RMSE in the current (26 to16h) and next (6 to 18h) assimilation windows for (a) upper-level wind,

(b) interface height, (c) lower-level wind, and (d) surface height. The forecast model is perfect in these experiments.

2610 MONTHLY WEATHER REV IEW VOLUME 144



the free forecast over the next assimilation window (6#

t , 18), indicating that reduction of imbalance through

the smooth application of time-varying analysis in-

crements results in more effective assimilation of ob-

servations. Errors in the surface height field, which

carries the signal of the external gravity mode, are par-

ticular sensitive to imbalance introduced by the assimi-

lation. Both EnKF-3DIAU and EnKF-4DIAU lead to

forecast error reductions of nearly 15% for this variable.

Fujita et al. (2007), Juckes and Lawrence (2009), and

Lei et al. (2012c) have all shown that imbalances in-

troduced by the intermittent insertion of analysis in-

crements by the EnKF can result in spurious, transient

oscillations such as gravity waves. To measure the im-

balance in the model states, a noise parameter that is the

time mean domain-averaged absolute value of the total

mass tendency is computed. As shown in the first row of

Table 2, the noise parameter is smaller for EnKF-

3DIAU and EnKF-4DIAU than EnKF-RAW at 12h,

reflecting the reduction of imbalances when the IAU

is used.

b. Imperfect model experiments

Figure 4 shows 3-hourly mean RMSE in the current

and next assimilation windows when model error is

present. EnKF-3DIAU and EnKF-4DIAU produce

smaller errors than EnKF-RAW for all state variables.

The error reduction of EnKF with IAU compared to

EnKF-RAW is larger when model error is present

(Figs. 3 and 4). Consistent with these results, the noise

parameter of EnKF-RAW is an order of magnitude

larger than that from the EnKF with IAU (the second

row of Table 2), presumably because the observations

created from the natural run at T42 resolution are in-

consistent with the ‘‘slow manifold’’ of the T32 forecast

model attractor.

TABLE 2. Mean noise parameters (31024 m s21) in the middle of

the next assimilation window from different assimilation experi-

ments for perfect and imperfect model assumptions. The first two

rows are for the default 20-member ensemble, and the last row is

for the 80-member ensemble.

Model error EnKF-RAW EnKF-3DIAU EnKF-4DIAU

No 6.61 6.41 6.41

Yes 99.03 9.00 9.29

No (80 members) 6.04 6.01 6.01

FIG. 4. As in Fig. 3, but using an imperfect forecast model.
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EnKF-4DIAU has slightly smaller errors for upper-

and lower-level winds and interface height than EnKF-

3DIAU, while they have nearly the same error of surface

height (Fig. 4). These results indicate that the imbalances

in the EnKF analyses can be exacerbated by the presence

of model error, leading to a larger positive impact of both

the 3D and 4D IAU algorithms. However, model error

also appears to lessen the impact of using time-varying

analysis increments in the IAU, leading to a smaller

benefit to 4DIAU relative to 3DIAU.

c. Sensitivity to frequency of analysis increments

The schematic of 4DIAU (Fig. 1) shows that the fre-

quency of analysis increments can vary. The sensitivity

of EnKF-4DIAU to the frequency of analysis increment

is examined with additional experiments EnKF-

4DIAU1H and EnKF-4DIAU6H that utilize hourly

and 6-hourly analysis increments, respectively (Table 1).

The model is assumed perfect, but similar results are

obtained with model error, although the overall sensi-

tivity to the frequency of the analysis increments is

smaller.

The mean RMS forecast errors in the middle of the

next assimilation window for EnKF-4DIAU with dif-

ferent analysis increment frequencies normalized by the

mean RMS forecast error of EnKF-4DIAU are shown

in Fig. 5. The experiment with 6-hourly analysis in-

crements (EnKF-4DIAU6H) has slightly larger errors

than the experiment with 3-hourly analysis increments

(EnKF-4DIAU), indicating that 3-hourly analysis incre-

ments better capture the propagation of analysis incre-

ments through the assimilation window. However, hourly

analysis increments (EnKF-4DIAU1H) do not improve

upon 3-hourly analysis increments. One way to explain

this result is that there is a trade-off between sampling

error and analysis increment frequency. Higher-

frequency analysis increments in 4DIAU better re-

solve the propagation of analysis increments, but result

in less time filtering. If the ensemble size is large enough

to accurately estimate the higher-frequency time varia-

tions in the analysis increments, this should be benefi-

cial. However, if sampling error dominates those higher

frequencies, then the reduced time filtering will result in

increased imbalance and gravity wave noise. This ex-

planation is confirmed by experiments with a large en-

semble size (80 as in section 4d), where hourly analysis

increments slightly improve upon 3-hourly analysis in-

crements for upper- and lower-level winds and interface

height. However, even with 80members, hourly analysis

increments slightly degrade the surface height field

compared to 3-hourly analysis increments. Since the

surface height field is quite sensitive to the amplitude of

external gravity wave noise, this is consistent with the

fact that hourly analysis increments are less effective at

filtering high-frequency gravity waves.

d. Large ensemble size

Kepert (2009) and Greybush et al. (2011) showed that

covariance localization could degrade dynamical bal-

ances between variables in EnKF analyses. The perfor-

mance of EnKF-4DIAU is examined here in the

absence of model error with a large ensemble size (80

members), which can be run without covariance locali-

zation in this idealized system. A relaxation to prior

spread inflation coefficient of 0.3 is used to keep the

ensemble spread consistent with the analysis error.

Figure 6 shows the evolution of 3-hourly errors over

the current and next assimilation windows. EnKF-

4DIAU has smaller errors than EnKF-RAW for all

variables and forecast lead times. EnKF-3DIAU yields

smaller errors than EnKF-RAW for the surface height

variable, which is very sensitive to the presence of ex-

ternal gravity wave noise. For all other variables, EnKF-

3DIAU has larger errors than EnKF-RAW once the

IAU forcing turns off at forecast hour 6. Table 2 (third

row) shows that EnKF-4DIAU and EnKF-3DIAU have

similar levels of gravity wave noise, and both have

slightly less noise than EnKF-RAW, which indicates

that imbalances can be excited by sampling errors in the

EnKF even in the absence of covariance localization.

The analysis increments of surface height at the be-

ginning, middle, and end of the last assimilation cycle

FIG. 5. Mean RMS forecast error in the middle of the next as-

similation window (hour 12) for EnKF-4DIAU with different

analysis increment frequencies for upper-level wind (UL wind),

interface height (IF height), lower-level wind (LL wind), and sur-

face height (SF height). Results are normalized by the mean RMS

forecast error for EnKF-4DIAU with 3-hourly analysis increment

(INC3h), so that the value plotted for INC3h is always 1. The short

black lines at the top of each bar denote the standard deviation of

the forecast error.
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from the EnKF-4DIAU experiment are shown in Fig. 7.

Only part of the computational domain is shown to

clearly show the propagation of analysis increment. As

an example, the positive increment with maxima located

around (508N, 758E) propagates eastward during the

12-h assimilation window, and the positive increment

expands with increasing forecast lead times. Similar

patterns are obtained for interface height except the sign

of increments reverses (not shown).

Although EnKF-3DIAU preserves balance better

than EnKF-RAW (Table 2), this can be outweighed by

the negative impact of neglecting the time variation of

the analysis increment. The relative impact of these ef-

fects will depend on the degree of imbalance introduced

by the EnKF analysis step, the amplitude of the time-

varying component of the analysis increment, and how

well the covariances needed to estimate those time

variations that can be estimated. In this case, for vari-

ables that are less affected by imbalances (such as the

upper-layer wind field), the neglect of time variations in

the analysis increment in EnKF-3DIAU leads to de-

graded performance relative to EnKF-RAW. EnKF-

4DIAU produces the smallest RMSE for all state

variables, indicating that the time-varying component of

the analysis increment can be well estimated in this

system with 80 ensemble members (in the absence of

model error) and imbalances generated in EnKF-RAW

analyses are significantly degrading its performance

even in the absence of covariance localization.

5. Design of experiments for the NCEP GFS

The EnKF with 4DIAU is further investigated in the

NCEP GFS with real observations. The forecast model

is a T574 resolution, 64-level version of the current op-

erational GFS model.

All of the observations used in the NCEP GDAS

during 0000 UTC 1 April 2014 and 0000 UTC 8 May

2014 are assimilated every 6 h. A detailed description of

these observations that include both conventional and

satellite data is available online.1 The bias correction of

satellite radiances is calculated from an experiment that

assimilates the same observations using 4DEnVar

(Kleist and Ide 2015) with an 80-member ensemble and

FIG. 6. As in Fig. 3, but for an 80-member ensemble.

1 See online at http://www.emc.ncep.noaa.gov/mmb/data_processing/

prepbufr.doc/table_2.htm and table_18.htm.
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no static background error covariance component. The

observation forward operatorH is performed by running

the Gridpoint Statistical Interpolation analysis system

(GSI;Wu et al. 2002; Kleist et al. 2009), saving the values

of Hxb (where xb is the background or prior) without

computing the analysis increment. This step is done for

the ensemble mean and each ensemble member sepa-

rately. The observation error covariance R used is the

same as in the NCEP GDAS.

The NOAA operational EnKF (an EnSRF) for the

NCEP GFS (NCAR Developmental Testbed Center

2015) is used to assimilate the observations. All assimi-

lation experiments use an 80-member ensemble. The

GC localization function is used to mitigate spurious

correlations due to limited ensemble size. The obser-

vations have no impact on the state variables when the

horizontal (vertical) separation between an observation

and a state variable is larger than 1250km (1.0 scale

heights). To maintain appropriate ensemble spread and

avoid filter divergence, multiplicative covariance in-

flation that relaxes posterior ensemble spread back to

prior ensemble spread (relaxation-to-prior spread;

Whitaker and Hamill 2012) is used, with the relaxation

coefficient set to 0.85. Stochastic parameterizations

(Palmer et al. 2009) are used to represent model un-

certainty within the ensemble forecast step, and no ad-

ditive inflation is applied.

The assimilation experiments are summarized in

Table 1. An additional experiment, not conducted with

the two-layer model, is conducted here (EnKF-DFI). It

uses a digital filter finalization (DFI) step applied during

the first-guess forecasts that filters the total fields over an

FIG. 7. Snapshots of analysis increment for surface height at (a)26, (b) 0, and (c) 6 h from the

last assimilation cycle of the EnKF-4DIAU 80-member ensemble.
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interval of 6 h, and reinitializes themodel at hour 3 using

the filtered fields. The same DFI configuration is used in

the current operational NCEP GDAS in order to di-

minish gravity wave oscillations excited by the analysis

step. All experiments are run from 0000 UTC 1 April to

0000 UTC 8 May 2014. The first week of assimilation is

discarded to avoid transient effects, and the remaining

data are used for verification.

6. GFS results

a. Verification against conventional observations

The performance of the assimilation experiments is

first evaluated in the observation space. The observation

priors from experiments EnKF-RAW, EnKF-DFI,

EnKF-3DIAU, and EnKF-4DIAU are subtracted from

the in situ conventional observations that include ma-

rine and land surface stations, rawinsonde, and aircraft.

Figure 8 shows the globally and temporally averaged

RMS observation increment profiles for temperature

and wind. The bars on top of each panel denote the

mean values.

EnKF-4DIAU (EnKF-3DIAU) has the smallest

(largest) observation increments, particularly for wind.

EnKF-DFI has slightly larger observation increments

than EnKF-RAW, and both of them have larger

(smaller) observation increments than EnKF-4DIAU

(EnKF-3DIAU). In general, the comparisons among

the assimilation experiments are consistent for temper-

ature and wind: EnKF-4DIAU forecasts are the closest

to observations, followed by EnKF-RAW, EnKF-DFI,

and EnKF-3DIAU.

b. Verification against the ECMWF analyses

Assimilation experiments are verified in model space

by evaluating them relative to the ECMWF analyses.

The 6-h forecasts are postprocessed to 37 pressure levels

between 1000 and 100 hPa on a 18 grid. The 18 gridded
forecasts are then evaluated relative to ECMWF 18
gridded analyses. The RMS errors of each experiment

relative to the ECMWF analyses are averaged over

longitude and the verification period. Considering

EnKF-RAW as the control experiment, the differences

of the RMS errors between the other experiments and

EnKF-RAW are displayed in Fig. 9 for wind speed

(qualitatively similar results are obtained for tempera-

ture but are not shown). Warm (cold) colors denote

EnKF-RAW forecasts that have smaller (larger) RMS

errors than the compared experiment.

EnKF-DFI has larger errors in the midlatitudes than

EnKF-RAW, especially in the Southern Hemisphere;

these larger errors extend from the surface to 200 hPa.

The error differences between EnKF-3DIAU and

EnKF-RAWare similar to that between EnKF-DFI and

EnKF-RAW. EnKF-3DIAU produces larger errors in

the southern midlatitudes compared to EnKF-DFI,

while it produces smaller errors than EnKF-DFI in the

FIG. 8. Time-averaged RMS background forecast observation increment profiles for (a) temperature and (b) wind

speed, computed using all in situ observations. The bars on top denote the vertically averaged values.
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tropics. EnKF-4DIAU produces slightly smaller errors

than EnKF-RAW nearly everywhere. Thus, consistent

with the observation-based verifications, EnKF-4DIAU

forecasts are the closest to ECMWF analyses, followed

by EnKF-RAW, EnKF-DFI, and EnKF-3DIAU.

To examine whether the differences of the 6-h fore-

cast errors among the experiments are representative of

longer-lead forecasts, a 5-day forecast was launched from

each analysis between 0000 UTC 8 April and 0000 UTC

8 May 2014 for each assimilation experiment. The

12-hourly output from the 5-day forecast was verified

against the ECMWF analyses. The cross sections of

average RMS error differences for temperature and

wind speed at 5-day lead time (not shown) are consistent

with those at 6 h (Fig. 9). The temperature error at

500 hPa and wind speed error at 850 hPa at different

forecast lead times are shown in Fig. 10. Throughout the

5-day forecast period, EnKF-4DIAU has the smallest

forecast error, followed by EnKF-RAW, EnKF-DFI,

and EnKF-3DIAU. Similar results are obtained for er-

rors of temperature and wind at the other vertical levels

between 1000 and 100 hPa (not shown).

FIG. 9. The RMS error difference of vector wind (unit: m s21) between experiments (a) EnKF-DFI, (b) EnKF-

3DIAU, (c) EnKF-4DIAU, and (d) EnKF-4DIAU1H, and the control experiment EnKF-RAW. The error is

computed by verifying the 6-h forecasts from each experiment against the ECMWF analysis. Cold (warm) color

means the experiment has smaller (larger) error relative to the ECMWF analysis than the control experiment.
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c. Impact of data assimilation methods on balance

As previously discussed, DFI and IAU are strategies

to remedy imbalances introduced by data assimilation.

Following Lynch and Huang (1992), the mean absolute

tendency of surface pressure is used as the metric to

show the amount of imbalance generated by a data

assimilation system. The surface pressure tendency

between 3- and 0-h forecasts is averaged over the

verification period in the NH, TR, and SH, which is

summarized in Table 3.

EnKF-DFI, EnKF-3DIAU, and EnKF-4DIAU have

smaller values of surface pressure tendency than EnKF-

RAW, indicating that DFI and IAU both help to pro-

duce more balanced forecasts. EnKF-3DIAU produces

the strongest filtering of high-frequency surface pressure

variability, followed by EnKF-DFI and EnKF-4DIAU.

As discussed in section 2, 4DIAU acts as a weaker time

filter than 3DIAU, because of the time-dependent na-

ture of the 4DIAU forcing (Lorenc et al. 2015; Buehner

et al. 2015).

EnKF-DFI and EnKF-3DIAU filter the surface

pressure tendencies more in the tropics than in the

extratropics (Table 3). This is due to the exaggerated

impact of DFI and 3DIAU on atmospheric semidiurnal

tidal signals. This is shown in Fig. 11, which presents

3-hourly surface pressure tendencies averaged between

308S and 308N and over the verification period for 6-h

forecasts initialized at 0000 UTC. The amplitude of the

wavenumber-2 semidiurnal tidal signal is reduced sig-

nificantly in the EnKF-DFI forecast, and even more so

in EnKF-3DIAU forecast, as compared to the EnKF-

RAW forecast. The tidal signal in EnKF-4DIAU is

more similar to EnKF-RAW, consistent with the results

of Buehner et al. (2015).Moreover, the tidal signal in the

EnKF-3DIAU forecast has slight phase lag compared to

the others.

Although EnKF-3DIAU and EnKF-DFI produce

more balanced forecasts than EnKF-RAW (Table 3),

3DIAU and DFI can degrade the representation of im-

portant phenomena like the semidiurnal tide (Fig. 11).

This may be one of the reasons that EnKF-3DIAU and

EnKF-DFI have larger errors than EnKF-RAW (sec-

tions 6a and 6b).

d. Spinup of total column cloud water

Buehner et al. (2015) suggested that 4DIAU and the

recycling of selected physical state variables significantly

reduced model spinup in the hydrologic cycle compared

to the full-field digital filter. To verify the impact of

4DIAU on the model hydrologic cycle, we have com-

puted the temporally averaged total column cloud con-

densate for 0-h forecasts (valid at the middle of the IAU

window), 3-h forecasts (valid at end of the IAU win-

dow), and 6-h forecasts (valid at the middle of the next

IAU window). The total column cloud water from

EnKF-RAW is 0.14 3 1023 at lead time 0h, and in-

creases to 0.18 3 1023 at lead time 3h (;22%) due to

model spinup, and increases further between forecast

hours 3 and 6 (Fig. 12). EnKF-DFI behaves similarly to

EnKF-RAW, while EnKF-3DIAU and EnKF-4DIAU

forecasts have larger total column cloud condensate

FIG. 10. Temporally and globally averaged forecast errors rela-

tive to the ECMWF analyses for (a) temperature at 500 hPa and

(b) wind speed at 850 hPa at different lead times.
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throughout the forecast period, particularly at the start

of the forecast. This suggests that the IAU does indeed

reduce ‘‘shock’’ to the model’s hydrologic cycle in-

troduced by data assimilation. More analysis is needed

to determine if the model cloud fields are more realistic

in the IAU experiments.

e. Sensitivity to frequency of analysis increments

Results from the two-layer model show that for a 12-h

assimilation window, EnKF-4DIAU can be improved

with more frequent analysis increments, as long as the

temporal covariances can be estimated accurately

enough and the imbalance can be effectively con-

strained. Here the sensitivity of 4DIAU to the frequency

of analysis increments is examined by conducting an

additional experiment of EnKF-4DIAU with hourly

(instead of 3-hourly) analysis increments (EnKF-

4DIAU1H), while retaining the 6-h assimilation win-

dow. EnKF-4DIAU1H requires the computation of four

more analysis increments than EnKF-4DIAU. How-

ever, the extra computational cost can be significantly

reduced when the local ensemble transform Kalman

filter (LETKF; Hunt et al. 2007) is applied, because the

LETKF analysis weights remain constant in an assimi-

lation window and need only be computed once.

Figure 13 shows the globally averaged RMS back-

ground forecast observation increments for temperature

and wind speed for EnKF-4DIAU and EnKF-

4DIAU1H. EnKF-4DIAU1H and EnKF-4DIAU are

generally very similar, although the EnKF-4DIAU1H

forecasts are slightly closer to wind observations than

EnKF-4DIAU above 600 hPa. Figure 9d displays the

difference of 6-h forecast vector wind between EnKF-

4DIAU1H and EnKF-RAW relative to the ECMWF

analyses. Comparing Figs. 9d and 9c, it does not appear

that EnKF-4DIAU1H 6-h forecasts are significantly

closer to the ECWMF analyses than EnKF-4DIAU.

Table 3 and Fig. 11 show that the amplitude of surface

pressure tendencies in EnKF-4DIAU1H is similar to

EnKF-4DIAU, as is the semidiurnal tidal signal. The

FIG. 11. The semidiurnal tide at 6-h forecast lead time, as mea-

sured by 3-hourly surface pressure tendencies averaged between

308S and 308N, for forecasts initialized at 0000 UTC and averaged

over the verification period for experiments EnKF-RAW, EnKF-

DFI, EnKF-3DIAU, EnKF-4DIAU, and EnKF-4DIAU1H.

FIG. 12. Total column cloud water averaged over the tropics at

forecast lead times 0, 3, and 6 h during the verification period for

experiments EnKF-RAW, EnKF-DFI, EnKF-3DIAU, EnKF-

4DIAU, and EnKF-4DIAU1H.

TABLE 3. Temporally and globally averaged absolute 3-h surface pressure tendency [hPa (3 h)21] (estimated from the difference

between 3- and 0-h forecasts) during the verification period in the Northern Hemisphere (NH), tropics (TP), and Southern Hemisphere

(SH) for each assimilation experiment.

EnKF-RAW EnKF-DFI EnKF-3DIAU EnKF-4DIAU EnKF-4DIAU1H

NH 1.42 1.15 1.06 1.29 1.28

TR 1.77 1.17 0.91 1.60 1.57

SH 1.78 1.52 1.42 1.68 1.66
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impact of data assimilation on the spinup of the model

total cloud condensate is also similar in EnKF-

4DIAU1H and EnKF-4DIAU (Fig. 12). Overall, in

the NCEP GFS 80-member EnKF system, there is

little difference between using hourly increments and

3-hourly increments in the 4DIAU. Therefore, it ap-

pears that the cost of computing the extra increments

(and the added IO costs incurrent in the forecast model

integration when reading those increments) may not be

justified with an 80-member ensemble. However, using

hourly increments may still be beneficial when larger

ensembles are used in the data assimilation and/or

model errors are reduced, since higher-frequency tem-

poral variations in the analysis increments may be more

accurately represented.

7. Conclusions

A 4DIAU was recently proposed by Lorenc et al.

(2015) to filter out the high-frequency oscillations in-

troduced by poorly balanced four-dimensional ensem-

ble variational (4DEnVar) analyses. Compared to

3DIAU, 4DIAU constructs time-varying analysis in-

crements by applying all observations in an assimilation

window to state variables at different times during the

assimilation window. These time-varying analysis in-

crements translate into time-varying forcing terms in the

forecast model integration during the application of the

IAU. The 4DIAU used with EnKF is discussed in this

paper for an idealized dry two-layer primitive equation

model and the NCEP GFS with real observations.

Using the two-layer model, the performance of EnKF

with and without IAU is examined with varying fre-

quency of analysis increment, ensemble size, and model

error amplitude. Compared to the EnKF-RAW (no

IAU), EnKF-4DIAU and EnKF-3DIAU reduce im-

balances in the analysis, especially when model error is

included. EnKF-4DIAU generally produces smaller

errors than either EnKF-RAW or EnKF-3DIAU. In-

creasing the frequency of the analysis increments used in

EnKF-4DIAU generally results in smaller errors, as

long as the ensemble size is large enough (and model

errors are small enough) so that the temporal co-

variances needed to estimate the higher-frequency

components of the time-varying analysis increments

can be estimated accurately and the imbalance can be

effectively constrained.

Using the NCEP GFS model with the NOAA oper-

ational EnKF, consistent results are obtained when

evaluating forecasts relative to observations and

ECMWF analyses. EnKF-4DIAU generally produces

the more accurate forecasts than EnKF-3DIAU, con-

firming the benefit of considering the propagation of

analysis increments in the assimilation window. Using a

full-field digital filter in the EnKF (EnKF-DFI), while

effective at suppressing high-frequency oscillations in

the forecasts, generally degrades forecasts relative to an

EnKF with no IAU and no digital filter (EnKF-RAW).

FIG. 13. Vertical profiles of globally averaged RMS background forecast observation increments for all in situ

observations of (a) temperature and (b) vector wind for experiments EnKF-4DIAU and EnKF-4DIAU1H. The

bars on top denote the vertically averaged values for each experiment.
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4DIAU also improves the representation of the semi-

diurnal tide, while 3DIAU and 4DIAU both significantly

reduce spinup in the forecast model hydrometeor fields.

Results here show that increasing the frequency of

analysis increments can improve the performance of the

EnKF-4DIAU, as long as sampling error and model

error are small enough so the temporal covariances

needed to estimate the higher-frequency components of

the time-varying analysis increments can be estimated

accurately. However, as currently configured (80 en-

semble members at T574 resolution) increasing the

resolution of the analysis increments from 3 to 1 h ap-

pears to only show a benefit in the fit of background

forecasts to wind observations above 600hPa.

Compared to 3DIAU, 4DIAU requires extra com-

putational cost to calculate the additional analyses that

are not at the center of an assimilation window. This

extra computational cost may be relatively small com-

pared to the model integration, especially when the

LETKF algorithm is used.

The IAU window here is set to the same as the length

of assimilation window, but there could be sensitivities

of the 3DIAU and 4DIAU to the IAU window, which

will be explored in future studies. The impacts of as-

similation frequency on the performance of 3DIAU and

4DIAU also need further exploration.
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