Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Model Space Localization Is Not Always Better Than Observation Space Localization for Assimilation of Satellite Radiances

Filetype[PDF-753.05 KB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Description:
    Covariance localization is an essential component of ensemble-based data assimilation systems for large geophysical applications with limited ensemble sizes. For integral observations like the satellite radiances, where the concepts of location or vertical distance are not well defined, vertical localization in observation space is not as straightforward as in model space. The detailed differences between model space and observation space localizations are examined using a real radiance observation. Counterintuitive analysis increments can be obtained with model space localization; the magnitude of the increment can increase and the increment can change sign when the localization scale decreases. This occurs when there are negative background-error covariances and a predominately positive forward operator. Too narrow model space localization can neglect the negative background-error covariances and result in the counterintuitive analysis increments. An idealized 1D model with integral observations and known true error covariance is then used to compare errors resulting from model space and observation space localizations. Although previous studies have suggested that observation space localization is inferior to model space localization for satellite radiances, the results from the 1D model reveal that observation space localization can have advantages over model space localization when there are negative background-error covariances. Differences between model space and observation space localizations disappear as ensemble size, observation error variance, and localization scale increase. Thus, large ensemble sizes and vertical localization length scales may be needed to more effectively assimilate radiance observations.
  • Source:
    Monthly Weather Review, 143(10), 3948-3955.
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Submitted
  • Main Document Checksum:
  • File Type:

Supporting Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26