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Comparison of geostatistical approaches to spatially
interpolate month-year rainfall for the Hawaiian Islands
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ABSTRACT: The Hawaiian Islands have one of the most spatially diverse rainfall patterns on earth. Knowledge of these
patterns is critical for a variety of resource management issues and, until now, only long-term mean monthly and annual rainfall
maps have been available for Hawai‘i. In this study, month-year rainfall maps from January 1920 to December 2012 were
developed for the major Hawaiian Islands. The maps were produced using climatologically aided interpolation (CAI), where
the station anomalies were interpolated first, and then combined with the mean maps. A geostatistical method comparison
was performed to choose the best interpolation method. The comparison focuses on three kriging algorithms: ordinary kriging
(OK), ordinary cokriging (OCK), and kriging with an external drift (KED). Two covariates, elevation and mean rainfall, were
tested with OCK and KED. The combinations of methods and covariates were compared using cross-validation statistics,
where OK produced the lowest error statistics. Station anomalies for each month were interpolated using OK and combined
with the mean monthly maps to produce the final month-year rainfall maps.
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1. Introduction

Precipitation climatologies are very important to research
in hydrology, terrestrial ecosystem processes, regional
climate, and regional impacts of global change. Under-
standing rainfall patterns is essential for water resources
planning, especially in places where water is scarce and
highly dependent on local rainfall. Island communities
are particularly sensitive to changes in climate, and
accurate data are vital for policy decisions and resource
management plans to cope with these effects. In the
Hawaiian Islands, a diverse terrain, as well as varied wind
patterns and a persistent trade wind inversion (TWI),
lead to extremely complex rainfall patterns. Achieving an
accurate representation of these patterns is a difficult task,
even with a relatively dense network of stations.

The recently completed ‘Rainfall Atlas of Hawai‘i’
(Giambelluca et al., 2013, http://rainfall.geography.hawaii
.edu/) has produced mean rainfall maps for the seven major
islands of Hawai‘i. Mean monthly and annual maps depict
the average spatial rainfall patterns. The new maps super-
sede a previous Rainfall Atlas (Giambelluca et al., 1986)
in which spatial rainfall patterns were estimated subjec-
tively from point measurements. The most recent project
used a Bayesian data fusion method to combine rain gauge
data with radar rainfall estimates, mesoscale meteorologi-
cal model output (MM5), Parameter-elevation Regressions
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on Independent Slopes Model (PRISM) maps (Daly et al.,
1994), and vegetation-based rainfall estimates to improve
the accuracy of the mean rainfall maps. The new Rain-
fall Atlas of Hawai‘i gives only the 30-year mean spa-
tial patterns and does not provide any information about
year-to-year rainfall variability. To allow assessment of all
types of rainfall variability, including trends, individual
month-year maps are needed. However, these maps can-
not be produced in the same manner as the mean maps
because the predictor variables (vegetation, PRISM, MM5,
and radar rainfall maps) do not exist at a monthly temporal
resolution over an extended historical period. Therefore,
another method is needed to take advantage of the infor-
mation from the mean Rainfall Atlas maps combined with
individual monthly rain gauge totals.

One approach to incorporate long-term mean climato-
logical information with month-year data is to analyse the
monthly rainfall anomaly patterns in an approach known as
climatologically aided interpolation (CAI) (Willmott and
Robeson, 1995). The departures from the mean (anoma-
lies) in a given month-year are interpolated and then com-
bined with the mean map to produce the final month-year
map (Dawdy and Langbein, 1960; Peck and Brown, 1962;
Jones, 1994; Willmott and Robeson, 1995). This method
produces better results than interpolating the raw rainfall
totals at a regional scale (New et al., 2000; Chen et al.,
2002) and has been used in a number of studies (Dawdy
and Langbein, 1960; Peck and Brown, 1962; de Mont-
mollin et al., 1980; Bradley et al., 1987; Willmott and
Robeson, 1995; Dai et al., 1997; Brown and Comrie, 2002;
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Mitchell and Jones, 2005; Haylock et al., 2008). It can
recreate the climatological pattern even when some of the
data are missing for a particular month (Yatagai et al.,
2008) because monthly anomalies are likely to be associ-
ated with variations in large-scale circulation (New et al.,
1999). The majority of studies calculate either the abso-
lute anomaly (individual value minus the mean) or relative
anomaly (individual value divided by the mean). Adopting
an anomaly approach is appealing for this study because
it allows for the spatial information derived from multi-
ple predictor data sets, that were utilized in creating the
Rainfall Atlas of Hawai‘i maps, to be incorporated in the
month-year maps. For precipitation, relative anomalies are
preferred over absolute anomalies because the percentage
better preserves the relationship between the variance and
the mean (New et al., 2000).

Many different geostatistical methods are available for
spatially interpolating the anomalies. However, no con-
sensus exists in the literature about which method is best
for interpolating monthly rainfall anomalies in complex
terrain. One of the most widely used geostatistical inter-
polation schemes is kriging, which takes advantage of
the spatially dependent correlation of environmental vari-
ables, assigning more weight to stations nearby (Webster
and Oliver, 2007). Kriging also provides an uncertainty
estimate, and it is able to easily incorporate secondary
variables. In the case of rainfall interpolation, secondary
variables include factors such as elevation (Goovaerts,
2000; Mair and Fares, 2011), radar rainfall estimates (Seo
et al., 1990; Haberlandt, 2007), and atmospheric variables
such as cold cloud duration remotely sensed data (Moges
et al., 2007), wind speed, and humidity (Kyriakidis et al.,
2001). There are many method variations under the kriging
approach, creating a large number of possible combina-
tions when all of the possible covariates combined with
the different kriging algorithms are considered.

Previous method evaluations dealt with small station
networks and were located in areas with limited ter-
rain variation when compared to Hawai‘i (Goovaerts,
2000; Vicente-Serrano et al., 2003; Moral, 2009). This is
an important distinction because station network density
influences how well the interpolation performs, and land-
scape heterogeneity has a significant impact on precipita-
tion patterns. Some studies dealt with interpolation on a
global scale (New et al., 2000; Chen et al., 2002), which
is generally done at a relatively coarse spatial resolution.
Many of the studies considered other climate variables
such as temperature and soil variables (Bourennane and
King, 2003; Hengl et al., 2007), while another common
group of results were shown only for daily or hourly rain-
fall data (Haberlandt, 2007; Yatagai et al., 2008; Haylock
et al., 2008). None of these results are directly indicative
of which methods will be most successful for interpolating
monthly rainfall anomaly data in an area like Hawai‘i.

The objective of this study was to create a data set of
month-year rainfall maps for the seven major islands of
Hawai‘i from 1920 to 2012, and to determine the best
method for interpolating spatial patterns of relative rain-
fall anomalies for individual months. For uniformity, it was

desirable to select only one interpolation method to pro-
duce the anomaly maps for all islands: the method that
performed the best overall. However, the option of using
two or more methods was considered if, for example, one
method performed significantly better on one island and
poorly on the rest of the islands. In the following section,
the study domain and available data are described. Details
about the different kriging methods, the cross-validation
tests used to compare methods, and the procedure for gen-
erating the final maps are presented in Section 3. In Section
4, the results of the method comparison are presented along
with the examples of the month-year rainfall maps gener-
ated for this study. The final section summarizes the find-
ings and presents the discussion and conclusions drawn
from this study, as well as suggestions for future research
opportunities.

2. Study area and data

2.1. Hawai‘i

The area under consideration is the State of Hawai‘i,
more specifically – the seven major islands Kaua‘i, O‘ahu,
Moloka‘i, Lāna‘i, Maui, Kaho‘olawe, and Hawai‘i. The
island of Ni‘ihau was not considered in this study because
no rainfall data were available. The main islands of
Hawai‘i are located in the Pacific Ocean between 18.9∘
and 22.24∘N latitude, and 160.25∘ and 154.8∘W longitude.
The islands have a total land area of 16 637 km2 (Juvik and
Juvik, 1998), with Hawai‘i Island (commonly referred to
as the Big Island) comprising 63% of the total.

The climate of the Hawaiian Islands contains a great
deal of diversity in a very small area; mean annual rain-
fall ranges from 204 to 10 271 mm (Giambelluca et al.,
2013). This is mainly due to the complex topography
and large elevation range (0–4205 m). The average rain-
fall gradients for some places in Hawai‘i are among the
steepest in the world, producing a greater range on one
small island than generally occurs across an entire conti-
nent (Giambelluca et al., 1986). The majority of the rain-
fall in Hawai‘i is produced through orographic lifting as
trade winds (east-northeast winds) encounter the wind-
ward mountain slopes, producing fairly consistent rainfall
patterns throughout the year on these slopes (Giambelluca
et al., 2013). At high elevations, however, the growth of
clouds is persistently capped by the TWI at about 2200 m
(Cao et al., 2007), resulting in steep declines in rainfall
above this level.

2.2. Rain gauge database

Over 2000 rain gauge stations have operated across the
islands over the past 150 years (Giambelluca et al., 2013),
providing an extensive monthly rainfall database. Figure 1
shows the spatial distribution of stations in Hawai‘i. The
oldest rain gauge in the data set has readings from 1837,
and by the year 1968 there were over 950 stations oper-
ating at once. However, many stations were discontinued
throughout the 1970s and 1980s, and as of 2012, only
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Figure 1. Map of the rain gauge stations in the State of Hawai‘i.

404 gauges were still in operation. Many of the discontin-
ued gauges were concentrated in now defunct pineapple
and sugarcane plantations, mostly located in low-lying,
dry areas of the state. In those areas, the gauge density
during the plantation era was greater than that needed to
adequately capture the rainfall gradients. Therefore, some
of the decline in the number of gauges statewide reduced
redundancy in the network.

Data collection was completed in two rounds: the first
collected all data from 1920 to 2007, and the second
from 2008 to 2012. The data were collected from vari-
ous sources, the largest being a database maintained by
the Hawai‘i Department of Land and Natural Resources
and the Office of the State Climatologist. Monthly rainfall
data were also collected from the National Climatic Data
Center (NCDC), the U.S. Geological Survey (USGS), and
several small networks including HaleNet (Haleakalā Cli-
mate Network, operated by the Geography Department at
the University of Hawai‘i at Mānoa), HydroNet (operated
by the National Weather Service), and RAWS (Remote
Automated Weather Stations, data available through the
Western Regional Climate Center, WRCC). After the data
were compiled, a variety of gap filling techniques (Paulhus
and Kohler, 1952; Eischeid et al., 2000) were performed
on the data set to improve the temporal and spatial resolu-
tion. Many quality control techniques were used to screen
the data, including homogeneity testing using a penalized
maximal t-test (Wang et al., 2007; Wang, 2008) and man-
ual screening for outliers and suspicious values (Giambel-
luca et al., 2013).

The 1920–2007 data set contained over 1100 stations,
and was used to produce the Rainfall Atlas mean maps.
Although the temporal and spatial resolution was greatly
improved through gap filling, the station network still
varied through time. The rain gauge means over the most
recent 30-year period available (1978–2007) were fused

with spatial predictor data sets (PRISM, radar, mesoscale
model output, and vegetation-derived rainfall, which were
incorporated using virtual rain gauge stations). The result
was a set of 12 monthly maps and one annual map of mean
rainfall at spatial resolution of 250 m. For the complete
database development methods, see Giambelluca et al.
(2013).

The 2008–2012 data collection added 120 more stations
to the full data set, including data from two new sources.
However, as mentioned previously, many of the long-term
stations had been discontinued which resulted in an overall
loss of stations, even after gap filling. On average, across
the state there were 185 fewer stations in the 2008–2012
data set. The largest percentages of stations lost were on
Lāna‘i and Moloka‘i, losing 31 stations on average (61%)
and 50 stations on average (57%), respectively. For months
with low station numbers (less than ten), these two islands
were interpolated together as they are located only 15 km
apart.

3. Methods

3.1. Kriging methods

The 30-year mean monthly rainfall maps from the Rainfall
Atlas of Hawai‘i along with the monthly rainfall database
served as the two major inputs for creating the month-year
maps. The data values at every rain gauge station were
converted into dimensionless relative anomalies by divid-
ing the station value by the mean monthly value at that
location (e.g. a January data value was divided by the Jan-
uary mean value). To go from a finite number of irregu-
larly spaced points (rain gauge sites) to a high-resolution
gridded surface (rainfall map), some form of interpolation
is required.

Kriging refers to a subset of geostatistical interpola-
tion methods that rely on the spatial structure of the data,
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assuming data points that are closer together are more alike
than points that are further apart. Kriging uses a semi-
variogram to assess the dissimilarity between points in a
search neighbourhood. The experimental semivariogram
�̂� (h) at lag h for a set of data z(xi), i= 1, 2, … , is shown
in Equation (1):

�̂� (h) = 1
2N (h)

N(h)∑
i=1

[
z
(
xi

)
− z

(
xi + h

)]2
(1)

where N(h) is the number of pairs of data points separated
by a vector h. The spherical model, characterized by linear
behaviour at the origin with a gradual curve towards the
sill (Goovaerts, 2000), is used in this study to model the
variograms. The spherical model is the most widely used
model because it usually provides the best fit in one-,
two-, and three-dimensions. The equation for the spherical
model is shown in Equation (2):
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where c is the sill variance and a is the range (Webster and
Oliver, 2007).

Kriging is an unbiased and optimal estimator, where the
weights used for the points must sum to one, and the goal
of the estimator is to minimize the estimation variance
(Goovaerts, 1997). Kriging estimates values of a variable
Z given known values z(x1), z(x2), … , z(xN), at points x1,
x2, … , xN . Ordinary kriging (OK) is the most frequently
used and robust type of kriging. Equation (3) shows the
OK estimator, to estimate Z at a point x0:

Ẑ
(
x0

)
=

N∑
i=1

𝜆iz
(
xi

)
(3)

where 𝜆i are the weights. OK interpolates the point data
alone (without secondary variables), and solves a system
of N + 1 equations with N + 1 unknowns to determine
the weights that minimize the estimation variance. OK is
used in most method comparison studies as a base method
against which to compare other methods (Goovaerts, 2000;
Kyriakidis et al., 2001; Moges et al., 2007; Moral, 2009;
Mair and Fares, 2011; Sanchez-Moreno et al., 2014). In
most of these studies, methods that incorporate a sec-
ondary variable proved to outperform OK. However, Mair
and Fares (2011) found in their study on west O‘ahu island,
Hawai‘i, that OK consistently performed the best, and
Sanchez-Moreno et al. (2014) found that OK produced
the best cross-validation results on Santiago Island, Cape
Verde.

Ordinary cokriging (OCK) is one of many kriging meth-
ods that incorporate a secondary variable. OCK capitalizes
on the cross-semivariance between the primary and sec-
ondary variables, and incorporates that information into
the kriging matrix. This makes OCK more computation-
ally expensive and complex than OK. For one secondary

variable y, the OCK estimator is shown in Equation (4):

Ẑ
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z
(
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𝜆′i2
z
(
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where the weights (𝜆i1
) are for the N1 z samples, and

the weights (𝜆′i2 ) are for the N2 y samples. For OCK, the
weights are constrained such that the sum of the weights
for the primary variable (𝜆i1

) must equal one, and the
weights for the secondary variable (𝜆′i2 ) must sum to zero.

Another way to include secondary information is in
the form of an external drift or trend, as in the krig-
ing with external drift method (KED). Unlike OK which
uses a constant (unknown) mean, KED can account for
non-stationarity in the mean across the study area because
the linear relationship between the external variable(s) and
the rainfall is assessed locally (Goovaerts, 2000). This
method requires the external variable to vary smoothly
in space and to be known at every location to be esti-
mated. It also assumes a linear relationship between the
target variable and drift variable (Deutsch and Journel,
1998; Bourennane and King, 2003; Webster and Oliver,
2007). With KED, both the deterministic and stochastic
components are fitted simultaneously so that the drift vari-
able is incorporated into the kriging system (Webster and
Oliver, 2007). KED with one external variable uses N + 2
equations to solve for the weights, accounting for the two
constraints on the weights. The KED estimator is shown in
Equation (5):

ẐKED

(
x0

)
=

N∑
i=1

𝜆KED
i z

(
xi

)
(5)

This method was chosen because it has been shown to
outperform OK and OCK (Goovaerts, 2000; Kyriakidis
et al., 2001; Moral, 2009).

All kriging methods assume that the data are normally
distributed. Precipitation data, however, are often posi-
tively skewed, which results in semivariances that are
less reliable (Webster and Oliver, 2007). In Hawai‘i,
the distributions of relative anomalies varied for every
island-month, where some were close to normal while oth-
ers were skewed. The common solution of transforming
the data can improve the interpolation error (Tait et al.,
2006; Erdin et al., 2012; Song et al., 2015). To assess the
effect of transforming relative anomaly data before krig-
ing, two common transformations (square root and log)
were used on a sample of island-months with positively
skewed distributions. Both the transformed and original
data were interpolated and the performances were com-
pared using cross-validation (see Section 3.3). Neither
transformation improved the results significantly, a result
similar to that of Erdin et al. (2012) who found only small
differences in the point estimates between KED with and
without transformation. Therefore, all kriging interpola-
tions were performed on original, un-transformed data.

3.2. Secondary variables

In many studies, a secondary variable is shown to greatly
improve interpolation results (Goovaerts, 2000; Kyriakidis
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et al., 2001; Moges et al., 2007; Moral, 2009). A densely
sampled or spatially continuous secondary variable can
improve the measurement of the primary variable that may
be less densely sampled, because it draws from existing
patterns rather than the stations alone. The first variable
considered as a covariate for this project was elevation.
Elevation has been used by many to help interpolate rain-
fall because of the strong orographic influences on precip-
itation (Daly et al., 1994). Sanchez-Moreno et al. (2014)
found that elevation explained most of the variance in rain-
fall, particularly for low and medium rainfall events that
were likely orographic in origin. However, other studies
have shown that when compared with atmospheric vari-
ables, elevation is not very well correlated with rainfall
data (Kyriakidis et al., 2001). Because it is one of the most
commonly used covariates and given the importance of
orographic lifting in Hawai‘i, elevation was included as
one of the secondary variables tested. A 30 m resolution
digital elevation model (DEM) of the state was used for
the elevation input. The other variable used as a covariate
was mean monthly rainfall from the 2013 Rainfall Atlas
(250 m resolution raster maps, Giambelluca et al., 2013).
Some studies have found that mean rainfall surfaces were
much better predictors than elevation (Daly et al., 2004;
Tait et al., 2006). These mean maps contain additional
information about the complex rainfall patterns through
the incorporation of predictor data sets (i.e. PRISM and
MM5). Therefore, other possible covariates such as lati-
tude, longitude, slope, and aspect were not considered in
this study.

3.3. Method comparison

For the method comparison, each calendar month was
tested on each island for a 30-year period. The number
of gauges varied throughout time as the station network
evolved, and the period 1940–1969 was chosen for the
comparison because it had the highest numbers of stations
in operation within the full study period. For the method
comparison and mapping, Kaho‘olawe, with only five
stations, was combined with Maui. The other five islands
were analysed independently.

ArcGIS™ 10 (ESRI, 2011; Redlands, CA, USA) was
the main software package used to conduct the method
comparison, as OK and OCK methods were available in
the program. Because ArcGIS™ also gave the option to
auto-fit variogram parameters and has a more powerful
user interface than R (R Core Team, 2014) to visual-
ize and prepare final maps (Hengl et al., 2007), it was
used as the primary program for producing OK and OCK
maps, and for processing the final maps. KED is not avail-
able in ArcGIS™ 10 and, therefore, another geostatistical
software package, GSLIB (Deutsch and Journel, 1998),
was used. Unlike ArcGIS™, GSLIB requires the user
to develop variogram models manually. Kriging methods
were run for all islands from 1940 to 1969 for each month,
with unique variograms fit for each month-year, and cross-
validation outputs were saved.

The kriging methods were assessed by comparing the
cross-validation statistics for the different methods. The

cross-validation process sequentially withholds a point and
uses the remaining data to predict its value, and then
compares the predicted and measured values. While some
weaknesses with this technique have been shown (Jeffrey
et al., 2001), it is the most widely used approach for
method intercomparisons. The mean absolute error (MAE)
and the root mean square error (RMSE) were used to
assess and compare the methods (Willmott, 1982). Both
MAE and RMSE express errors in the same units as the
rainfall. MAE is a measure of average error, and RMSE is
a measure of random error (scatter). The MAE and RMSE
equations are shown in Equations (6) and (7):

MAE = 1
N

N∑
i=1

||pi − oi
|| (6)

RMSE =

[
1
N

N∑
i=1

(
pi − oi

)2

]1∕2

(7)

where N is the count of stations, pi are the predicted values
at each station, and oi are the observed values. The MAE
and RMSE values for each station were computed for every
island-month and year for all five methods: OK, OCK with
elevation, OCK with mean rainfall, KED with elevation,
and KED with mean monthly rainfall.

A ranking system was developed to choose the best
method for each island-month, incorporating the perfor-
mance evaluations based on the cross-validation statistics.
For every island-month, the five methods were ranked 1–5
(best to worst) based on four different criteria: lowest mean
MAE value, highest percentage of years (out of 30) with
the lowest MAE value, lowest mean RMSE value, and
highest percentage of years of (out of 30) with the low-
est RMSE value. The method with the lowest average rank
across the four categories was deemed the best method for
that island-month (Hofstra et al., 2008). For any islands
where a single method did not prevail as the best in all
months, single factor analysis of variance (ANOVA) was
used to compare the mean statistics for all five methods to
test for statistically significant differences between method
performances (𝛼 = 0.05). To assess the impact of CAI
(interpolating anomalies instead of original rainfall data)
on the method comparison results, the original month-year
rainfall values were interpolated directly for comparison.
This test was performed for a 10-year sample for 2 months
on one island, and the cross-validation statistics were
compared.

3.4. Final maps

To produce the final month-year rainfall maps, rel-
ative anomalies were interpolated for the remaining
month-years that had not already been completed in the
method comparison step, i.e. before and after 1940–1969,
using the ‘best’ method determined from the method
comparison. To ensure that the auto-fit variogram parame-
ters produced reasonable patterns, all geostatistical layers
and fitted variogram models were examined manually.
The month-year anomaly maps were saved with the same
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Table 1. Minimum, maximum, and mean number of rain gauge stations used to make the maps for each island (over all months,
1920–2012), as well as land area (km2) of each island (Juvik and Juvik, 1998) and minimum, maximum, and mean station densities

(gauges per km2).

Minimum number
gauges

Maximum number
gauges

Mean number
gauges

Area
(km2)

Minimum station
density

Maximum station
density

Mean station
density

Kaua‘i 111 211 178 1430.5 0.078 0.148 0.124
O‘ahu 250 356 309 1546.5 0.162 0.230 0.200
Moloka‘i 14 87 69 673.5 0.021 0.129 0.102
Lāna‘i 1 50 42 364.0 0.003 0.137 0.115
Maui 198 264 233 1999.2 0.099 0.132 0.117
Hawai‘i 255 348 302 10 433.1 0.024 0.033 0.029

Maui values includes the island of Kaho‘olawe.

Table 2. Best interpolation method for each island-month based on the lowest average rank from cross-validation test, 1940–1969.

Hawai‘i Kaua‘i Lāna‘i Maui Moloka‘i O‘ahu

January OK OK OK OCK_RF OK OK
February OK OK OK OCK_RF OCK_RF OK
March OK OK KED_RF OK OCK_RF OK
April OK OK KED_RF OK OCK_RF OK
May OK OK OK OK OCK_RF OK
June OK OK KED_RF OCK_RF OK OK
July OK OK OCK_RF OK OCK_RF OK
August OK OK OK OK OK OK
September OK OK OK OK OK OK
October OK OK OK OK OK OK
November OK OK OCK_RF OK OCK_RF OK
December OK OK KED_RF OCK_RF OCK_RF OK

OK, ordinary kriging; KED_RF, kriging with external drift with mean rainfall; OCK_RF, ordinary cokriging with mean rainfall.

extent and 250 m spatial resolution as the Rainfall Atlas
mean maps. The anomaly maps were multiplied by the
Rainfall Atlas of Hawai‘i mean monthly maps to produce
the final month-year rainfall maps (e.g. January anomaly
maps were multiplied by the January mean map). The
12 monthly maps in each year were then summed to
produce annual maps for each year. Table 1 documents
the minimum, maximum, and mean number of rain gauge
stations used on each island, as well as station densities.

4. Results

4.1. Method comparison

Table 2 shows the best interpolation methods chosen by
each island-month based on the MAE and RMSE val-
ues using the ranking procedure described in the previ-
ous section. Based on these results, OK was chosen as the
best method to use for interpolating rainfall anomalies in
Hawai‘i. Overall, OK showed the smallest cross-validation
errors (had the least bias and scatter) compared to the
other four methods, and outperformed the other meth-
ods for 55 of the total 72 island-months (Table 2). This
result was unequivocal in three of the islands (Kaua‘i,
O‘ahu, and Hawai‘i islands), while for the other islands
OK was selected for about half of the months. For the
17 island-months where OK was not chosen as the best
method, the ANOVA results indicated that the OK method
was not statistically significantly different from the method
identified as the best. Therefore, because OK performed

well in these island-months despite not having the best
ranked statistics, OK was selected as the method used
to interpolate the anomalies for all island-months. An
example of the differences in the rainfall surfaces produced
by the five methods is shown in Figure 2 for 1 month-year
for O‘ahu (May 1964), a month where OK had the low-
est cross-validation statistics of all five methods. For this
particular month-year, the spatial patterns are very similar
for all five methods; however, OK predicts less rainfall in
the peak areas compared to the other methods (particularly
KED). The overall cross-validation results (scatter plots
of predicted versus measured values) for O‘ahu in May
are shown for the five methods in Figure 3, an example
island-month where OK outperformed the other methods.
When original rainfall data were interpolated (instead of
anomalies) for the sample island-months, no significant
difference was found in the performance between OK and
the methods including a secondary variable.

4.2. Final maps

A total of 7254 anomaly maps and 7254 rainfall
maps were created. To illustrate the results, Figure 4
shows an example time series of rainfall maps for 10
years in December on Hawai‘i Island, while Figure 5 dis-
plays the corresponding anomaly maps. All month-year
maps are available as raster GIS (Geographic Infor-
mation Systems) layers and can be downloaded from
the Rainfall Atlas website: http://rainfall.geography.hawaii.
edu/downloads.html. The mean monthly rainfall statistics
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Figure 2. Comparison of five method outputs for O‘ahu Island, May 1964 rainfall (in millimetres). (a) Predicted rainfall surface produced by ordinary
kriging (OK) with a rainfall range of 0–725 mm. (b–e) Difference in predicted rainfall for the other four methods from the OK surface. (b) Ordinary
cokriging with mean rainfall as a covariate minus OK, (c) ordinary cokriging with elevation as a covariate minus OK, (d) kriging with external drift

using mean rainfall as a covariate minus OK, and (e) kriging with external drift using elevation as a covariate minus OK.

are shown in Figure 6 for each island, where the typical
annual cycle is apparent: dry season during summer
months and wet season in winter months.

5. Discussion and conclusions

Month-year rainfall maps of the major Hawaiian Islands
were produced from 1920 to 2012 using OK of the rela-
tive rainfall station anomalies. A secondary variable was
not shown to improve the interpolation, a result con-
trary to many previous studies (Goovaerts, 2000; Kyri-
akidis et al., 2001; Moges et al., 2007). However, none of
these other studies were performed for a terrain compara-
ble to Hawai‘i, or with a similar station network density
(Table 3). The only previous study that fully corroborates
these results was that of Mair and Fares (2011), who found
that over a small area on western O‘ahu, OK produced
more accurate rainfall predictions than simple kriging with
varying local means (SKlm), using elevation and distance
to a regional rainfall maximum as the two secondary vari-
ables; SKlm has been shown to produce results similar to
KED, the method used in this study (Goovaerts, 2000).

The fact that OK produces better results in Hawai‘i than
methods incorporating secondary variables, such as KED
and SKlm, is most likely due to the extremely high rain
gauge density in Hawai‘i. The Mair and Fares (2011) study
used 21 gauges over a 280 km2 area (0.082 gauges km−2).
As seen in Table 1, mean station densities on all islands
(except Hawai‘i Island) in this study exceed that value,
ranging from 0.102 gauges km−2 on Moloka‘i to 0.200
gauges km−2 on O‘ahu (0.029 gauges km−2 on Hawai‘i
Island). These values are considerably higher than all pre-
vious studies examined (Table 3). The main purpose of
incorporating a secondary variable is to add information
not represented in the primary variable, thereby increas-
ing precision. However, this added information will only
improve the precision of the interpolation if the primary
variable is severely under-sampled (e.g. low rain gauge sta-
tion density).

Another reason why a secondary variable did not
improve the prediction surface could be that most of the
information about the surface was already incorporated by
interpolating anomalies instead of raw rainfall values. The
mean rainfall maps used to create the anomalies contain
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Figure 3. O‘ahu Island cross-validation results for the month of May from 1940 to 1969 for the five methods tested. (a) Scatter plot of measured
versus predicted rainfall for ordinary cokriging with mean rainfall as a covariate, (b) measured versus predicted values from ordinary cokriging with
elevation as a covariate, (c) measured versus predicted values from kriging with external drift using mean rainfall as a covariate, (d) measured versus
predicted values from kriging with external drift using elevation as a covariate, and (e) the scatter plot of measured versus predicted rainfall for

ordinary kriging.

Figure 4. Ten-year time series of December rainfall maps for Hawai‘i Island from 1990 to 1999.

additional information that was not available at a monthly
time scale. If this test were to be performed with a monthly
time series of covariates (such as monthly wind speed
or humidity), instead of with a variable that is fixed in
time, we might expect better cross-validation results than
those produced by OK. Unfortunately, variables such as

humidity and wind, that have been shown to outperform
elevation as secondary variable used to interpolate precipi-
tation (Kyriakidis et al., 2001), are not available in gridded
month-year format for Hawai‘i. Possible improvements in
the predicted surface by using one of these other variables
would be most important in areas where the rain gauge
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Figure 5. Ten-year time series of December relative anomaly (estimated value divided by climatology) maps for Hawai‘i Island from 1990 to 1999.

Figure 6. Mean monthly rainfall statistics derived from the month-year
maps, averaged over all 93 years (in mm) for each island-month. Ka is
Kaua‘i, Oa is O‘ahu, Mo is Moloka‘i, La is Lāna‘i, Ma is Maui, and Ha

is Hawai‘i Island.

network is sparse, particularly on Hawai‘i Island, where
station densities are the lowest. However, because no
significant difference between the methods was seen when
original rainfall values (instead of anomalies) were inter-
polated, this indicates that the likely reason OK performed
better is not due to additional information gained through
CAI, but rather due to high station density.

Although OK was the best method for the majority
of island-months (Table 2), other methods performed

marginally better in a few instances. OCK with mean rain-
fall as a covariate (OCK_RF) had the best cross-validation
statistics for 13 of the 17 island-months where OK was not
the best method. Use of elevation as a covariate did not
produce the best results for any island-month. OCK_RF
performed best on Moloka‘i Island in particular (7 of 12
months). This island had the highest number of virtual sta-
tions used in the mean Rainfall Atlas map to fill spatial
gaps in the gauge network, and has very steep rainfall gra-
dients that are difficult to interpolate. Therefore, it would
make sense that the additional information from the mean
map could improve the prediction.

These month-year maps reveal extreme month-to-month
variation in the spatial patterns of rainfall. Figures 4 and 5
show an example 10-year time series of maps from 1990
to 1999 for December on Hawai‘i Island and the cor-
responding anomaly maps. The extreme range in val-
ues that can occur on a single island is also apparent
in these figures, where, for example, December 1999 on
Hawai‘i Island had some areas with less than 20 mm, while
other areas received almost 1300 mm in that month-year
(Figure 4). The spatial patterns can also vary significantly
from year-to-year, which can be seen clearly in the anoma-
lies in Figure 5. December 1996 shows the western half of
the island with over 200% of the mean December values,
while December 1990 shows high anomalies distributed
almost evenly across the island.
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Table 3. Previous geostatistical interpolation studies with study area, number of rain gauges used, land area, and gauge station density
(gauges per km2).

Study Location Number of gauges Area (km2) Station density

Brown and Comrie, 2002 Southwest USA 572 1 395 000a 0.0004
Goovaerts, 2000 Algarve, Portugal 36 5000 0.0072
Haberlandt, 2007 Elbe basin, Germany 302 25 000 0.0121
Haylock et al., 2008 All of Europe 2316 10 000 000a 0.0002
Kyriakidis et al., 2001 Northern CA, USA 77 108 000 0.0007
Mair and Fares, 2011 West O‘ahu, HI, USA 23 280 0.0821
Moges et al., 2007 Rufuji basin, Tanzania 704 177 000 0.0040
Moral, 2009 Extremadura, Spain 136 41 600 0.0033
Sanchez-Moreno et al., 2014 Santiago Island, Cape Verde 27 991 0.0272
Vicente-Serrano et al., 2003 Ebro Valley, Spain 380 20 000a 0.0190

aApproximate value.
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Figure 7. Comparison of mean annual rainfall values (in millimetres)
between the updated Rainfall Atlas (base period 1978–2007), PRISM
maps (base period 1971–2000), and the 30-year mean values from the

month-year maps (this study) to match these two base periods.

As a consistency check on the new maps, a 30-year cli-
matological mean value was calculated for each island
from the month-year maps and compared with the exist-
ing 30-year mean maps. Figure 7 shows this comparison
between the calculated annual mean from the month-year
maps, the 2013 Rainfall Atlas annual maps (average of
the 1978–2007 rainfall), and the 1971–2000 PRISM maps
(Daly et al., 2006) for each island. The month-year map
means were calculated for each of the separate base peri-
ods used in the Rainfall Atlas and PRISM maps. When
the means were compared, the month-year annual esti-
mate showed an underestimation of the mean for all islands
(except Moloka‘i, where the month-year map means were
greater). Kaua‘i and O‘ahu showed the largest discrepan-
cies, where the month-year maps averaged about 170 mm
lower. One reason could be that these other climatologies
include more information (such as vegetation informa-
tion), that was not available at the monthly scale to use in
this project. Without complete spatial rain gauge coverage
or accurate satellite data, it is impossible to interpolate with
perfect accuracy. All of these maps, including the Rainfall
Atlas and PRISM climatologies, are best approximations
with the information available.

This study provides a template for generating current
month-year rainfall maps as new data become available.

Because of the reduced size of the current station net-
work, gap filling should be applied to take advantage of
the rich information provided by historical stations and
reduce error in the interpolation, as variability in the sta-
tion network through time can affect the smoothness of the
interpolated surfaces. Figure S1, Supporting Information,
shows the time series of average annual RMSE results for
the state from 1920 to 2012 and the scatter plot relating
the RMSE values with the average number of stations in
each year. The time series shows a slight increasing trend
in RMSE over time, likely related to the overall station
network declines over this period. The scatter plot shows
the expected negative relationship, indicating higher error
when fewer stations were operating. Although gap filling
can help to reduce this error, the success of gap filling
attempts depends on the availability of sufficient stations to
establish robust statistical relationships. This was the case
for Lāna‘i when the 2008–2012 data were added to the
data set; only seven stations were operating intermittently
during this time, which made it difficult to gap fill histor-
ical stations in all months. A better solution would be to
install more rain gauges across the state. Table 1 shows
the bias in station placement, where the island of O‘ahu
has about the same number of stations as Hawai‘i island,
which is six times the size of O‘ahu. Installation of new
gauges should take into account the locations of current
stations and long-term stations that have been discontin-
ued (to possibly continue these records), as well as where
the largest spatial gaps are found. In particular, the islands
of Lāna‘i, Moloka‘i, and Hawai‘i should be prioritized, as
these islands have the lowest minimum station densities
(Table 1).

In summary, month-year rainfall maps from 1920 to
2012 have been generated for Hawai‘i, with accompanying
anomaly maps relative to the 1978–2007 mean. Based on
cross-validation results, OK was found to outperform OCK
and KED using elevation and mean rainfall as secondary
variables. The final maps were created by using OK to
interpolate the anomaly values, and then combining the
anomaly surfaces with the mean maps. This procedure can
be used in the future to produce near real time month-year
maps as the data become available.
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