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The ocean has accumulated 41% of all anthropogenic carbon emitted as a result of 10 

fossil fuel burning and cement manufacture1,2. The magnitude and the large-scale 11 

distribution of the ocean carbon sink is well quantified for recent decades3,4. In 12 

contrast, temporal changes in the oceanic carbon sink remain poorly understood5,6,7. 13 

It has proven difficult to distinguish between air-sea carbon flux trends due to 14 

anthropogenic climate change and those due to internal climate variability 5,6,8-13. 15 

Here we use a modeling approach that allows for this separation14, revealing how 16 

the ocean carbon sink may be expected to change throughout this century in 17 

different oceanic regions. Our findings suggest that, due to large internal climate 18 

variability, it is unlikely that changes in the rate of anthropogenic carbon uptake 19 

can be directly observed in most oceanic regions at present, but that this may 20 

become possible between 2020-2050 in some regions.  21 

 22 



Recent observationally-based syntheses have quantified mean ocean carbon uptake and 23 

its spatial distribution1,3,4,15 (Extended Data Fig 1). In addition, interior ocean 24 

observations analyzed under the assumption of constant ocean circulation suggest a 25 

steady increase in the integrated sink over the last century 1,15.  Yet surface observations 26 

clearly indicate that carbon uptake is strongly impacted by variability in surface climate 27 

and ocean circulation5,8-13. This variability impedes our ability to develop a detailed, 28 

regional picture of how the ocean carbon sink is changing in response to increasing 29 

atmospheric partial pressure of carbon dioxide (pCO2) and the associated climate change. 30 

Though climate models suggest the ocean should be a net sink for anthropogenic carbon 31 

for at least the next several centuries, they also suggest that climate warming and 32 

circulation changes will act to reduce the sink’s magnitude7,16. Monitoring current and 33 

future effects from the combined impact of increasing atmospheric pCO2 and climate 34 

change, or the forced trend, on ocean carbon uptake presents a major observational 35 

challenge due to the strong influence of the variability inherent to the climate system 14,17-36 
18. 37 

Previous modeling studies have attempted to separate internal variability from forced 38 

trends in ocean carbon uptake using several approaches. Variability in air-sea carbon 39 

fluxes has been linked to modes of climate variability in realistic hindcast models19-21.  40 

However, anthropogenic change can project onto these modes, leading to an incomplete 41 

separation. The ocean’s response to increasing atmospheric CO2 in the absence of 42 

variability and change has been studied13, but this approach ignores both mean impacts 43 

on ocean circulation from variable climate and indirect impacts on the carbon sink due to 44 

circulation change. Collections of Earth System Models have been used to assess 45 



relationships between natural variability and carbon cycle trends 22-23, but diverse model 46 

structures – for example, the spatial resolution of the atmosphere and ocean components, 47 

parameterization of the lower food web, or numerical schemes – can influence resulting 48 

trends24. Structural uncertainty precludes clear identification of the influence of internal 49 

variability24.  50 

We make use of a large ensemble of a single Earth System Model, the Community Earth 51 

System Model (CESM-LE, Ref. 25) to assess variability and change in the ocean carbon 52 

cycle in recent decades and through 2100. CESM is a comprehensive coupled climate 53 

model consisting of atmosphere, ocean, land surface, and sea ice components. The 54 

CESM-LE experiment includes 32 members with ocean biogeochemistry output. The 55 

experiment included a control integration of >2000 years. A transient integration 56 

(ensemble member 1) started at year 402 of the control and was integrated for 251 years 57 

under historical forcing (1850-2005) and then the Intergovernmental Panel on Climate 58 

Change Representative Concentration Pathway (IPCC RCP) 8.5 scenario for 2006-2100. 59 

Additional ensemble members were initialized from ensemble member 1 at January 1, 60 

1920, with round-off level perturbations applied to the air temperature field. See Methods 61 

for more details. 62 

Here, the use of a single model eliminates structural differences inherent to multi-model 63 

ensembles24, allowing the spread across the ensemble to be wholly attributed to the 64 

internal variability of the modeled climate system14,17-18,26. For each ensemble member, 65 

temporal trends in any variable can be separated into two parts: (1) the forced trend that 66 

is common across all ensembles, and (2) the unforced, or internal trend, that occurs only 67 

in that ensemble member. The spread of trends across the ensemble indicates how much 68 



internal variability causes individual ensemble members to deviate from the forced 69 

trend14,17-18,26. The forced trend, as its name suggests, is due to the model forcing, here 70 

including anthropogenic greenhouse gases and aerosols, as well as natural forcings (e.g. 71 

solar variability and volcanoes) during the historical period14,25. In the case of the ocean 72 

carbon sink, there are two components to the forced trend. The first is the direct influence 73 

of increasing atmospheric pCO2 driving continued ocean carbon uptake. The second is 74 

the indirect effect of changing climate that influences the physical state of the ocean and 75 

modulates air-sea carbon fluxes. 76 

Comparisons to observations illustrate that CESM captures the dominant modes and 77 

magnitudes of ocean carbon cycle variability and trends at regional to global scales (Ref 78 

21, Methods, Extended Data Tables 1 and 2). To further ground-truth the simulated mean 79 

CO2 flux, we compare to fluxes estimated from observations5, and to a multi-model 80 

ensemble of 12 Coupled Model Intercomparison Project 5 (CMIP5) Earth System Models 81 

(Fig 1, Extended Data Fig 1, Extended Data Table 3). For the 30-year mean CO2 flux, 82 

CESM-LE is consistent with the observed estimates in most regions and for the global 83 

average, with small differences across the individual ensemble members (Fig 1). In 84 

contrast, there is a substantial spread in CO2 flux estimates from CMIP523. It can be 85 

expected that structural differences between models would dominate differences in the 86 

multi-decadal mean CO2 flux, since the long averaging period integrates over the 87 

timescales of the dominant modes of variability. This is exactly what we find; a much 88 

greater spread in mean CO2 flux for CMIP5 than CESM-LE for all biomes (Fig 1). These 89 

structural differences across CMIP5 also impact CO2 flux trends (Methods, Extended 90 

Data Fig 2), indicating that a clean separation of forced trends from trends driven by 91 



internal variability is not possible with the CMIP5 multi-model ensemble as it is possible 92 

with CESM-LE.  93 

Our model analysis considers forced trends and the spread of internal trends in the ocean 94 

carbon sink across timeframes from decadal to centennial, all starting in 1990. Forced 95 

trends are shown only if they can be distinguished from trends due to internal variability 96 

with 95% confidence14  (Methods). 97 

For the decade starting in 1990, internal variability is large enough to preclude 98 

identification of forced trends in the carbon sink across most of the ocean (Fig 2a). 99 

Internally-driven variability in trends (Fig 2d) is largest in the equatorial Pacific due to El 100 

Niño-Southern Oscillation effects, and in regions of strong seasonal and interannual 101 

climate variability, such as the high latitudes of the North Pacific and Atlantic and north 102 

of seasonal sea ice in the Southern Ocean 5,8,10,11,13,22,27,28. Only in the subpolar North 103 

Atlantic, equatorial Atlantic and in some locations in the Southern Ocean are forced 104 

trends large enough to emerge from the variability over this period, and in these locations 105 

CO2 uptake increases (Fig 2a). 106 

Due to anthropogenic CO2 emissions from 1990-2019, the ocean carbon sink increases in 107 

most locations outside the subtropics (Fig 2b). In isolated regions within the subtropics, 108 

the forced trend in carbon uptake for 1990-2019 is not large enough to be identifiable at 109 

the 95% level, despite the fact that internally-driven variability is substantially reduced 110 

relative to the decadal timeframe (Fig 2d,e). Over 100 years (1990-2089), anthropogenic 111 

forcing leads to strong increases in uptake in the high latitudes, and to reduced outgassing 112 

in the equatorial Pacific and the eastern upwelling zones off South America and Africa. 113 



In the Pacific and Indian subtropics, the forced trend illustrates weakened carbon uptake 114 

by 2100 (Fig 2c). Internal variability has minimal impact on 100-year CO2 flux trends 115 

(Fig 2f). 116 

The ocean’s capacity to absorb increasing amounts of anthropogenic CO2 is not 117 

uniformly distributed. Across multi-decadal to centennial timescales, CO2 flux does not 118 

change or decreases in the subtropical gyres (Fig 2b,c). This is consistent with a 119 

convergent large-scale circulation and strong stratification that isolates the surface from 120 

the deep ocean’s large capacity to hold carbon. Long-term warming also reduces CO2 121 

solubility10,13,16. In contrast, the regions where ocean carbon uptake strongly increases are 122 

those with strong exchange between the surface and the deep ocean. In the equatorial 123 

Pacific, eastern boundary zones, and the Southern Ocean, upwelling deep waters have 124 

been out of contact with the atmosphere for hundreds of years and thus hold little, if any, 125 

anthropogenic carbon. As time progresses, upwelling waters encounter an ever-higher 126 

atmospheric pCO2, which diminishes outgassing of natural carbon4,22,28 (Extended Data 127 

Fig 1). In the North Atlantic, the direction of the exchange with the deep is reversed, with 128 

surface waters being transformed into deep waters by rapid buoyancy loss and deep 129 

convection. During this transformation, these waters increasingly absorb more carbon as 130 

atmospheric pCO2 rises. There is large-scale correspondence of mean carbon uptake at 131 

present3 and the regions predicted for uptake to grow most rapidly in the 21st century. 132 

The ability to separate forced from internal trends in CESM-LE (Fig 2) allows for 133 

assessment of timescales over which observations would be required in order to detect 134 

anthropogenically-driven change in ocean carbon uptake from observations (Fig 3). 135 

Consistent with previous studies26,29, detectability is assessed using Time of Emergence 136 



(ToE), which is the year in which the signal of the forced trend would emerge from the 137 

noise of the internal variability.  This analysis assumes observations began in 1990 138 

(Methods).  139 

The forced trend emerges early (by 2010) in some of the Southern Ocean and Atlantic 140 

where there is large short-term change in the sink. Given the strong internal variability 141 

and the smaller forced trend in the equatorial Pacific, ToE is generally intermediate here 142 

(by 2030 to 2050). The latest emergence occurs in the Pacific and Indian subtropical 143 

regions (2050+). Where the net effect of the forcing is to drive long-term steady carbon 144 

uptake, no change should be detected prior to 2100 (white in Fig 3). If internal variability 145 

were to be substantially underestimated or overestimated at a location, ToE estimates 146 

would be too short or too long, respectively. However, comparison to data indicates that 147 

CESM-LE reasonably captures carbon cycle variability (Extended Data Tables 1 and 2). 148 

Based on our current observational system for surface ocean carbon, should we be able to 149 

detect these predicted changes? At seven ocean timeseries stations, direct measurements 150 

of the ocean carbon cycle have been made at quarterly to monthly intervals for one to 151 

several decades9 (Fig 3). In the Atlantic, these locations are situated such that if 152 

observations had occurred since 1990 at a frequency sufficient to constrain the annual 153 

mean flux, they should be able to reveal change in the ocean carbon sink as distinct from 154 

internal variability at present (Irminger Sea, by 2015) or in the near future (BATS, 155 

ESTOC, CARIACO, by 2020; Iceland Sea, by 2040) (Fig 3). However, for the Pacific 156 

sites, detection of change in carbon uptake should not be expected until at least 2050 157 

(HOT, by 2050; Munida, beyond 2100). Unfortunately, at the timeseries site where 158 

CESM-LE suggests the forced trend may be first detectable (Irminger Sea), the pCO2 159 



dataset is short (1983-2005) and highly variable9, making it impossible to determine if a 160 

trend toward increasing carbon flux is, in fact, occurring. 161 

Surface ocean carbon data from volunteer commercial and scientific ships are presently 162 

too sparse for direct estimation of multi-decadal carbon cycle trends in most 163 

regions5,8,10,12. However, in the subtropics of the North Atlantic and Pacific, there are 164 

sufficient data to indicate a steady ocean carbon sink, and in the equatorial Atlantic to 165 

indicate an i�����sing sink, for 1981-200910. These changes are consistent with the 166 

30-year forced signals expected from CESM-LE (Fig 2b). More data, from all sources, 167 

will be required to determine if these signals are, in fact, illustrating the forced trend in 168 

ocean carbon uptake10.  169 

Going forward, ocean carbon monitoring efforts can benefit from this new ability to 170 

separate internal variability from forced trends. Long-term records can be interpreted in 171 

the context of the expected forced change in the ocean carbon sink; monitoring can be 172 

targeted to regions where the largest forced changes are expected; and regional 173 

aggregation approaches that optimally seek the forced signal can be developed. 174 

Concurrently, expansion of these analyses to large ensembles of other Earth System 175 

Models18,26 will further elucidate the mechanisms, magnitudes, and timescales of forced 176 

trends in the ocean carbon sink.   177 
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Figure 1. Modeled and observed mean 1982-2011 CO2 flux in 15 ocean biomes 264 

(molC/m2/yr): CESM-LE mean (X), max/min in gray (N=32). Color dot for CMIP5 265 

models (N=12); biome colors on map (ICE, dark blue; SPSS, light blue; STSS, green; 266 

STPS, yellow; EQ, orange and red; full names in Extended Data Table 4;  CESM-LE 267 

symbol aligns with line to indicate biome). Insufficient data in northern hemisphere ICE 268 

biomes28. Atlantic offset by -3 molC/m2/yr, Southern and Indian by +3 molC/m2/yr. 269 

Global mean (bottom right inset) with scale twice main figure; uncertainty on observed 270 

(gray band) is 0.12 molC/m2/yr (Ref 28, personal communication).  271 

Figure 2. Forced trends and internal variability of CESM-LE trends in sea-to-air 272 

CO2 flux (molC/m2/yr2). Forced trends for a 1990-1999, b 1990-2019 and c 1990-2089. 273 

Gray is where the forced trend cannot be identified with 95% confidence (Methods). CO2 274 

flux trend standard deviations, indicating the impact of internal variability on CO2 flux 275 

trends, for d 1990-1999, e 1990-2019, f 1990-2089. Negative indicates increasing ocean 276 

carbon uptake. 277 

Figure 3: Time of Emergence for sea-to-air CO2 flux. ToE is when the forced trend 278 

becomes detectable given the internal variability (Methods). Blue stars indicate seven 279 

ocean timeseries stations9, from North to South in the Atlantic: 1. Iceland Sea, 2. 280 

Irminger Sea, 3. Bermuda Atlantic Time-series Study (BATS), 4. European Station for 281 

Time series in the Ocean at the Canary Islands (ESTOC), 5. Carbon Retention In A 282 

Colored Ocean (CARIACO) and from North to South in the Pacific, 6. Hawaii Ocean 283 

Time-series (HOT) and 7. Munida. Biome-mean ToEs are presented in Extended Data 284 

Table 4. 285 



Methods  286 

The Large Ensemble of the Community Earth System Model. The Community Earth System Model 287 
(CESM) is a comprehensive coupled climate model consisting of atmosphere, ocean, land, and sea ice 288 
component models30.  The ocean physical model is the ocean component of the Community Climate 289 
System Model version 431. The model has nominal 1o horizontal resolution and 60 vertical levels.  290 
Mesoscale eddy transport, diapycnal mixing, mixed layer restratification by submesoscale eddies are 291 
parameterized with state-of-the-art approaches. The biogeochemical-ecosystem ocean model includes 292 
multi-nutrient co-limitation on phytoplankton growth and specific phytoplankton functional groups as well 293 
as full-depth ocean carbonate system thermodynamics, sea-air CO2 fluxes, and a dynamic iron cycle30. The 294 
biogeochemical-ecosystem model compares favorably to observations, though there are some important 295 
biases including weak Southern Ocean CO2 uptake21. 296 

The CESM-LE began with a multi-century 1850 control simulation with constant pre-industrial forcing; the 297 
ocean physical state was initialized from observations, ocean biogeochemical tracers were initialized from 298 
a separate 600-year spin up, and other component models were initialized from previous CESM1 299 
simulations.  Once the control simulation climate achieved quasi-equilibrium with the 1850 forcing, the 300 
first ensemble member was initialized from a randomly selected year in the 1850 control run: January 1, 301 
model year 402.  Ensemble member 1 was integrated forward from 1850 to 2100.  The remaining ensemble 302 
members were integrated from 1920 to 2100 using slightly different initial conditions: Ensemble member 2 303 
used one-day lagged ocean initial conditions, while spread in the remaining ensemble members was 304 
generated by round-off level perturbations to their initial air temperature fields25. After initial condition 305 
memory was lost, each ensemble member evolved chaotically.  A total of 38 ensemble members were 306 
generated in this fashion, but 6 of these had corrupted ocean biogeochemical output due to a setup error and 307 
affected fields were discarded.  All ensemble members have the same specified external forcing: historical 308 
forcing from 1920 to 2005, and Representative Concentration Pathway (RCP) 8.5 forcing from 2006 to 309 
2100. Differences from observed atmospheric pCO2 for RCP8.5 for the 2006-2014 period are minimal32. 310 
Since atmospheric CO2 concentrations are prescribed, CESM-LE ocean carbon fluxes do not feedback on 311 
the modeled climate. 312 



Analysis methods. We consider the linear trend at each model gridcell of annual mean CO2 flux, in units 313 
of molC/m2/yr2. The trend for CO2 flux is calculated for each ensemble member. The forced trend is the 314 
average trend across the 32 ensembles. Each ensemble member’s internal trend, due to internal variability, 315 
is the difference between that ensemble’s trend and the forced trend. The 95% confidence level for 316 
identification of the forced trend is calculated, for each gridcell and timeframe, based on the number of 317 
ensembles required to resolve the ensemble mean response: Nmin = 8/(X/σ)2, where X is the forced trend 318 
and σ is the standard deviation of trends14. If Nmin exceeds the number of ensembles in CESM-LE (Nensembles 319 
= 32), the forced trend cannot be identified with 95% confidence. Time of Emergence (ToE) is the first 320 
year in which the signal-to-noise ratio (S/N) exceeds a threshold value of 2, where the signal is the forced 321 
trend and the noise is the ensemble standard deviation29. For efficiency of computation and presentation, 322 
S/N ratios are calculated at 5-year intervals (i.e. 1990-1995, 1990-2000, 1990-2005, etc.). S/N must remain 323 
greater than 2 for all subsequent years.    324 

Model comparisons to observations. To assess the representation of internal variability in CESM-LE, 325 
Extended Data Table 1 compares CESM-LE modeled to observed variability in annual mean pCO2 and 326 
CO2 flux for 1982-2011, and Extended Data Table 2 compares trends over the same period.  pCO2 data are 327 
from the Surface Ocean CO2 Atlas (SOCATv2)33 averaged to monthly means at 1x1 degree resolution. 328 
CESM-LE members are each sampled in pCO2 to reflect the data density available in SOCATv2. A 329 
background mean climatology4 is removed at 1x1 degree resolution in order to address the potential of 330 
spatial aliasing when averaging to biome-scale10,34,35. An area-weighted average is then used to arrive at 331 
biome scale annual means, and the 30-year trend is removed before calculating the standard deviation.   For 332 
the CO2 flux, we utilize monthly 1x1 degree resolution flux estimates that have full spatial and temporal 333 
coverage over the period 1982-201128. These estimates are based on the same pCO2 dataset (SOCATv2). 334 
With the full global coverage of the CO2 flux product, there is no need to sample or to remove a 335 
background climatology from CESM-LE prior to biome averaging. Otherwise, the same processing is 336 
employed as for pCO2. The uncertainty reported in Extended Data Table 1 is one standard deviation of the 337 
variability represented by the 32 CESM-LE members for each variable. There is insufficient data to make 338 
an independent uncertainty estimate with respect to variability from the observations. In Extended Data 339 
Table 2, linear trends in observed annual mean pCO2 and CESM-LE pCO2, sampled as these observations, 340 



are compared. Sampling as the observations allows for a direct model to observation comparison in spite of 341 
the fact that the sparse data coverage may lead to inaccurate observed estimates of annual mean pCO2 for 342 
some biomes in some years. As in Extended Data Table 1, since the CO2 flux product offers full coverage 343 
in space and time, there is no need for sampling. 344 

Within the uncertainty, modeled pCO2 variance is correct in seven of the biomes, underestimated in 5 345 
biomes and overestimated in 3 biomes (Extended Data Table 1). However, in two of the three biomes 346 
where pCO2 variability is overestimated by the model (SO STSS, SO SPSS), comparison to the CO2 flux 347 
product suggests the model underestimates variability. In the third (NP STPS), the flux product comparison 348 
indicates that model appropriately simulates variability. Conversely, in the biomes where pCO2 variability 349 
is underestimated, the CO2 flux product comparison indicates either variability consistent with observations 350 
(NA STSS, EQ Atl), too high (NP STSS), or too low (NA SPSS, SA STPS). Similarly, in the biomes where 351 
pCO2 variability is consistent with the observations, the CO2 flux comparison indicates overestimation by 352 
the model (East EQ Pac, West EQ Pac, IND STPS), underestimation (NP SPSS, SO ICE), or consistency 353 
(SP STPS).  354 

Modeled trends in pCO2 and CO2 flux (Extended Data Table 2) are largely consistent with observed trends, 355 
given the uncertainty. In one biome (West EQ Pac), the trend in pCO2 in the model is overestimated, 356 
though in this biome the CO2 flux trend is consistent with the observed estimates. In three biomes (NP 357 
STPS, East EQ Pac, IND STPS), the flux trend is too large, and in one (SO SPSS), it is too small. However, 358 
in all four of these biomes, the pCO2 trends are consistent with the observed estimates. There is no clear 359 
relationship between over- and underestimation of trends and over- and underestimation of variability 360 
(Extended Data Table 1). 361 

In the CESM-LE, pCO2 variability and trends dominantly control CO2 flux variability and trends21. Thus, 362 
the fact that these comparisons for pCO2 and CO2 flux variability and trends differ significantly suggests 363 
that there is additional, unquantified uncertainty driven by the sparse sampling for pCO2 and assumptions 364 
made in the development of the flux product28. That CESM-LE falls clearly within the range of observed 365 
pCO2 and estimated CO2 flux variability and trends indicates that the model’s representation of the carbon 366 



cycle is, on the whole, consistent with our current observational understanding. More observations are 367 
needed to better constrain internal variability and trends in the surface ocean carbon cycle. 368 

Forced trends in the CMIP5 ensemble. Twelve CMIP5 earth system models are included in the analysis 369 
in addition to the CESM-LE for the historical period. The included CMIP5 models are those models that 370 
report CO2 flux at monthly timescales for a historical simulation through 2005 and with the RCP8.5 371 
scenario for 2006-2100; see Extended Data Table 3 for included models. The CESM1-BGC model included 372 
in the CMIP5 model suite is a predecessor to the CESM-LE.  373 

Due to the combined effect of a smaller number of ensemble members for CMIP5 and the larger variability 374 
across these ensembles (Extended Data Fig 2d-f), due in part to structural differences29, the forced trend in 375 
CO2 flux cannot be identified from CMIP5 across in most of the global oceans, even for the timeframe 376 
1990-2089 (Extended Data Fig 2a-c).  Where the forced trend from CMIP5 is discernable, primarily in the 377 
equatorial Pacific and Southern Ocean, it is of the same sign as CESM-LE (increasing uptake) but of 378 
weaker magnitude. 379 

Data sources. Surface Ocean CO2 Atlas (SOCAT v2) pCO2 (Ref 33, www.socat.info/access.html). CO2 380 
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For Extended_pg1.jpg 440 

Extended Data Figure 1. Comparison of 1982-2011 mean CO2 flux (molC/m2/yr). a 441 

Data-based climatology (ref 28), b CESM large ensemble 32-member mean, and c mean 442 

of 12 CMIP5 models. 443 

 444 
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Extended Data Figure 2. Forced trends and variability of CMIP5 trends in sea-to-446 

air CO2 flux (molC/m2/yr2). Forced trends for a 1990-1999, b 1990-2019 and c 1990-447 

2089. Gray is where the forced trend cannot be distinguished from the variability with 448 

95% confidence (Methods). CO2 flux trend standard deviations, indicating the impact of 449 

variability on CO2 flux trends, for d 1990-1999, e 1990-2019, f 1990-2089. Negative 450 

indicates increasing ocean carbon uptake. 451 

 452 
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Extended Data Table 1 | Comparison of observed and modeled pCO2 and CO2 flux 454 

variability for 1982-2011 455 

FOOTNOTE to Extended Data Table 1: Variability is the standard deviation of the 456 

annual means from 1982-2011. Uncertainty of the variability is the standard deviation of 457 

the variability estimates for each of the 32 CESM-LE ensemble members. Underline 458 

indicates that the modeled variability is lower than the observed variability, and italics 459 



indicates that modeled variability is higher than observed variability, in both cases taking 460 

into account the model-estimated uncertainty. pCO2 data is from ref 33, CO2 flux data 461 

from ref 28. 462 

 463 
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Extended Data Table 2 | Comparison of observed and modeled pCO2 and CO2 465 

flux trends for 1982-2011 466 

FOOTNOTE to Extended Data Table 2: Underline indicates that the modeled trend is 467 

lower than the observed trend, and italics indicate that modeled trend is higher than 468 

observed trend, given the uncertainty (95% trend confidence intervals).  Trends are based 469 

on annual means. pCO2 data is from ref 33, CO2 flux data from ref 28. 470 

 471 
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Extended Data Table 3 | CMIP5 models used 473 

 474 
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Extended Data Table 4 | Biome long names (ref 34) and mean Time of Emergence 476 
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Supplementary Methods 
 
To assess the representation of internal variability in CESM-LE, Supplementary Table 1 
compares CESM-LE modeled to observed standard deviations in 1982-2011 annual mean 
pCO2 and CO2 flux.  The pCO2 data are from the SOCATv2 dataset31 averaged to 
monthly means at 1x1 degree resolution. The CESM LE members are each sampled in 
pCO2 to reflect the data density available in SOCATv2. A background mean climatology4 

is removed at 1x1 degree resolution in order to address the potential of spatial aliasing 
when averaging to biome-scale means12,32,33. The datasets are then area-weighted average 
to biome scale annual means. The 30-year timeseries for each biome is detrended before 
calculating a standard deviation over the annual means.   
 
For the CO2 flux, we utilize monthly 1x1 degree resolution flux estimates that have full 
spatial and temporal coverage over the period 1982-2011 from (Ref 26, available at 
http://cdiac.esd.ornl.gov/oceans/SPCO2_1982_2011_ETH_SOM_FFN.html). These 
estimates are based on the same dataset used for the pCO2 calculations (SOCATv2). With 
the full global coverage of the CO2 flux product, there is no need to sample or to remove 
a background climatology from the CESM LE members prior to biome averaging and 
calculation of the flux standard deviation calculation. Otherwise, the same processing 
(area-weighted average to biome scale annual means, detrend, calculate annual standard 
deviation) is employed. 
 
The uncertainty reported in Table S1 for each variable and each biome is one standard 
deviation of the variability represented by the 32 CESM-LE members for the respective 
variable (pCO2 or CO2 flux). There is insufficient data to make an independent 
uncertainty estimate from the observations.  
 
Comparison and interpretation of observations and model internal variability is presented 
in Supplementary Discussion.  
 

 
 
 
 
 

 



Supplementary Table 1: Annual mean pCO2 and CO2 Flux standard deviations and uncertainty 
in the standard deviations for 1982-2011. Blue shading indicates that the modeled variability is 
lower than the observed variability, and red shading indicates that modeled variability is higher than 
observed variability, in both cases taking into account the uncertainty bounds for both the modeled 
and observed estimates.  
 

Biome 

SOCAT 
pCO2 std 
(µatm) 

CESM-LE 
mean std 
(µatm) 

Uncertainty
(µatm) 

Data-based 
Flux std 

(mol/m2/yr) 

CESM-LE 
mean std 

(mol/m2/yr) 
Uncertainty 
(mol/m2/yr) 

NP SPSS 7.9 10.2 2.0 0.42 0.13 0.02 

NP STSS 7.3 5.9 0.4 0.09 0.13 0.01 

NP STPS 4.2 5.4 0.5 0.05 0.07 0.01 

East EQ Pac 6.3 5.9 0.7 0.07 0.15 0.02 

West EQ Pac 13.0 12.6 2.0 0.23 0.36 0.05 

SP STPS 8.3 6.4 1.0 0.07 0.08 0.01 

NA SPSS 22.4 19.7 1.0 0.25 0.12 0.01 

NA STSS 7.4 5.2 0.6 0.10 0.10 0.02 

NA STPS 5.2 5.6 0.4 0.09 0.06 0.01 

EQ Atl 8.8 6.5 0.6 0.07 0.06 0.01 

SA STPS 9.7 8.5 0.5 0.10 0.06 0.007 

IND STPS 11.1 10.6 1.0 0.04 0.10 0.01 

SO STSS 5.9 12.4 2.0 0.14 0.08 0.01 

SO SPSS 4.8 12.8 2.0 0.22 0.11 0.01 

SO ICE 15.4 17.0 2.0 0.22 0.05 0.005 
 
  



Supplementary Table 2: Twelve CMIP5 models included in analysis  
 
Modeling Group Model Name Citation 
Beijing Climate Center (BCC), China 
Meteorological Administration 

BCC-CSM1.1m Wu et al. 2012 
 

Beijing Normal University (BNU), China 
College of Global Change and Earth System  
Science 

BNU-ESM Ji et al. 2014 

Canadian Centre for Climate Modeling and 
Analysis, Victoria, BC 

CanESM2 Chylek et al. 2011 
 

National Center for Atmospheric Research, 
Boulder, CO, USA 

CESM1-BGC Lindsay et al. 2014 

Centro Euro-Mediterraneo sui Cambiamenti 
Climatici, Lecce, Italy 

CMCC-ESM Fogli et al. 2009 

NOAA Geophysical Fluid Dynamics Lab GFDL-ESM2M Dunne et al. 2012 

Met Office Hadley Centre HadGEM2 Collins et al. 2011 

Institut Pierre-Simon Laplace,  
IPSL Climate Modelling Centre, France 

IPSL-CM5-MR Dufresne et al. 2013 

Institute for Numerical Mathematics INM-CM4 Volodin et al. 2010  

Japan Agency for Marine-Earth Science and 
Technology, Atmosphere and Ocean Research 
Institute, The University of Tokyo 

MIROC-ESM Watanabe et al. 2011  

Max-Planck-Institute for Meteorology MPI-ESM-LR Giorgetta et al. 2012a,b 

Norwegian Climate Centre NorESM1-ME Tjiputra et al. 2012 

 
 
 
 
Supplementary Table 3: Biome acronyms and long names (ref 32) 
 
Biome acronym Biome name 
ICE Marginal sea ice biome 
SPSS Subpolar seasonally stratified biome 
STSS Subtropical seasonally stratified biome 
STPS Subtropical permanently stratified biome 
EQU Equatorial biome 
 
 
  



Supplementary Discussion 
 
Assessement of modeled carbon cycle variability: Variability in CESM-LE modeled 
annual mean pCO2 and CO2 fluxes are compared to pCO2 observations (Supplementary 
Table 1, left 3 columns) and to a CO2 flux product derived from these same observations 
(Supplementary Table 1, right 3 columns). Within the uncertainty, modeled pCO2 
variance is correct in seven of the biomes, underestimated in 5 biomes and overestimated 
in 3 biomes.  
 
However, in two of the three biomes where pCO2 variability is overestimated by the 
model (SO STSS, SO SPSS), comparison to the CO2 flux product suggests the model 
underestimates variability. In the third (NP STPS), the flux product comparison indicates 
that model appropriately simulates variability. Conversely, in the biomes where pCO2 
variability is underestimated, the CO2 flux product comparison indicates either variability 
consistent with observations (NA STSS, EQ Atl), too high (NP STSS), or too low (NA 
SPSS, SA STPS). Similarly, in the biomes where pCO2 variability is consistent with the 
observations, the CO2 flux comparison indicates overestimation by the model (East Eq 
Pac, West Eq Pac, IND STPS), underestimation (NP SPSS, SO ICE), or consistency (SP 
STPS).  
 
In the CESM-LE, pCO2 variability is the dominant control on CO2 flux variability20. 
Thus, the fact that these comparisons for pCO2 and CO2 flux variability differ 
significantly suggests that there is additional, unquantified uncertainty driven by the 
sparse sampling for pCO2 and assumptions made in the development of the flux 
product26. That CESM-LE falls clearly within the range of observed pCO2 and estimated 
CO2 flux variability indicates that its modeled variability is, on the whole, consistent with 
our current observational understanding. More observations are needed to better constrain 
internal variability in the surface ocean carbon cycle. 
 
Forced trends in the CMIP5 ensemble: Due to the combined effect of a smaller number 
of ensemble members for CMIP5 and the larger variability across these ensembles 
(Extended Data Fig 2d-f), due in part to structural differences27, the forced trend in CO2 
flux cannot be identified from CMIP5 across in most of the global oceans, even for the 
timeframe 1990-2089 (Extended Data Fig 2a-c).  Where the forced trend from CMIP5 is 
discernable, primarily in the equatorial Pacific and Southern Ocean, it is of the same sign 
as CESM-LE (increasing uptake) but of weaker magnitude.  
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Figure Captions: 
 
Extended Data Figure 1. Comparison of 1982-2011 mean CO2 flux (molC/m2/yr): a Data-
based climatology, (Landschützer et al. 2014), b CESM large ensemble 32-member 
mean, and c mean of 12 CMIP5 models. 

Extended Data Figure 2. Forced trends and internal variability of CMIP5 trends in sea-to-
air CO2 flux (molC/m2/yr2). Forced trends for a 1990-1999, b 1990-2019 and c 1990-
2089. Gray is where the forced trend cannot be distinguished from the variability with 
95% confidence (Methods). CO2 flux trend standard deviations, indicating the impact of 
internal variability on CO2 flux trends, for d 1990-1999, e 1990-2019, f 1990-2089. 
Negative indicates increasing ocean carbon uptake. 
!



Landschutzer flux climatology

Extended Data Figure 1
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