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The LFM-II Time Integration Method

1. Introduction

The improvement of numerical weather prediction through the reduction of

space-derivative truncation error is an important objective. The most

straightforward approach to obtaining improved accuracy is through the

reduction of the horizontal grid mesh. Reduction of the horizontal

grid mesh requires a related reduction of the integration time step to

maintain computational stability.

The LFM-II model has been designed to use a horizontal grid interval just

two-thirds the size of the value used in the current LFM model. If the

numerical method for marching the calculation forward in time was left

unchanged from the method used in the current LFM model (cf. Gerrity and

Newell, 1976), the time step would have to be reduced to two-thirds of the

presently employed value. Since the area covered by the LFM-II model is

identical to the area currently covered by the LFM model, the amount of

computing required by the LFM-II could have increased to (3/2)3, i.e., by

approximately the factor 3.4, of the time currently required.

In order to reduce the requirement for additional computing, it was

decided to change the time-marching procedure. The new method involves

the use of a weighted time average of the pressure gradient in the momentum

equations, and the use of a time filter on the dependent variables. A

linear analysis of the new method, omitting advection and diffusion terms,

has been presented by Brown and Campana, 1977. The influence of advection

was analyzed by Schoenstadt and Williams (1976). In this note, we consider

the impact of the incorporation of spatial diffusion.
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2. The Model Equations

We consider the following model equations

au _ ~atU - C ic + K-2 (la)
c +K-~x 2,

tP=- axu 2
at= c a + K a , (lb)

with c and K both positive constants. The dependent variables u and p are

assumed to be superpositions of trigonometric functions of the space

coordinate. We specify the wave number by k.

The time integration method of the LFM-II model is applied to equations

(1). The spatial derivatives are assumed to be centered, second order

accurate approximations. We define the following parameters:

a the pressure gradient average weight,

8 the Robert time filter weight,

a = 1 - 2a,

= 1 -2,

_ KAt 2(1 - cos kAx),
(Ax)2

cat
v = A (sin kAx)

Ax

a = 1 - 2a

The numerical approximation is written as the system of equations,

n1= f 'tn-1t _ 2iv(a pn+l + a pn- + & pn) (2a)

An+1 pn+l = a pn-1 _ 2iv(un), (2b)

n = 8 pn-1 + pn+l + n, (2c)

un = S un - I + 8 ~n+l + ~ n, (2d)



With o = 1 (i.e., a = 0), this system is equivalent to that analyzed

by Brown and Campana (1977).

Through algebraic manipulation of the system (2), which holds for all

n, greater than n = 1, one may obtain a set of two equations in u and p:

A1 un+l + A2 un + A3 un-1 + i(A4 pn+l+ A 5 pn + A6 pn-1) = 0.

i(B un +l + B un + B un- l) + (B pn+ l + B pn + B pn-1) = 0O
2 3 4 5 6

(3a)

(3b)

The parameters A and B are related to a 8 a and v via the equations (4)

below.

A1 =

A2 =

A3 =

A4 =

A =
5

A -
6

B 1 =

B2 =

B3 =

B4 =

B5 =

B 6 =

By requiri

4v2 (a.-) - (1 + &)-(a 2 + 4v2 ~(a-_))

2vaB

2v[8(a-$)(l+a) + aS]

2v,(c-8)(1+a)

2v$
A 2

2rIB - 82 ( 1 +o') ]

- 2v8~ (1+o)

,, 4v2a i

- '[(1+) +'4v2&W]

- [a 2 + 4V2R(aS)]

ing the dependent variables to depend upon n via

(Un = An o

pn Po

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

(4i)

(4j)

(4k)

(40)

(5)
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one obtains the characteristic polynomial in X

(A1A
2 + A2X + A3)(B4 X2 + B5A + B6)

+ (B1X2 + B2X + B3)(A4X
2 + A5X + A6) = 0

The coefficient of X4 is

o =A 1B4 + A4B = 2 0 4v24 (a-_)

Provided that co is not zero we may express the polynomial (6) as

t4 + c 1X
3 + c2 1

2 + c3 X + c4 = 0.

(6)

(7)

(8)

The coefficients can be expressed,

c = 4v2a- 2(l+')B, (9A)

c2 = Co1{$2[(1+`)2 2.-2aS + 4v2 (=-a)]

(9B)
- 4v2+(a-)[(1+-)22 + (3-l) - (3a-1) + 4v2(a-a)J} 

c3 = 2a(1+a)8 + 4v2 (a-8-aS), (9C)

c4 = C2A2 _ 4v 2 a(a-_). (9D)

When no space-diffusion-term is used, a = 1, and the coefficients (9)

reduce to the form given as eq. (17) by Brown and Campana.

The stability of the LFM-II time integration method (including space

smoothing) can be estimated by solving eq. (8) for the roots of the

polynomial. Since the coefficients c are all real, one may develop the

roots of (8) by the use of radicals. This will be done in section (3).

Alternatively, one may solve for the roots numerically using a set of

values for the parameters a, 8, a and v.) This is done in section (4).
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3. Solution by Radicals

Given the equation

4 + c1 X
3 + c2 X2 + c3 + c4

with real coefficients, one may use the transformation

x= X + ¼c1

to reduce (10) to the form,

x4 + p x2 + qx + r = 0

2
with p = c2 - 3 c/8 

q = c3 - c.(cz/4) 2 - cip/2

r = c4 - (cl/4)2[(cl/4)2 + p] - clq/4

If q = 0, one may sblve (11) directly

x2 = P +1½(p2 4r)½
2

If p2 _ 4r is non-negative,

= + [ P2+ ½(p2 - 4r) ]2
Xl,2 - 2

x = + [_ 2 - (p2 - 4r) ]
3,4

If p2 _ 4r is negative, r > 0 and

x. = - P + 2(4r - p2) 
2 - 2

- tan- _ 2

(10)

(11)

(12A)

(12B)

(12C)

(13)

(14A)

(14B)

(15)

(16A)Let
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One may then solve the two forms of (15),

x2 = r e1P x2 = r e'

x = r½ e i = r2 e-ihi (17A,B)
3

X2 =r½ e ( B+r) x4 = r 2 e i (17C,D)
2 4

Thus if q = 0 and p2 _ 4r > 0, the roots are

Al = _ ¼c1 + [_ P + (p2
- 4r)2] 2 (18A)

2

A2 = _ ¼c1 [- p + 2(p2 _ 4r)½] (18B)

2

A3 = - -4Cl + [_7 2(p2 -4r)] ..... (18C)

A-4 = - 1c- 2 ~(p2 4r)2]2...... (18D)

If q = 0 and p 2 _ 4r < 0, (r>O), then the roots are,

At,..= -¼ c1 + r e (19A)

l. = - ¼c1 + r2 e (12+T) (19B)
2

A = - c1 + r2 e-iP (19C)
3 

A = -¼c 1 + r e i(½1+r) (19D)

If q # 0, one may find u,u areal number greater than p, such that

eq. (11) may be re-expressed as

u u(x2 + Ax + - B)(x2 -Ax+ + B) 0 (20)

with A = (u- p) , (21A)

B = q/(2A). (21B)
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The parameter u must be selected so that it satisfies the cubic,

f(u) = (u - p)(u2 - 4r) - q2 = 0 (22)

Clearly, for q nonzero, f(u) is negative when u = p and becomes positive

for sufficiently large values of u; consequently, a root exists for some

u > p.

Since the coefficients of (22) are real, one may find at least one

real root of (22). By use of the transformation,

y = u - 1 (23)

eq. (22) becomes

y 3 + sy = t (24)

with s =- [4r + 3-2] (25A)

and t = q2 - 4rp - ( )3 -t . (25B)

The further transformation

y sl z (26)

yields

4z3 + 3 s z = C (27)

with C = ( 3/2 (28)

Equation (27) is amenable to solution through recourse to specific

trigonometric identies, viz.,

sinh 30 = 4(sinh e)3 + 3(sinh 0), (29A)

cosh 30 = 4(cosh 0)3 - 3(cosh 0), (29B)

cos 30 = 4(cos 0)53 - 3(cos O). (29C)
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The appropriate choice among eqs. (29) depends upon the sign of s

and the magnitude of C.

If s > 0, (29A) is appropriate.

If s > 0, and ICI < 1, one uses (29C), otherwise (29B) is appropriate.

Should s = 0, the solution of (27) is immediate.

Having obtained the root for m, back-substitution yields a real root ul

of (22). If the u root exceeds p, it may be used directly in (20) and (21).

Should the root obtained for q, not exceed p, one may divide the linear

factor (u-u1) out of (22) and find the remaining two necessarily real roots

of (22). One of these must exceed p, as we have shown earlier, and it

may be used in (20) and (21).

4. Numerical Evaluation of the Roots

As suggested by the complexity of the analytic method for extracting

the roots of the characteristic polynomial, outlined in section 3, the

most tractable approach to studying the stability of the LFM-II integration

system is through numerical evaluation of the roots. Reasonable choices

of the parameters of the problem are suggested by the experience previously

gained with the component parts of the new integration method.

With respect to the use of diffusion in the LFM, we foundl that the

stability criterion,

At < / ° 424 sec. (30)

agreed well with empirical experience, In developing (30) we used the

value v2 (120 km) for the grid interval Ax. The Vb appears because of the

t'Office Note 129.
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lattice structure of the semi-momentum difference system. The 120 km

parameter represents the minimum grid interval (at about 15°N) of the

LFM model (Ax = 190.5 km at 60°N on the map projection). The phase speed

of the fastest wave was set at 400 m sec -1, which is a slightly conservative

choice that involves the addition of a mean flow (about 100 m sec- 1) to the

gravity wave speed (about 300 m sec-1).

The value of the parameter a used in the LFM (8 = .1 in Office Note 129)

is approximately .84 for kAx = i. The equivalent diffusion coefficient K

would have to be a function of wave number. For kAx = f/2 a reasonable

estimate is 2.5 x 105m2sec- 1, but at kAx = f the coefficient would be an

order of magnitude larger. We may compromise with K equal to 5 x 105m2sec- 1.

The use of the Robert time filter was analyzed2 for a wave equation

with true frequency w. We found that a leapfrog scheme must use a time

step maximum set by the parameter , 3 viz.,

v = wAt (31)

For a diffusion equation, the Robert time filter was found4 to pose no

greater restriction on the time step than is ordinarily the case. For a

choice of 8 = .025, a = .95 and one finds v < .98,which is not a serious

restriction.

2 Office Note 62

3In the cited office note, ~ was denoted by a.

4 0ffice Note 60
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When diffusion was not involved, Brown and Campana (op. cit.) found

that an optimal choice of a could be made for a given value of 8, viz.,

aopt = (82+ l)(S + 1)/4. (32)

Thus for the LFM we might expect the maximum time step allowed to be

At = (.98) /i;. (424) secs (33)max

if a is zero. If by the selection of an optimal a value from (32) we

can obtain the suggested sixty percent increase in At*, then the LFM-II

method applied to the LFM should be stable with

At = 1.6 Atmax = 609 secs. (34)

For the LFM-II grid, which is 2/3 the size of the LFM's grid interval,

the factor 424 secs is reduced to 283 secs, and thus one could hope to

obtain stability with

At = 1.6 [.98 V2.8 283] = 407 secs. (35)

With this as background, we may now discuss the results of numerical

solutions of this characteristic polynomial.

4.1 Interpretation of Numerical Evaluation of the Roots

Our interest centers about the stability of the integration method

rather than details of the linear solution--this is the case because the

accuracy of the numerical weather predictions depends upon accurate non-

linear effect simulation, not upon the linear effects. Consequently, we

*cf. p. 9 of Brown and Campana (op.cit.)
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will examine only the root with maximum absolute value as the parameters

of the problem are varied. The roots of the characteristic polynomial

depend upon four nondimensional numbers: a, a, a, and v. Our specific

interest lies in the dependence upon a (or a).

The simplest course of action was to evaluate the largest (magnitude)

root for fixed a and a, as . and v vary. We selected three values of B

and calculated a from a using the formula suggested by Brown and Campana.

The three values of a are 0.025, 0.050, and 0.075. The results of these

computations are shown in figures 1, 2, and 3.

The results displayed in Figures 1, 2, and 3 show that the presence of

the spatial diffusion term restricts the maximum value of v for which the

integration will be stable. There are only small differences among the

results as B and a vary.

Figure 4 is a diagram showing the maximum root for a = .25, 8 = 0,

Figure 5 is a similar diagram for a = 0, 8 = .025.

In Figure 6 we bring together in one diagram the neutral (lXj = 1)

curves for several choices of a and a, labeled A, B, C, and D.

Comparison of curves A and B shows that the use of the time filter

( = .025) reduces the maximum value of v below unity for a = 1 (no diffusion).

A

As a decreases (larger diffusion) the time filter's effect is diminished,

until with a • .7, we find its effect is to permit a larger value of v.

Curves C and D are constructed for a ,value Qf approximately .25.

Over the entire range of a, these curves indicate that appreciably greater

values of v may be used stably. These curves also show that for small
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diffusion ( = .9), the use of the time filter and the related optimal

a value permits larger values of v. Over the bulk of the range of a

the difference between the C and D curves is nil.

4.2 Implications

We turn now to the implications of the analysis for the practical

use of the method in the LFM-II. The basic question is, how large a

time step may be used for specific choices of the space diffusion coefficient

K?

Let's recall the definitions of a and v.

= 1 (Ax)2 (1 - cos kAx)

cAt

= Ax sin kAx .

The parameter kAx ranges between 0 and w. The factor (1 - cos kAx) takes

its largest value when kAx is f. The factor, sin kAx, takes its largest

value when kAx is r/2.

In the LFM-II model the smallest value of Ax is 80 km, and since the

vertical structure is similar to the 6L PE, the external gravity wave

(Lamb wave) will have a phase speed c of 330 m sec- 1 for the U.S. Standard

Atmosphere.*

*cf. NMC Office Note 74.
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The diffusion coefficient K has been assigned values between 105 and

6.105 m2sec- 1, and experimental runs have been performed with At ranging over

360 and 400 secs. In these runs B = .075 and a = .2703.

Since the truncation error factors vary between diffusion and wave

motion terms, we tabulate below the values of a and v for various values

of kAx when different At and K values are used.

Cas Asec K. c,- Am;
Case At sec K m2 c m Ax m

sec sec

A 360 105 330 8.104

B 360 6.105 330 8.104

C 372 105 330 8.104

D 372 6.105 330 8.104

E 400 105 330 8.104

F 400 6.105 330 8.104

v values

Case IkAx .5w .6 .7 .8 .97_

A 1.48 1.41 1.20 .87 .46

B 1.48 1.41 1.20 .87 .46

C 1.53 1.46 1.24 .90 .47

D 1.53* 1.46 1.24 .90 .47

E 1.65 1.57 1.33 .97 .51

F 1.65* 1.57* 1.33 .97 .51
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a values

The points (a,v) for the several cases tabulated have been checked with

figure 3. The asterisks in the tables show those instances in which the

diagram indicates numerical instability.

We conclude that for K = 6.106 the time step At must be less than

372 secs. For K = 105, the time step may be taken as large as 400 secs.

5.0 Summary

We have shown that the numerical method proposed for use in the LFM-II

model will allow the use of a 'relatively longer time step than the conventional

leapfrog method. We also found that the includion of a space diffusion term

restricts the size of the time step. For a choice of K = 6.105m2sec- 1, one

would have to use a time step less than 372 secs in order to satisfy the

constraint developed in this analysis.

Case kAx .5w .6w .7w .8w .97

A .978 .971 .964 . .959 .956

B .865 .823 .786 .756 / .737

C .977 .970 .963 .958 .955

D .860* .817 .778 .748 .728

E .975 .967 .960 .955 .951

F .850* .804* .762 .729 .707
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It is fairly clear that the precise form of the diffusion term is of

some importance in optimizing the time step. It would be instructive to

consider the result of using a nonlinear diffusion term. Very large

diffusion (small a) is likely to be permitted for small wave lengths (v small).

It should also be noted that more accurate estimation of v, say through

the use of fourth order differences, will require a more selective diffusion

operator.

6.0 References

Schoenstadt, A. L., and R. T. Williams, 1976: The Computational

Stability Properties of the Shuman Pressure Gradient Averaging

Technique. Journal of Computational Physics, 21, 166-177.

Brown, J. A., and K. A. Campana, 1977: An Economical Time-Differencing

System for Numerical Weather Prediction. (Manuscript submitted

for publication.) NMC

Gerrity, J. P., and J. E. Newell, 1976: A Note on the LFM Time

Integration, NMC Office Note 129.

Gerrity, J. P., and S. H. Scolnik, 1971: Some Comments on Robert's

Time Filter for Time Integration, NMC Office Note 62.

Gerrity, J. P., and S. H. Scolnik, 1971: Further Properties of Time

Averaging as Applied to Wave Type and Damping Type Equations,

NMC Office Note 60.


