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HOUGH FUNCTIONS TO SPHERICAL HARMONICS DATA TRANSFORMATION

Joseph Sela, Development Division, National Meteorological Center, NWS, NOAA

ABSTRACT

The NMC global wind height and relative humidity analysis using

Hough functions is transformed into an expansion of those fields

in spherical harmonics. The computer program uses eigenfrequencies

computed by Flattery to generate tidal eigenfunction for twenty-

four zonal modes. The resulting spherical harmonic expansion has

the same zonal resolution and a meridional truncation of n = 55.

1. Introduction

The increasing interest in spectral methods as representation tools in

* numerical weather prediction resulting from the great increase in computing

capacities of new computer systems, has brought the problem of obtaining

data for modeling purposes to the forefront. The purpose of this paper is

to direct the attention of modelers to a comprehensive source of such data.

At the National Meteorological Center, two analysis schemes are avail-

able for initial data. The traditional grid point analysis and a relatively

new spectral analysis developed by Flattery using Hough functions. It is

possible, of course, to use either scheme to obtain spherical harmonic co-

efficients but Flattery's method allows a much more compact and elegant

transformation, being itself a spectral technique.
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The data available from Flattery's procedure consists of wind velocity

and heights of isobaric surfaces at 12 atmospheric levels as well as

humidity for the six lower levels. The coverage is spherical and the data

are available twice daily.

The understanding of the representational aspects using Hough functions

is essential to the application described in this paper. For the detailed

analysis of the problem, Flattery's original work should be consulted. For

our purposes, an outline will be presented.

2. Formulation of the Method

The eigenvalue problem considered by Flattery investigates the free

modes of flow on a rotating sphere when the fluid around it is perturbed

from a state of no motion. In order to quantitatively describe the possible

free modes, the full set of hydrodynamic equations are linearized and a

~* separable solution is introduced:

(u*, v*)cos = ct(u, -iv)ei( t+ dt)

i(9Q2+dt) 
w*= c2 we (1)

i(QA+ot)
z* c3 z e

Here u*,, v*,, w* are the perturbations of the velocity components in

=dp*
pressure coordinates, w* = dt, and z* is the perturbation of the height

of an isobaric surface. u, v, w and z are the corresponding non-

dimensional scaled variables where cl, c2, c3 are the nondimensionalizing

constants. In the exponential, I and X are the azimuthal wave number and

longitude, while a and t are the frequency and time. The multiplication

of the unscaled horizontal velocity by cosine latitude is necessary in

order to render the scaled velocity regular at the poles.
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When this form of a solution is introduced into the equations of the

horizontal velocity and the tidal potential is neglected, a wind height

relationship is obtained:

fu + Pv = - kz (2)

fv + Pu = - ('-p2)aa

here p = sin, f = 2 and Q is the angular frequency of the Earth's

rotation. When the velocity components are introduced into the mass and

energy conservation equations, subject to the hydrostatic equation and

the gas law and in the absence of external heating, we obtain

-f Z~~ =A2 p £(f 2 +p2) = ->)~ f m2'Z =ap(3)

PGao dinOs = - 4a°2d4aZQ2 dp

where PG is the surface pressure, ao 80 are the unscaled specific volume

and potential temperature, and a is the radius of the Earth.

In equation (3), the left hand side involves only meridional

operations while the right hand side is a pressure-dependent operator.

If we further assume a separation of the form

(z, u, v) = (H(p), U(p), V(i)) A(p) (4)

and a separation parameter -S, we may write the equation describing the

longitudinal dependence of H as Laplace's tidal equation:

d ( 2) dH - (f2+ 2 ) 2 -H = 0 (5)

d14~ (~~72 dP-.J If 9-T-T) 2 + (1-P2)(f ~2-)

The separation parameter should in principle be determined from the

vertical eigenvalue problem. Since we are interested primarily in the

horizontal structure of the perturbations, the value of 8 may be assigned.

3



Based on the consideration of a homogeneous atmosphere, a meaningful value

of 8 can be estimated.

Considering equation (5), we observe that for .a specified value of B

the nondimensional frequency f is still undetermined. We now define the

Hough functions as those functions H which are regular at the poles. The

corresponding values of f will be referred to as their eigenfrequencies.

On the assumption that these eigenfunctions can be computed, the

problem of obtaining the vertical functions H(p) still remains. The pro-

cedure followed by Flattery consists of an application of vertical empirical

orthogonal functions, computed for every analysis.

The numerical solution of equation (5) consists of solving for those

functions H which are regular at the poles, together with their corresponding

eigenfrequencies. While a direct integration of (5) is possible (the

singularities are apparent only), a much more elegant method--introduced by

Hough and applied by Flattery--can be used. Only the highlights of this

method will be described.

The essence of Hough's approach consists of an application of the

theorem by Helmholtz concerning the specification of a vector by its

divergent and rotational parts. If X and i are the potential and stream

functions, then the assumed form of the separable solution results in the

two equations

U = X - (1-"2)d (6)
d~p

V = (l_-2)2X_ ,-
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Returning to the horizontal momentum equations, they become

fu + Pv + kH = 0

(7)
fv + Pu + (1-p2)dH = 0

and the continuity equation becomes:

2 u dv + fH = 0 (8)
T~~~~~~~~~~~~~~2~ ~ ~ ~ ~ 81-~ 2 dB

If the expressions of u and v from equations (6) are introduced into

equations (7) and (8), the following equations can be obtained after some

manipulation

fV 2t + pV 2 X + (1-d2)dd -_ 94; = 0

(9)
- fV2X + pV2 + (1-p2)d4 - X = V2H

d-p

V2X = fBH

where: d d 2
V2 d(l-1 2) -1_(2 9)

The solutions of equation (9) proceeds by assuming the following

expansions
P~~~~~~~~~~~~

H = cZ pn-:Pn (i) (10)

X = E En '?':Pn '%-)n n U

S12;n-0-lP .n (n = _ nE;z p I

where pn (p) are the associated Legendre polynomials of order 9 and

degree n.

When equations (10)are introduced into (9) and the orthogonality of

the Legendre polynomials is invoked, the following relations among the co-

efficients are obtained:
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= n(n+l)= - fB En

(n~l)2R~ n 2 ~ 0 (11)(n+l)2 RnI Dnl - Mn Cn + n Rn+l Dn+l =0

(n+1l)2 Rnn Cn - Vn + n Rn+l Cn+l 0

where: (+) f 2 2

=_f, Mn n

At this point we distinguish between two types of solutions, those

that remain oscillatory when the Earth's rotation is removed (Q+0),

referred to as gravitational modes, while those that turn into steady

motion are termed rotational modes. In the analysis of atmospheric data,

only the rotational modes are included.

Equations(1l) can be manipulated in such a way that the coefficients

cn and Dn would be eliminated if we assume that the series (10) converge

and the two arbitrary constants required by the second order equations are

specified. The resulting expressions involve continued fractions and are

very suitable for machine calculations. The numerical solution given by

Flattery covers 576 functions: for each k(=1...24), 24 eigenfrequencies

were computed together with their eigen heights and winds; for the case

k=O, a special treatment is necessary; for this case and B>0, no Hough

functions exist, i.e., no solutions to Laplace's equation exist. However,

a set of functions can be found that satisfy the governing equations (7)

and (8). If we set k=f=0 in the above equations, we obtain

U = _ (1-p2) dHO (12)
B dB ' V = 0.

if we further specify:

Um0 = (1- 2) pm0 (13)Um =
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O
we can find Hm such that:

i: O
Hm = XcM3 Pi (14)

j O

It should be noted that in equation (13), care has been taken to

satisfy the boundary conditions of U.

In order to accomplish the transformation from Hough functions and wind

functions to the spherical harmonic domain, it is necessary to rewrite

equation (13) in the form of a series. This can be conveniently

accomplished by recursion relations between Legendre polynomials.

In summary, for each k (Z=0...24) 24 modes for each of the functions

HmUm , Vm are computed, totalling 1800 functions corresponding to one

eigenvalue 8. The functions Um, Vm are obtained from a substitution of

equations (10) into equations (6).

3. Application

The results of the Hough analysis are given through the expansion co-

efficients and the empirical orthogonal functions. We have

24 24 a

zm=l k=1Zklk

3 Q90 m. l~ cos.X +dbk sinZA)U Aj+.

uj = (Cmk cos + dm, k sinc)Umm j (15)

i [ [ (Ck cosX - dm k sinkX)Vm Ak
£k m k

where j=l...12 is the pressure level index, s. is the standard height of

jth level, A iare thep empirical orthogonal functions and H U Vm arem mm
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the height and wind eignefunctions. It should be mentioned that when

amk = Cm k and bmk = d k the wind height relation implied byam~k m,k k adbm,k m ,k'

equations (2) is satisfied. When the wind and height are computed by

different coefficients, different relative weights are assigned to them

during the analysis.

In order to express equations (15) in spherical harmonics, it is

possible to leave the vertical dependence in. As most modelers would

probably require isobaric data, the vertical index k will be first summed

out.

Let

am 'j = I am,k A k bb mk A 
k=l k=1

k'j 7 z k 7 k
Cm Cmk Aj k dm = m,k Ajk

k=l k=l

then equations (15) may be written

24 24
zj m=l (amk ' cosAx + bm 'sinXj)Hm + Sj

2.0= m=l

Uj = Z Z (Cm Jcos + dm 'j sinkX)Um

vj ' 2 3 (cm co5sk -dm sinmX)VZi = Z (CMmI m

The major part of this transformation resides in the

series

Hm : X Cn Pn
n=:

Um = Un Pn
n=k

V2. = X V 2 p2 .
Vm V pn= n

(16)

(17)

generation of the

(18)
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In generating these series, care must be taken to capture the even

%
odd relations between Hm and the wind functions. The missing upper limit

of summation merely indicates the variable length of these series. The

longest series ranges up to n=55 and gives a measure of the truncation

involved in the Hough functions analysis.

In practice, the generation of the coefficients in equations (18) is

performed for the even and odd Hough function separately. This enables a

computation of spherical harmonic coefficients of a given parity only. If

equations (18) are substituted into equations (17) and the even odd

character is identified, we complete the transformation:

24 12 (m cs bEm 55

24 ~~~~~~~55

|+ El3(am cos.S + bm t'sink) X cn ' pn

m d n ,mn
m=-O n=l n

24 55
= X E (a 'i cosQ, + an sinkA)pn

nn
%=O n=k

where

12 24

an = a a a' c ,m + c dnm
m--l m E1n

% ~~~~ 24 · '~~" ~~ = V b c ~~ ~,m +2 
=n = ,m E,n _bm, cd,n

Here the subscript E represents even functions while d represents odd

ones. Similar manipulation on u, v; and the relative humidity complete

the transformation.
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