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ABSTRACT

A nonparametric bivariate density estimation technique is developed
employing tensor product B-—splines. to provide a concise wave data summary.
Most of the existing nonparametric techniques involve a certain level of
subjectivity in the choice of smoothing parameters. A criterion based on
the least squares concept is proposed to remove the subjective choilce of
smoothing parameters. Numerical experiments, in which random variables are
generated from a known bivariate independent normal distribution and the
modified Longuet-Higgins distribution, show that the technique reproduces
the population density functions well. However, due to lack of the shape
preserving property of B-splines, the positivity of the density function
cannot be guaranteed.

An alternative spectral estimation procedure 1s proposed, extending
the idea of Bretschneider {(1959). The alternative spectrum is the second
moment of the wave height of the joint probability density function (pdf)
in terms of the frequency domain, and is named the PDF spectra. Comparison
of the latter with other spectral estimators such as the FFT spectral win-
dow estimator and the autoregressive spectral estimator shows good agree-
ment .

The nonparametric joint pdf provides a concise representation of long-
term wave data from which one can obtain not only the usual wave statis—
tics, but the wave spectra as well. That is, the wave spectrum is simply a
subset statistical function contained in the bivariate pdf for wave height

and period.
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INTRODUCTION

Objectives

To meet the increasing need for accurate wave climatology along the
U.S. coast, both federal and nonfederal organizations have established
wave information systems. The amount of wave data gathered has been
increasing exponentially; however, it seems that the data analysis
techniques have not developed at the same pace to meet the user needs
and applications.

Wave data analysis is usually performed employing wave spectral
analysis or wave statistics methods, sometimes referred to as the
"wave by wave" method. Most of the wave information systems use the
former technique; however, a lcng term data representation in terms of
spectra does not seem to be adeguate. 1In view of this shortcoming,
this research project had the feollowing specific objectives:

1. to develop a technique representing wave data in a concise form for
both the short- as well as the long-~term,

2. to develop an alternative spectral estimation technigque making use
of the joint probability density function of wave heights and
periods,

3. to compare available spectral analysis techniques with an

alternative technique.



Present Status of Wave Data Analysis

The wave data representation must meet the user requirements and
needs for applications in the coastal areas. During the spring of
1982, NOAA's Coastal Wave Program and the American Society
of Civil Engineers hosted a series of regional coastal wave workshops.
The general needs and concerns of wave informaticn were summarized by
Edge and Moore (1982) as follows:

1. there is an urgent need for real time wave data analysis
and forecasting primarily for safety and efficiency of
offshore operations, recreational boating, and commercial
and sports fishing,

2. validation of numerical modeling techniques used in forecast-
ing and hindcasting is handicapped by poor wave data bases,

3. analysis of shoreline behavior and sediment transport to
predict and mitigate adverse beach erosion or coastal hazard
conditions require better wave data tc reduce the level
of uncertainty present in existing technology, and

4, the design and maintenance of coastal and offshore struc-
tures need comprehensive statistical and physically des-
criptive summaries of wave occurrence and form.

There is an obvious need to improve wave data collection techniques
as well as analysis of observaticnal data. An ideal system for real-
time wave data information must be developed, invelving the expertise
of systems engineers, ocean engineers, and oceanographers. Another

crucial problem that must be solved to meet the current wave



information needs is the lack of a comprehensive data representation
technique. A single wave data observation, usually of a 20-minute
duration, provides a large amount of information. Two methods are
commonly employed to summarize wave data; i.e., wave statistics and
wave spectral analysis. Existing wave information systems use the
latter technique. A menthly data base collected for example, four
times per day, contains about 120 observations. A series of wave
spectra, while informative, does not provide a complete wave data summary.
Statistical considerations of ocean waves were originated by
Sverdrup and Munk in 1942 in connection with the need for wave
forecasts during World War II. They introduced the idea of
representative wave height, called "the significant wave height". The
significant wave height is the average of the 1/3 highest waves during
an observation. Putz(1952) conducted a systematic analysis of wave
data to obtain the empirical wave height and period distributions.
During the same year, Longuet-HBiggins(1952) derived a theoretical
distribution of wave heights. He assumed that the ordinate of sea
surface was a linear Gaussian process with a narrow banded spectrum.
This leads to the wéll known Rayleigh distribution for heights. When
the individual waves are defined in terms of the zero up-crossing
method, the observed wave heights agree well with the Rayleigh
distribution (Goodnight and Russell,1963; Collins,1967; Goda,l974a).
However, several authors report that the wave heights in the higher
exceedance probability range do not agree well with the.theory. The

wave heights in this range are important for the estimation of extreme



wave conditions, for example in the design of offshore structures. The
discrepancy between the observations and theory has been reported in a
series of studies by Forristall{1978), Longuet-Higgins(1980), and
Tayfun(1980, 1981). Tayfun(l98l) 1lists a number of reasons for the
discrepancy, 1) the non-linear, non-Gaussian characteristics of the
sea surface, 2) the effect associated with wide-band spectra, and 3)
wave-breaking in deep and shallow water depths.

Sea waves must be characterized not only by wave height but also by
wave period. Putz(1952) proposed an empirical wave period distribution
which has the form of a Weibull distribution. Bretschneider (1959)
analyzed a vast amount of wave data and found the wave length teo be
distributed according to the Rayleigh distribution. Applying the
linear wave theory, Bretschneider developed an empirical distribution
of wave period. The first theoretical derivation for the wave period
distribution was given by Longuet-Higgins(1975) in connection with the
joint distribution of wave heights and periods. The wave period
distribution has not been studied in as much detail as the wave
height distribution. According to Goda(l974b), the wave periods are
distributed differently depending upon spectral shape.

The wave height and period are not physically independent, thus,
they must be considered as jointly distributed random variables.
Bretschneider (1959) studied a special case in which the wave heights
and periods were distributed independently and hence were simply a
product of marginal distributions. Longuet-Higgins (1975) derived a

theoretical joint distribution but, unfortunately, the linear



correlation coefficient for this distribution is egqual to zero due to
an infinite variance of the period. This implies that the wave height
and period are uncorrelated random variables. Recently, Kimura (1981)
proposed an empirical joint distribution using the bivariate Weibull
distribution based on a simulation study. Geda (1978) classified
patterns of joint distribution in terms of the cross frequency
histogram using the correlation coefficient. The joint distribution
contains both the marginal wave height and period distributions.
However, the marginal distributions are not necessarily descriptive of
the joint variablity, and there is a need to pursue further research
on the joint distribution of wave heights and periods.

The distributions mentioned above are of the parametric density
family, which involve a few parameters to describe the variability of
random variables. However, the important detailed features of
variability, such as bimodal peaks, may not be characterized bLy a
simple parametric distribution. 2an alternative, to prevent misleading
analysis, 1is the application of nonparametric density estimation to
the wave data. This technique has not been applied by those working in
the field. However, nonparametric density estimation is a major
research field in modern statistics., Several techniques have been
proposed. Tapia and Thompson(1978) provide a useful guide and
extensive bibliography. An excellent summary and updated information
may be found in Bean and Tsoko(1980). A special effort was made in
this study to develop a nonparametric density estimation technique

which would provide a concise wave data representation.



Spectral analysis is the most popular method of wave data
investigation. Due to the development of the Fast Fourier Transform
(FFT) by Cooley and Tukey (1965), the computational effort of spectral
estimation was considerably reduced as compared to the classic
Blackman-Tukey method (1958), often referred t¢ as the auto—-covariance
method. Most present wave data information systems use the FFT
method because of the tremendous amount of data that must be analyzed.
Spectral analysis has caused scme confusion among engineers. A certain
level of statistical knowledge is necessary to avoid misleading
interpretations and applications; however, sophisticated statistical
theorems are generally not required. Extensive research has been
conducted in modern spectral analysis during the last decade. This
research clarifies and summarizes available techniques for practical
applications.

The major research area to be solved is the relationship between
wave statistics and wave spectrum. Depending on the application of
wave information, some applications call for wave spectra, while
others require a single representation of wave height and period. Very
little research has been done in connection with this question.
Goda(l974a) attempted to estimate wave statistics from spectral
information. However, it seems almost impossible to investigate the

joint structure of wave height and period variablity using spectral

information alone.



WAVE DATA COLLECTION ACTIVITIES

General

In 1977 a preoject was initiated at Texas AKM University to
establish a Wave Data Bank for the Texas Coast (Herbich and Jensen,
1978). An extensive search for recorded data was made by contacting
federal and state agencies as well as industries. Much of the data
were found to be in possession of the petrochemical  industries and
not available for public use.

A complete set of analog-type wave data observed at the Flagship
Pier in Galveston (May 1976 to May 1977) was obtained from the U.S.
Army Corps of Engineers. Selected data were analyzed and published by
Herbich and Watanabe(1980a).

Another set of wave measurements was obtained from the Data Office
of the National Oceanic and Atmospheric Administration (NQAA)} for two
buoys located in the central part of the Gulf of Mexico. The long-
term wave and meteorclogical statistics were analyzed and published in
two volumes (Herbich and Yamazaki, 1984).

In conjunction with this project, two Waverider buoys were
deployed along the Texas Coast. Both buoys were anchored in approxi-
mately 60 feet of water near offshore platforms. A significant
amount of wave data was obtained for Waverider B, which was locateed
near Port Mansfield. Only very limited data was obtained from Wave-

rider C due to loss of equipment and malfunction of the recorder.



The Waverider buoy located near Port Mansfield was in a direct path
of hurricane Allen. The buoy survived the hurricane and measurements
of wave data were analyzed and compared with the hindcasted data
computed from the meteorological observation (Herbich and Watanabe,

1980).
Wave Data for Galveston, Texas

A complete year of wave records observed at the Flagship Pier was
obtained from the U.S. Army Corps of Engineers. The data cover a
period from May 1976 to April 1977. Since the data obtained were in
analog form on a strip chart, the data had to be digitized manually by
an optical digitizer. Spectral analysis was performed on the sample
data; the auto-convariance method‘employing the Hanning lag window was
used for the analysis. Significant wave heights were estimated from
the variance of surface elevation of each record. The selected data
were published by Herbich and Watanabe (1980), and are reproduced in

Table 1 and 2.
NDBQO Wave Data

The NOAA Data Buoy Office (NDBO) operates a number of buoys on the
¢ontinental shelf and in the deep ocean off the U.S. coast.
The moored bucys have onboard data aquisition and reporting systems,
commonly referred to as payloads. A payload includes meteorological
and oceanographic sensors, an electronic system for data acquisition,
data processing and formatting, as well as a communication system to

relay the formatted data to shore (Steel, 1978).



TABLE | —- Summary of results for Galves- TABLE 2 — Summary of results for Galves-

ton gage - peak wave records ton gage - random wave records
Date H,,y Torak Date Huy T poak
(&) (sec) ®) (sec)
1.5 May/76 5.26 5.6 4-3 May/76 3.59 -
4-5 May/76 4.73 64 1-7 May/76 4.38 6.4
1-13 May/76 3.05 4.4 1-11 May/76 2.93 4.9
4-28 May/76 11.12 6.0 5-11 May/78 2.42 . ==
35 June/78 1.84 5.6 4-2 June/76 3.18 6.0
3-7 June/T6 3.19 5.6 ~ 1-11 June/76 1.92 -
3-24 June/76 3.80 6.0 4-11 June/76 2.82 -
2-25 June/76 3.29 6.4 2-24 June/76 3.87 5.6
2-3 July/76 4.17 6.9 4-12 July/76 3.52 6.0
3-9 July/76 2.79 6.4 2-19 July/76 3.05 -
1-10 July/76 3.18 6.4 3-27 July/7e 2.87 4.4
1-13 July/76 3.60 6.9 2-30 July/76 3.06 -
2-6 Aug/76 2.97 4.4 33 Aug/76 1.37 -
1-11 Aug/76 2.69 3.5 14 Augr76 1.82 -
2-19 Aug/76 2.99 5.6 1-9 Aug/76 288 -=s
2-20 Aug/76 3.78 8.0 1-25 Ang/76 2.14 -—
1-1 Sept/76 4.11 3.5 £-1 Sept/76 5.91 w-
1-14 Sept/76 4.44 5.2 2-7 Sept/76 3.01 -
1-20 Sept/76 3.7 5.6 2-23 Sept/76 2.42 -
1-27 Sept/76 3.65 42 329 Sept/76 5.37 -
1-5 Oct/76 4.50 6.0 35 Oct/76 3.64 6.0
1-23 Oct/76 4.70 6.0 I-8 Oct/76 2.14 ---
1-28 Oct/76 3.96 6.4 1-20 Oct/76 1.83 -
2-20 Oct/76 7.09 7.6 423 Oct/76 2.79 5.6
2.8 Nov/78 5.13 6.0 412 Nov/76 . 5.58 5.6
2-13 Nov/78 5.717 6.9 £-16 Nov/78 . -
3-19 Nov/76 3.99 5.2 2-21 Nov/T6 3.19 -
3-28 Nov/T6 3.13 6.9 4-30 Nov/76 3.03 -
26 Dec/76 5.12 6.4 4-10 Dec/78 2.79 6.4
1-14 Dec/76 3.59 6.9 3-14 Dec/76 2.49 6.4
1-25 Dec/76 3.27 7.6 2-20 Dec/76 2.13 -
2-31 Dec/76 6.08 6.9 1-22 Dec/76 3.54 -
1-8 Jan/77 2.50 4.6 35 Jan/TT 3.82 7.6
3-15 Jan/77 5.11 6.4 1-20 Jan/77 2.4 —
2-23 Jan/T? 3.83 4.9 4-23 Jan/77 3.17 5.6
3-30 Jan/77 4.98 6.0 3-27 Jan/T7 2.20 5.2
4-2 Feb/T7 4.92 6.9 14 Feb/77 1.30 7.6
3-7 Feb/77 4.83 5.2 3-8 Feb/17 2.41 4.9
1-11 Feb/r7 4.4 6.0 2-9 Feb/77 4.04 6.4
3-18 Feb/TT 2.53 5.6 2-16 Felv77 2.04 -
4-5 Mar/T? 5.60 6.9 4-8 Mar/77 2.56 8.9
4-1} Mar/T7 5.00 6.4 2-15 Mar/77 1.37 5.6
3-18 Mar/77 4.02 6.0 3-10 Mar/77 2.86 6.0
2-28 Mes/T? 8.28 6.9 1-27 Mar/77 AU 44
3-3 Ape/T7 4.99 7.6 31 Apr/T? 4.00 4.6
3-12 ApriT? 4.92 7.6 3-4 Apr/TT 241 6.9
3-20 Apt/T7 4.4 6.9 1-18 Apc/T7 £2.94 6.0
4-28 ApriT7 .57 49 427 Apr/T7 3.18 3.6



Iwo buoys, WMO-42001 and 42002, have been collecting meteorological
and wave data in the central part of the Gulf of Mexico in
approximately 6,000 feet of water. The location of the buoys is shown
in Fig. 1. Data covering the period December 1979 to May 1582 were Ob-
tained from NDBO for these two bhuoys.

The data obtained are stored on a 9-track, 1600 bpi, unlabelled,
ANSI/ASCII, FB, LRECL=120, and block size=4800 magnetic tape. The data
cover ‘geophysical conditions, meteorological information and wave
information. Observations are made every hour. The data also provides
spectral information. Table 3 shows the number of recorded data per
month,

Significant wave height H1/3 and the average wave period T are
estimated using the following relations,

H1/3= 4.0]1]?0-

m
T=/2
)
where
m, = S({f)df
0
2
m, = £f7s(f)df

S(f) = one-sided power spectrum

10
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Figure 1. The location of NOAA 42001, 42002, TAMU Waverider buoy B

and C, (adapted from Department of Oceanography map, Texas A&M
University)
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Table 3. Number of recorded wave information (NDBO wave data)

Date . Buoy WM0-42001 Buoy WM0-42002
79 Dec 647 730
80 Jan 648 744
80 Feb 286 696
80 Mar 0 744
80 Apr 648 711
80 May 744 742
80 Jun 720 720
80 Jul 743 744
80 Auy 744 293
80 Sep 720 714
80 Oct 744 732
80 Nov 720 0
80 Dec 691 744
81 Jan 0 732
8l Feb 0 618
81 Mar 0 736
81 Apr 0 720
81 May 1 739
81 Jun 716 716
81 Jul 743 743
81 Aug 743 742
81 Sep 342 711
81 Oct 692 720
81 Nov 720 720
81 Dec 736 735
82 Jan 739 739
82 Feb 670 655
B2 Mar 7142 728
82 Apr 717 706
82 May 742 742

Waverider Buoy Data

Since only a limited amount of wave data were available, a decision

was made to establish a wave monitoring system along the Texas

12



coastline. Due to the high probability of equipment loss by either
natural causes or commercial fishing operations in open water, many
petrochemical companies were contacted concerning the deployment of
Waverider buoys near their offshore platforms. In this manner the buoys
could be c¢losely monitored by the personnel either 1living on or
visiting the platforms at frequent intervals. Mobil 0il Company
showed interest and agreed to participate in the project.

The first deployment of a Waverider (Buoy A) was made on July 19,
1979, near Port Mansfield. It disappeared after a deployment of only
three days (Herbich and Watanabe,1979). 1In spite ¢of extensive efforts
to locate the missing buoy, it could not be found. The second
Waverider (Buoy B) was deployed on February 14, 1980, at the Harena
Platform near Port Mansfield. The third Waverider (Buoy C) was
deployed on September 16, 1980,at Matagorda 487 Platform near Port
Q'Connor, Texas. Both Waveriders were anchored in approximately 60 feet
of water. Both Waveriders have been transmitting wave data to the
receiving stations on the respective platforms. Buoy C disappeared in
October 1981. Another Waverider (Buoy D) was deplcoyed at the same
location as Buoy C. Buoy B survived more than two years until it
disappeared in April 1983. Waverider Buoy B provided long-term wave
observations. The locations of Buoy B and C are shown in Fig. 1.

Although only 1limited direct evidence could be found, the buoys
were probably lost because of shrimping and pipe-laying operations

close to the platforms.*

*Buoy C was recovered in damaged condition by the U.S. Coast Guard in
1285, It apparently had been hit by the propeller of a larger ship.

13



The Dima receiving unit (MARK II) records the wave data on the
digital cassettes in a complimentary non-return to zero (CNRZ)} format.
The data density on a cassette is 615 bit/inch. One word consists of 3
bytes, where one byte is 4 bits. Therefore one word is 12 bits, and it
can be represented as three hexidecimal numbers.

The smallest value that can be represented is

/0000/0000/0000/
which corresponds to a water elevation of -2048 cm. The maximum value
that can be represented is

/1111/1111/1111/
which corresponds to a water elevation of +2047 cm. One data file
contains 64& weords. The standard 2882-foot cassette tape with 615
bit/inch holds 54 records of 20 minutes measurement period at a
sampling rate of 0.5 sec.

Observations were made four times per day (i.e. 03:00, 09:00,
15:00, and 21:00 hrs) for 20 minutes at a sampling rate of 0.5 second.
Each wave recoré contains approximately 2400 data points.

Datawell recommended a Datel cassette reader unit (LPR-16). Major
difficulties encountered were the compatibilities between the Dima unit
and Datel unit, and the data transformation from cassette to computer
compatible form. LPR-16 reads the bit pattern in the opposite
direction. A computer program {(INVERT) was developed to convert the
direction of the read-out. By means of a parallel interface, LPR-16
was connected to a PDP-11 minicomputer for transfering the data to a

9-track magnetic tape. The data were then analyzed on an Amdahl 470
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v/6,V/8 Computer at Texas R&M's Data Processing Center (DPC). It was
found recently that LPR-16 was unstable in performing the transforma-
tion of data. Mr. Chris Noynaert of DPC has been assisting in the
data conversion process. PDP-11, which belonged to DPC, was trans-
ferred to another institute, and only five cassettes were successfully‘
read by PDP-11.

A CP/M microcomputer (Balcones) was employed to perform the
data conversion. LPR-16 was connected with CP/M by means of a serial
interface. The data had to be transferred from a cassette to a
floppy disk by this method before it could be analyzed on an Amdahl
computér. At the present time, the LPR-16 is being connected to an
IBM PC through a serial interface to transfer the data to disk, and
the data analysis is being performed directly in the PC. There appear
to be less problems in the transfer of data with this arrangement.
The total conversion time of one cassette was increased to about 5
hours. The available data for potential users are given in the
secondary volume of this report. The original data are available on
request by contacting the Ocean Engineering Program at Texas A&M

University.
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DATA ANALYSIS

General

The Texas Wave Information System (TWIS) has been developed to
analyze both NDBO and Waverider data. TWIS can analyze data in
different ways depending on the data source. NDBO data comprised
hourly meteorological and oceanographical data, and included the
significant wave height and average pericd. TWIS was developed to
provide comprehensive long-term wave information. The NDBO data were
summarized on a monthly basis.

Waverider data provide a major part of data source for the coastal
area of Texas. Efforts were made to develop a computer program package
which would analyze the data in a comprehensive manner. Spectral
analysis was performed employing several different methods for a
selected data set. The computer package used was ARSPID, which was
developed by Newton (1983) in the Institute of Statistics at Texas ARM
University. ARSPID performs two different spectral analyses, the
window spectral estimation and the autoregressive spectral estimation.
It was propeosed to develop an alternative way to estimate spectra by
means of a joint probability density function of wave heights and
periods, which is discussed in a separate chapter. A comparison of

spectral estimators is also described in a separate chapter.
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NDBO Data Analysis

The Statistical Analysis System (SAS) has been employed in various
fields to handle statistical data. SAS provides a number of
statistical analysis packages and computer graphic presentations. GSAS
can be used either by those having an extensive experience in
programming or by those unfamiliar with the process. A SAS program
was developed to analyze the NDBO data on a monthly basis. A FORTRAN
program (called NODA) was developed to transfer data from NOAA data
férmat to SAS data form. The following selected values are used for

the meonthly summary:

Selected variables Symbol used
is Air Temperature (C°) AIRTEMP
ii) Sea Temperature (C°) SEATEMP
iii) Barometric pressure (mb) BAROMTR
iv) Wind speed (m/sec) WINDSPED
v) Wind direction WINDDRC

{in degree from true north)

vi) Significant wave height (m) SIGWVHT

vii) Average Wave period (sec) AVWVPR
NDBO data include spectral information, however, it was not
presented in the monthly summaries. An example ¢f a monthly summary is
presented for December 1979 for 42001 data. Table 4 shows the monthly
wave statistics summary ,where N is the number of sample observations.
The monthly histogram of wind speed is given in Fig. 2. The menthly

histogram of wind direction can be found in Fig. 3. Fig. 4. shows the
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monthly histogram of significant wave height, and the corresponding
average wave period variation is shown in Fig. 5. The cross frequency

of significant wave height and average period is given in Table 5.
Waverider Buoy Data

Cassette reader LPR-16 reads wave data stored on cassettes by means
of a serial interface. LPR-16 was connected to a CP/M microcomputer
(Balcones). A computer program WYLTERMC in ASSEMBLER was developed by
the personnel at DPC (TAMU) to perform data transformation. Wave data
were read from a cassette and stored on a flopy disc. WYLTERMC
transferred the data from a flopy disc to Amdhal V6/V8. The data were
temporarily stored on an Amdhal data file. The stored data are in a
hexidecimal form and, since the data were read in the opposite
direction with opposite bit pattern, it had to be "inverted". The
program INVERf'alters the data sequence order and the bit pattern, and
provides the data in a suitable form for analysis.

The first step in data analysis was to separate data set sequence
into a standard data format, and to ascertain the quality of recorded
data. This process was performed manually. The Waverider's recorder
provides the selfcheck of the data obtained. The standard data format
consists of the title of data, the date and time, the number of data
points, the data format, and the surface elevation data. The example
of standard format is as follows:

WAVERIDER B CASSETTE #3 3 PM MARCH 13, 1980

2310 {16F5.0)

Surface clevation data

18
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The first line can be read by means of A FORMAT of 2024, the first
number on the second line is the number of data points. The data
should be read by the specified format on the second line. The data
were stored on a disc in the 2amdhal computer in a file called
WRBBBO.MR13P3. The selected wave data from waverider buoy B were used
for comparing wave spectral estimators; the results will be discussed
in a later chapter. It was not intended to estimate the spectra for
each data set for the following reasons:

1) one data set should be evaluated using different estimators to
determine which provides a reasonable solution for the wave
data,

2) the massive amount of data may not provide a comprehensive
data representaticn, and will be cost prohibitive.

TWIS provides wave statistics based on the zero up-crossing method.
Program ETATH produces the wave height and period data from the
original surface elevation data. The variance of surface elevation can
be used fo estimate the wave statistics, such as the average wave
height HA, and the significant wave height H3

HA=2.507 nrms
H3=4.004 nrms
where nrmS is the root mean square of surface elevation
The average wave period TA may be estimated by dividing total length
of observation by the number of zero up-crossing waves. The statistics

of surface elvation {ni} are estimated such that the variance VR is
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1 N
- 2 - = 2
VR= n"=ygi nj
i=1
and
=|/""2
nrms n
where N
- 1
n =y iil n, =0
The skewness SKW is
1 ¥
P 3
SKW= g I ”i/“ms
i=1
The Kurtosis KRT is
1 v,
. 3
KRT= iil ni/nrms

The above symbols are used in summarized data, which are presented in
other volumes of the.annual report.

Due to a malfunction of the magnetic cassettes in the Dima unit,
some data were only available on analog strip chart records. The
Tucker method (1963) is a simple method to estimate the Troot mean
square of surface elevation from the analog form of the wave data. To
fill gaps of missing data on magnetic cassettes, the Tucker method
(1963) was used for the wave statistics; however, the skewness and the
kurtosis are not estimated by the method employed. Wave statistics by
means of the Tucker method are indicated with "*" in the list of
available data. It should be noted that those data sets with "*" are
not as reliable as the data sets without "*".

The zero up-crossing wave heights and periods are stored on Amhdal
having a similar data format with the surface elevation data. An
example of wave heights and periods is as follows:

WAVERIDER B CASSETTE #34.1 3 PM AUGUST 11 1981

NW 438 (12F6.2)

-
.

Wave heights and periods data
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The first line is the title of data set. 438 in the second line is
the number of waves in this data set. Next the data format (FORTRAN)
used is shown. The data are given on the following third line. Each
data set is coupled with a wave height and a wave peried in the
following sequence, The discussion of zero up-crossing method follows
in the next chapter.

A program WVSTAT estimates the statistical wavé characteristics
alse by the zero up-crossing method. WVSTAT also estimates a primitive
joint probability density function of wave height and period and,
marginal distributions of wave heights and periods. An example output

of WVSTAT is shown in Table 6 and Figures 6, 7 and 8.

Table 6. Wave statistics of an example output of WVSTAT

WAVERIDER B CASSETY #34.1 I PM AUGUST 11 188}

HUMBER OF WAVES « 428
STATISTICAL WaAVE CHARACTERISTICS
CORMELATION COEFFICIENT OF WAYE HEIGHTS AND PERIODS ©.6388
YARIANCE OF WAVE HEJGHTS ©.0108
VARIJANCE OF WAYE PERIOQODS I 4878
SECOND MOMENT DF WAVE HEIGHT 0. o541
AYERAGE WAVE HA e.21 Ths 2 83 oBs=438
SIGHIPICANT WaAVE H3r 0.13 T3s J.%59% oBS 148
1/10 TH WAVE LR 0.8 Tios 3.7¢ oBS: 437
MA X | UM WAVE HMX » o.8& AL LE] 1.78 (.1 2 3] 1
YHa:r ©.23
YH3 e o.3¢
VTas .64
YHA/HAS 1.0574
¥HI M3 1.0012
T3/ Ta: 1.IE58
TIO/Ta: 1.4091
THX/Ta: 1.4312
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Figure 8. Distribution of wave periods of an example output of WVSTAT

A technique was developed to estimate the joint pdf of wave height
and period nonparametrically. A program PDFSPEC performs a
nonparametric estimation of the joint pdf. An alternative methed was
proposed to estimate the wave spectra by means of the joint pdf. ‘The
spectral estimation is named PDF spectral estimation. PDFSPEC also
performs the estimation of the PDF spectra. A detailed discussion of
the joint pdf is given in chapter 5, and a theoretical argument of the

PDF spectra is provided in chapter 7.
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PARAMETRIC MARGINAL DISTRIBUTION OF WAVE HEIGHTS AND PERIODS

General

Despite a 1long history of wave research since the 19th
Century (Kinsman,l1965), the complex character of "wind waves", or
simply "waves," has not as yet been well understood. Sverdrup and Munk
(1947) developed the first wave forecasting technique during World War
Il in 1942. The significant wave height, which is the average of the
highest one-third of observed waves, was introduced to statistically
characterize the waves. Bretschneider (1951) revised the forecasting
technique of Sverdrup and Munk for practical applications by potential
users. This is known as the §.M.B. method, and this method is still
used as a simple forecasting technique,

The first effort to develop an empirical wave height distribution
was made by Putz (1952). He discovered that the wave height
distribution could be fitted by a Gamma type distribution quite well.
About the same time, Longuet-Higgins (1952) derived a theoretical
distribution of wave heights, known.as the Rayleigh distribution,
under the assumption of narrow band wave spectra and linearity. Both
the Putz distribution and the Rayleigh distribution fitted observed
data well (Bretschneider 1959). The Putz distribution is a two
parameter family, and the Rayleigh distribution contains only one
parameter. Watter (1953) and Bretschneider (1959) checked the Rayleigh

distribution using observed wave data. Although they did not perform
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statistical tests, the Rayleigh distribution appeared to be adequate
for practical applications. Goodnight and Russell (1963) showed that
the Rafleigh distribution did not satisfy the chi-square hypothesis
test. However, they concluded that the Rayleigh distribution could be
practically accepted in moderate ranges. Collins (1967) also showed
that the Rayleigh distribution appeared to be a good f£it for observed
data.

Because of the rather cumbersome calculations involved in wave
statistics, Tucker (1963) proposed a simple method to estimate the
wave statistics based on the assumption that waves followed the
Rayleigh distribution. The method is still useful when the data
obtained are only in analog form.

The determination of each individual wave height from analog data
represents a statistical sampling problem. Basica;ly two methods are
in existence: i.e., the zero crossing method and the crest-trough
method. Wilson and Baird (1972) made a comparison of the zero crossing
method for wave height with the crest-trough method for wave height.
They also employed the Tucker method to supply an alternative
definition. The =zero crossing method for wave height exhibited a
better fit to the Rayleigh distribution than the other methods. Goda
(1974a) also confirmed that the zero up-crossing wave height appeared
to fit the Rayleigh distribution well. He also discussed the effect of
sampling interval on the wave height distribution, Goda (1974b)

concluded the following with respect to the Rayleigh distribution:
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The zero up-crossing wave heights strictly do not belong to
the class of Rayleigh distributions but they can be suffi-
ciently well approximated for practical applications. The
applicability of the Rayleigh distribution for the zero up-
crossing wave heights and existence of the relation of wave
statistical parameters are not influenced by spectral shape
nor the spectral width parameter.

Wu (1973) found that the zero up-crossing wave height showed slightly
lower values than those predicted by the Rayleigh distribution, but he
alse concluded that, "in general, the data show no significant
deviation from the Rayleigh distribution. ™ Though the practical
applications of the Rayleigh distribution have been confirmed by many
researchers, the theory predicts higher wave heights for larger waves
in a sea state ( Nolte and Hsu 1979). Forristall (1978) proposed an
alternative distribution, which fitted the observation data better by
suppressing this over-prediction. The distribution function is a two
parameter Weibull distribution in which the parameters have
to be estimated empirically. Longuet-Higgins (1980) noted that lesser
agreement between observed data and the theory is due to some
misunderstanding of the originally proposed distribution. He found the
Rayleigh distribution fitted Forristall's data (1978) well by suitably
adjusting the parameter of the distribution empirically.

The wave height distribution is not the only one‘ of practical and
theoretical interest; the waves are characterized also by heights and
periods. Putz (1952) made an early study on the distribution of wave

periods, using the crest-to-crest method. He proposed a Gamma type
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distribution. Bretschneider (1959) found the wave length distribution
was similar to the Rayleigh distribution. Applying linear wave theory,
he proposed a modified Rayleigh distribution for the wave periods. Wu
(1973) found the frequency distribution of (T/Trms) , (where TmS is
the root mean square of wave period T), which indicated good agreement
with the Rayleigh distribution. The other methods of period
distribution have been discussed in conjunction with the joint
behavior of wave heights and periods. Despite the abundance of wave
statistics, the studies of wave period distribution have not been
successful. Goda (1974b) found empirical relations of wave period
parameters, which were compared with the results of the present study
indicating similar relations.

A basic knowledge of general statistics is required to perform wave
data analysis, therefore basic probability notions are given in

Appendix B to assist the reader.

Wave Sampling Method

There are two methods that are used most commonly to analyze wave
records in terms of individual waves. In the first method, the wave
height 1is defined as the wvertical distance between the succeeding
crest and trough, and the wave period is defined as a time period
between a succeeding crest to crest. In the second method, called.the
zerc up-crossing method, the wave height is defined as the maximum

excursion between two successive upward crossings of the mean water
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elevation, and the wave period of the zero up-crossing method is the
time period between the successive zerc up-crossing points. The zero
down-crossing wave can be defined similarly. Both definitions, the
first method and the second method, give the same result as the
spectrum approaches a line spectrum, which is a pure harmonic wave.
However, since the real surface elevation has a finite spectrum band
width, the two definitions produce different results. As the spectrum
width becomes wider, the difference can be expected to be significant.
According to the Rayleigh distribution, the significant wave height
Hy /3, which is the average of the highest one third of observed waves,

can be approximated as
Hl/aél‘"’-’mS (1)

where nrms is the root mean square of surface elevation n . The
significant wave period T;/3 is the average period of the highest one
third of the waves.

Wilson and Baird (1972) compared the significant wave heights
defined by the crest to trough method, the zero up-crossing method,
and the above’ eguation. They found the deviation between the crest
to trough H1/3 and 4nrms was larger than the deviation between the
zero up-crossing Hys3 and ¢ npo.

The second method was employed for the following reasons:

1) The zero crossing wave height seems to fit the Rayleigh

distribution well (Goda,1974a), and
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2) The zero crossing method is a low-pass filtering operator. It
may be regarded that the successive wave profile is replaced
by a randeom sequence of pure harmonics having equivalent wave
height and period (Iwagaki and Kimura,l1976).

There still remains the choice of either the zero up-crossing or
the zero down-crossing method. Statistical testing was conducted for
selected wave parameters to determine whether the zero up-crossing
method and the zerc down-crossing method were statistically different.
In March 1980, 104 consecutive data sets, including seven missing ob-
servations, were used for this purpose.

The following wave parameters of wave height H and period 7T were
investigated from sample observations for each method.

1) The mean wave height
# = e[u] (2.1)
2) The mean wave period
T = ElT] (2.2)
3) The variance of wave height
= Var[H] (2.3)

2
%y

4) The variance of wave period

2
Op = Var[T] (2.4)
5) The correlation coefficient of H and T
cov[H,T]
P =T (2.5)
HT UHGT

6) The significant wave height
H1/3 =the mean wave height of exceedance probability 1/3 (2.6)
7) The significant wave period

T1/3 =the mean wave period associated with H1/3 (2.7)



8) The 1/10-th wave height
Hj /1p=the mean wave height of exceedance probability 1/10 (2.8)
9) The 1/10-th wave period
T1/10=the mean wave period associated with Hj/j¢ (2.9)
10) The maximum wave height

Iﬁmnc=the maximum wave height for the observation period (2.10)

11) The maximum wave period

T%En{=the wave period associated with Hmax (2.11)

The sample parameters were estimated using N coupled wave height
and period samples, i.e. {Hi (T4 }, i=1,..,N, as follows

1) The sample mean ©f wave height

H {3.1)

2) The sample mean of wave period

il 1N
oy .21 Ty (3.2)
i=

3) The sample variance of wave height

2 1 N a 2
o B W (3.3)

4) The sample variance of wave period

=

2 2
(T;-T) (3.0
i=1
5) The sample correlation coefficent
N

S

2=

2
T

e

£ (8B (T,-T)

~

(3.5)

HT=/N ~ 2 N 2
z T % _T
121 By-H) 2, (T
6) The sample significant wave height

Hy /5=the average INT(N/3) higher ordered statistics of H (3.6)

where INT(.) is the largest integer
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7) The sample significant wave period
%1/3 =the average wave period associated with ﬁ1/3 (3.7)
8) The sample 1/10-th wave height
ﬁ1/10=the average INT(N/10) higher ordered statistics of H (3.8)
9) The sample 1/10-th wave period
%1/10=the average wave period associated with ﬁl/lo (3.9
10) The sample maximum wave height

ﬁ =the largest sample wave height (3.10)

max

11) The sample maximum wave period

~

=the wave period of Hm (3.11)

max ax

The guestion addressed here was whether the joint pdf of H and T
for the zero up-crossing and that of the zero down-crossing method
were the same. However, no statistical test was available to the
authors to answer this question. Therefore statistical tests were
conducted on selected parameters, such as Purr Oy + and Op + under
the hypothesis that the estimated parameters are drawn from the same

density function. Let ap, Oy and o be equal to:

T
(oD - o
ay = cﬁ(U) - cﬁ(D) (4.2)
ag = o2{® _ 2P (4.3)

where the supercripts (U) and (D) denote the method used, namely the
zero up-crossing method and the zero down-crossing method

respectively.
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The hypotheses to be tested are as follows:

i) H ¢ E[ap 1=0, Hy ¢ E[ap 1#0 (5.1)
ii) H) ¢ E[aH 1=0, Hy E[aH J#0 (5.2)
iii) H @ E[ozT J=0, HA : E[aT 1#0 (5.3)

where HO is the null hypothesis and HA is the alternative

hypothesis. The estimated Gor Gy s and G based on the respective
sample parameters are shown in Figures 9-11. The seven missing data

among the consecutive observations were simply replaced by zero. These

figures imply each series of ap %y and O are possibly time-

dependent random variables. Ordinary hypothesis testing assumes the

sample must be a result of independent random sampling. If the

~

sequence of @ were considered as a normal stochastic process, then N

~

consecutive observations of Cor {a wvector a., ) have an N -

-~

dimensional multinormal distribution the pdf of which is denoted by

fa (¢.) = Normal (u,}) (6)

~

where ¥ is a mean vector, and $ is the covariance matrix. The

mean of a., denoted o., has the univariate normal distribution, i.e:

1

f-&-.(g.) = Normal (u, N2 }T E 1) (1)

where p=E{a.] and 1 is the unit vector.
The variance of o can be approximated by the following equation
{Priestley, 1981)

1T, . 215(0)
el F1ETy (8)

where S(.) is the autoregressive spectrum of order P, and
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A
S(0) = —é}' "'P—g—z (9
z |aj|
5=1

62 = the residual variance

aj = the autoregressive spectrum coefficients
Xe
0.06

0. 0%
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t

Figure 9. Time history of the difference of correlation coefficients
(by means of zero up-crossing and zero down-crossing methods)

The ordinary t-test can be performed on the proposed hypothesis:

1) The difference of correlation coefficient:
The spectrum analysis indicated that { ap} appeared to be white
noise, Therefore, each observation can be considered as an
independent random sample. The hypothesis testing is essentially

the ordinary t-test. The t-value is obtained as

t = 2,646 > t = 1.984

.975,103
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Figure 10. Time history of the difference of wave height variance (by

means of zero up-crossing and zero down-crossong methods)
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Figure 11. Time history of the difference of wave period variance (by
means of zero up-crossing and zero down-crossing methods)

Then the hypothesis should be rejected at the 5 percent significant

level.

2) The difference of sample variance of H :
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Based on the autcregressive model criteria, namely AIC and CAT,
which will be introduced in the following chapter, the
series can be described by a second order autoregressive process,

such that

1}

aH(t) 0.14603H(t-1) - 0.1972 GH(t—Z) + e(t)

t = 3,4,...,N

where €(t) is white noise. Using this model, the standard
deviation of ay is estimated as

-3
SH = 1.069 x 10

The corresponding t value is

t = 5.104 > t.975’103 = 1.984

This value indicates that the hypothesis should be rejected at
the 5 percent significance level.

3) The difference of sample variance of T :
The series of {aT } is again shown to be white noise, and the t-

value obtained is

t = 0.0534 < t 1.984

.975,103 ~
Hence the hypothesis cannot be rejected at 5 percent significance
level.

An inspection of other estimated parameters showed that the average
wave heights and periods of two methods were in agreement up to the
second decimal, and as the number of samples used became smaller, the

parameters deviated further. The maximum wave had a larger deviation
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than the other parameters. This tendency merely explains the sampling
problem. The above results imply that two methods, namely the zero
up-crossing methoed and the zero down-crossing method, do not produce
the same wave statistics in detail. However, the author could not
reach a conclusion on whether both methods are equivalent. Since the
zero up-crossing method has been widely used by previcus researchers,
this method was employed to define the individual waves in the present

study.

Marginal Distribution of Wave Heights

Longuet-Higgins (1952) was the first t¢ study the theoretical
distribution of wave heights, which is known as the Rayleigh
distribution. A brief review of the Rayleigh distribution is given
below.

The assumption that the linear stationary process allows one to

describe the surface elevation n(t) as a Fourier series

I
n(t) = nil ancos(Zﬂfnt +en) (10)

where a fn and e are the amplitude, frequency and phase

respectively. a and fn have certain probability distributions in the

interval [0,» ), and e, is uniformly distributed in the interval

[0,27 ). Thus n(t) can be considered as an infinite sum of random

variables. According to the central limit theorem, the distribution of

n{t) may be approximated by the normal distribution having a mean

value
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Efn(t)] =0 (11)

and variance

L
Var[n(t)] = lim < 5 = a? = (12)
N 2 i
L

where a _ is the root mean square amplitude.

Assuming a constant frequency f0 , then rewriting equation (10) as

n(t) = R(t)cos(2nf_t+p(t)) (13)
where
R(t) = J/Az(t) + Ag(t) (14)
-1 As(t)

¢(t) = tan (Ac(t)) (15)
A(t) = I acos(2rf t - 2nf t+ ¢e) © (16}
C n=1 n n 8] n

A(t) = T asin(2nf t =25f t + ¢_) (17
S5 n=1 n n [s] n

Assume that the spectrum has a single narrow frequency band having a
peak at frequency fo, so that R(t) is only significant around f0 5
Then R(t) is a slowly varying function which represents the envelope
of n (t). The cosine term of (13) is a carrier wave. The wave height H
may be taken as 2R. The joint distribution of R(t) and ¢ (t) can be
obtained by applying the probability transformation on the joint
distribution of Ac(t) and As(t). It can be shown that the joint pdf of
Ac(t) and As(t) is an independent bivariate normal distribution,

having the following parameters:

43



E[Ac(t)] = E[As(t)] =90 (18.1)

var[a_(t)] = Var[A ()] = %- (18.2)

2
rm
cov[Ac(t), As(t)] =0 (18.3)

Performing the probability transformation, the joint pdf of R and ¢
can be derived as
(R $) "“"f““ exp[- "7——] (19)
rms

Therefore the pdf of R is

2n
2
fR(R) = py (R19)do = —z—' exp[- ——1] (20)
o rms rms

Assuming H=2R is true, the pdf of H can be derived as

B2

=1 -
fH(H) =322 exp[ Ez'-'—] (21)
rms rms

Let m be n-th moment of frequency spectrum Sn(f) of the surface

elevation n(t):

m = JmfnSn(f)df (22)
o]
The lowest moment mo has a value
= n2
T Myems (23)

where nrmsis the root mean square of n,
If the surface elevation is represented by (10), the following

relation is true:

m, =n2 == a2 (24)
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Then equation (21) becomes;

- H H®
fH(H) =2 exp[ W_—] _ (25)
rms rms

Longuet-Higgins (1980) showed that the nonlinearity and finite band
width of spectra introduce an inequality in eguation (24). He found

that the nonlinear effect appeared in terms of the spectrum band width

. 2 2 '
parameter v . The ratio of armSIanmS is expressed as
8y 26)
7 = 1 - 0.734 v2 ;
n rms
where v2 is the spectrum width parameter, such that
o™
v 2 ='"E%_ -1 27)

It has been found that the Rayleigh distribution, in the form of
equation (25), overestimates higher wave heights. Forristall (1978)
proposed an empirical Weibull distribution, which has two parameters,
tc overcome this problem. Longuet-Higgins compared the Rayleigh
distribution with the Weibull distribution. It was found that the "one
parameter” Rayleigh distribution fits the data as well as the "two
parameters” Weibull distribution, if a2 /252 is taken as 0.925.

rms rms
The significance of this result is that with suitable choice of the
ratio of aZ /2n? , the Rayleigh distribution is 'still
Trms rms
applicable in the entire wave height range.
Several important wave height statistics are derived in terms of

a . The mean wave height H is
rms
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H = E[H] = r H £, (H)dH = r—z—- expf- -——2—]dH (28)

= Y7 a
rms

The second moment of H is denoted as H , and is given as

erf (H)dH

H2 :
rzz—-' exp [-- Z'Erzg]dﬂ =4 a

H2 = E[H?]

2 (29)

The average height of exceedance probability 1/N has been extensively
used to characterize a complex sea state, especially N=3 is well known

as the significant wave height. Let X be a normalized wave height:

x = & (30)

The pdf of X is transformed as

fg (%) = *—xexp [— 2] (31)

. The exceedance probability of 1/N is given as

1
r fo(x)dx = 3 (32)
X N

Hence
1 1
expl- 7 Xyl = §
XN is obtained as
Xy = Z(QnN)% (33)

Therefore XV . the average height of exceedance probability 1/N, can
N

be calculated as
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L{ fx(x)d
Xl = N

/ X
I f (x)dx
X

Xy + /TN 2N erf(Xy/2)
where erf(y) = gye'tzdt ;, which is the error function.

(34)

H]

The significant wave height can be obtained by setting N=3:

Hy
s {35)

Hy,= 2.8314 a_

Under the assumption of linearity, armsis

X1/3=

Tm

a_ e " V2 N s (36)
Then H¢/ can be expressed in terms of Mos ! i.e:
3
4, 7
H1/3 4.004 n__ (37)

which has been extensively used in many wave data programs. However,
actual observations indicate that the above equation slightly
overpredicts the significant wave height. Goda (1974b) found the

factor of 3.79 for the data obtained in Nagoya Port:
H1/3 = 3,79 ﬂms (38)

Forristall (1978) obtained the wvalue of 3.77 based on the data

obtained from several Hurricanes:

My, 377 Mg (39)
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The ratio of H1/3/nrms was examined employing 97 data sets in
March 1980, and 54 data sets in August 1981 obtained by the Waverider
buoy near Port Mansfield, Texas. Each data set involves approximately
400 individual waves defined by the zero up-crossing method. The
statistical summary of these data are shown in Tables 7 through 10;
the following labels are used in the tables:

CORR(HT)= correlation coefficient of Hand T

H3 = Significant wave height
HA = Average wave height
VH3 = 4.00 n
rms
VHA = 2.51 n
rms
TMX = Maximum wave pericd
T10 = 1/10~-th wave period
T3 = Significant wave period

TA = Average wave period

data obtained in March 1980 show:
= 40
H1/3 3.83 nrms(iO.IOZS) (40)
and, data obtained in August 1981 show:
= (41)
H1/3 3.76 nrms(10.1520)

where the values shown in parenthesis are 95 percent upper and lower
confidence bands for each factor. The frequency diagrams of H1/3/nrms

are shown in Figures 12 and 13.
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Using the Longuet-Higgins empirical ratio of armsl/fn

H1/3is expressed as

H1/3 = 3.70 nrms

Table 7. Characteristic summary of wave parameters
obtained in March 1980).

LABEL N MEAN STANDARD SKEWNESS
DEVIATION
CORR(HT) 97 0.691 0.046 -0.153
Ha/VH3 97 0.957 0.013 -0.814
HA/VHA a7 0.961 0.026 ~-0.594
H3/RMS{ETA) a7 3.832 0.052 -0.814
HA/RMS{ETA) a7 2.410 0.065 -0.594
TMX/T3 a7 1.011 0.116 0.046
T106/T3 g7 1.021 0.04% 2.817
TMAX/TA a7 1.278 0.162 0.320
T10/TA a7 1.291 ©.091 1.116
T3/Ta a7 1.264 0.068 0.251

Table 8. Characteristic summary of wave parameters
obtained in March 1980).

LABEL N STD ERROR RANGE MINIMUM
OF MEAN VALUE
CORR(HT) a7 0.005 0.252 0.566
H3/VH3 a7 C.001 0.067 0.915
Ha /VHA a7 0.003 0.136 0.874
H3/RMS(ETA) 97 0.005 0.270 3.665
HA/RMS(ETA) 97 0.007 0.340 2.192
TMX/T3 a7 0.012 0.680 ©.658
T10/7T3 97 0.005 0.340 0.9852
TMAX/TA a7 0.016 0.857 0.849
TIO/TA a7 0.009 0.538 1.0987
T3/TA 97 0.007 0.438 1.030
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Table 9.

Characteristic

obtained in August 1981).

LABEL N
CORR(HT) 54
H3/VH3 54
HA/VHA - 54
H3/RMS(ETA} 54
HA/RMS{ETA) 54
TMX/T3 s4
T1Q/T3 | 54
TMAX/TA 54
T10/TA sS4
T3/TA 54
Table 10.

_-—_- L PpWOOO

obtained in August 1981).

LABEL N
CORR(HT) 54
H3/VH3 54
HA/ VHA 54
H3/RMS({ETA) 54
HA/RMS{ETA) 54
TMX/T3 S4
T10/7T3 54
TMAX/TA 54
T10/TA 54
T3/TA S4

The wvalues in equations (38)-(42)

It seems reasonable to

000000000
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show surprisingly good agreement.

suggest a value of 3.8 for

the factor.

number agrees with the number suggested by Goda, et. al. (1976):

H1/3 = 3.80 nrms
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Figure 12. Freguency diagram of H, , data obtained by Waverider

/n
puoy B near Port Mansfield in MarcH 31988'°

Based on this value, the following relation is derived:

a

IS - 0.949 (84)

\/ET] rms
The physical interpretation of this equation is that the nonlinear

effect reduces the total energy by 5 percent, which is a contribution
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Figure 13, Frequency diagram of H; data obtained by Waverider
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buoy B near Port Mansfield in Augué% lE@i.

of kinetic energy. Longuet-Higgins (1980) showed the potential
energy was not altered by either the linear or the nonlinear process.
Forristall (1978), Nolte and Hsu (1979), and Tayfun (1981) claimed
other causes of discrepancies between the field observations and

equation (25) were due to "effects associated with wide-band spectra”
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and "wave breaking effect." Goda(l974a} stated that "the applicability
of the Rayleigh distribution for the zero up-crossing wave heights is
not influenced by the spectral shape, nor by the spectral width
parameter,* In spite of the wide band spectrum of the August 1981
data, the Rayleigh distribution seems applicable. A slight
modification of the parameter should be made as suggested by equation
(44). The Rayleigh distribution can be expressed in terms of H using

eguation (29).

2
fH(H) = F—?— expl[- {-%I-— (45)
2H? H2
This equation involves neither np nor a . The exceedance

Tms TmsS

probability P(x) of the normalized wave height x=H/H has a very

simple form

P(x) = exp[- % x2] . (46)

Having obtained the mean wave height by means of the zero up-crossing
method, the estimated E can be used in the Rayleigh distribution

without making any modification. In practice, n is commonly

rms '

determined by

n2 =

1 N
= -2
rms N i (ng-n<) (47)

where n is the average of {ni 1.
If it is desired to estimate the wave parameters from L then
the parameter of the Rayleigh distribution, equation (45), should be

estimated by

B = 0.947 Y2mn___ (48)
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Marginal Distribution of Wave Periods

In contrast with the Rayleigh distribution £for the wave height,
which has been successfully employed in the practical applications,
the marginal distribution of wave period has not been successfully
developed from theory to-date. Several empirical distributions have
been proposed. The first effort was made by Putz (1952). Based on
25 data sets, it was found that the wave period fitted the

Gamma type distribution well. The proposed cdf is

u
_ 1 P-]1 -x
FT(T) = Ty J X e Tdx (49)
(o]
where
u = p[1+ o
T
N
' _mn294
Sp = iy I (T;-D%
i=1
3
4 ST
PETw =
N 45 T’
where I'(.) is the Gamma function, and T is the average wave period.

However, only swell data were used, therefore Equation (49) is not
applicable to the short pericd waves, such as wind waves.
Bretschneider (1959) found that the Rayleigh distribution fitted

the wave length L well, based on the empirical data, i.e:
_r )\2
) B (50)
A 2

where % is the normalized wave length,i.e:
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P
I
= e

where L= the average wave length
According to linear wave theory, the wave length is proportional to
the square of the wave period. Bretschneider defined the following

relation
A = kt? (51)

where k is a constant, and * is the normalized wave period, i.e.

L]

where T= the average wave period.
After appropriate probability transformation, the pdf of t can be

obtained as

-0.675T"

fT(T)==2.713e (52)

It is easy to show that this pdf has the standard form of the Weibull

distribution, i.e.:
_ b-1 b
fx(x) = aby  exp[-ax ], Ogx<ew (53)
for a=0.675 and b=4

The power transformation of the Gamma distribution is known as the
Weibull distribution. Therefore the empirical results obtained by Putz
and Bretschneider may suggest that the Weibull distribution is a

viable candidate for explaining wave period variability.
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Several other types of wave period distributions have been
proposed in conjunction with the joint probability density function of
wave height and period. These will be introduced in the next chapter.

Despite the lack of theoretical background on the wave period
variability, several wave period parameters were investigated based on
two consecutive data records: 97 data sets in March 1980 and 54 data
sets in August 1981. The following parameters were investigated:

For average wave period'ﬁ, the notation used is TAa,

for significant wave periocd T1/3s the notation used is T3,
for 1/10-th wave period Ty/100 the notation used is T10,
for maximum wave period Tmax : the notation used is TMX.

The =zero up-crossing method was adopted for the definition of
individual waves, as discussed in the previous section. Since the
magnitude of each of the parameters is not of particular interest in
the description of wave period wvariability, the following ratios are
discussed: Tmax/T1/3' '1'1/10/'1‘1/3 and Tllafil The frequency histograms
are shown in Figures 14 - 19, and Tables 7 - 10 give summaries of
statistics for these ratios. It should be noted that the means of
TmaX/T1/3 and Tj;10/T1/3 are very close to 1.0, in other words, Tmax .
Tys10 and Ty 3 may be practically taken as single values. The same
relation was proposed by Goda (1974b). The mean of T1/3/f obviously

differs from 1.0. The overall mean of Tlla/i is obtained as

Ty/3/T = 1.255 (54)

56



Goda (1974b) obtained T1/3é1.07§ for deep water waves, and T;,3*1.23T
for shallow water waves. Taking into account the observation site
depth of this study, Goda's data and the present study agree very

well. The fcollowing approximate relations are suggested:

Tpax = T1/10 = Ti/3 = 1.2 T (55)
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JOINT DISTRIBUTION OF WAVE HEIGHTS AND PERIODS

General

Bretschneider (1959) found that the marginal distributions of H and
T followed the Rayleigh distributions. Assuming that H and T were
independent random variables, he proposed a joint pdf whose form was a
product of two independent Rayleigh distributions. However, H and T
are jointly distributed random variables, and as waves travel a long
distance (swell), the wave heights and periods tend to be well
correlated. Battjes (1969) examined the statistical properties of the
bivariate Rayleigh distribution, which was originally derived by
Uhlenbeck (1943) and Rice (1944,1945) in the communication field. The
results have not heen widely applied in wave studies.

The thecretical derivation of the joint pdf of wave heights and
periods was addressed by Longuet-Higgins (1975) under the assumption
of a linear process and narrow band spectrum. The theoretical
distribution of T is symmetrical with respect to TQE, the mean wave
period, and the distribution extends to the negative range.
Chakrabarti and Cooley (1977) demonstrated that the actual
distribution of T exhibited asymmetric behavior. Venezian (1983)
modified the Longuet-Higgins distribution, to eliminate the
negative wave period range. Tayfun (1983) examined the effect of the
spectrum band width on the Longuet-Higgins distribution. Kimura (1981)

found that a bivariate Weibull distribution fitted the simulated data
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well, and the correlation of H and T was related to the spectral band
width.

The ttudies mentioned above are considered as parametric density
estimation. Nonparametric density estimation is a major topic in
modern statistics. Extensive research has been conducted by
mathematical statisticians. Several different techniques have been
proposed, but there still remains the question of which technique is
superior. Nonparametric density estimation involves smoothing
parameters for any type of technigue. A major difficulty that arises
in various techniques is finding an objective way to choose the
smoothing parameters. Spline functions in nonparametric density
estimation were applied and a criterion was proposed for objectively
choosing the smoothing parameters.

The purpose of this chapter is to introduce available parametric
joint pdf and nonparametric density estimation techniques. Since the
major objective of this stu&y was to develop a technique for
summarizing a large amount of wave data in concise form, much time was
spent on developing a nonparametric density estimation by means of the
spline function. Thus, the parametric joint pdf was not examined in

detail.

The Parametric Model of the Joint Probability Density Function

An extensive literature survey was conducted to seek the available

information on joint pdf of wave heights and periods. A limited amount
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of research has been conducted on this type of problem. This section
will introduce several useful joint pdf of wave heights and periods.
Bretschneider (1959) proposed a joint pdf of wave heights and

pericds which is a product of marginal distributions, namely

UL
RS _ y
fXY (x,v) = 1.35mxe . yle 0.675y (56)
where X =-§
H
_T
y =z
T

H, ﬁ, T and T are the wave height, the mean wave height, the wave
period and the mean wave period, respectively. The marginal

distributions are:

#;a

(57)

n
fx(x) 5 e

- 4
3¢~0-675y (58)

£,(y) = 2.7y

Since fXY(x,y)=fX(x)fY(Y), the correlation coefficient is always zero.
This is not realistic, since the wave heights and periods appear
correlated.

Battjes (1969) examined the bivariate Rayleigh distribution, which
was originally developed by Uhlenbeck (1943). The bivariate Rayleigh
distribution of two random variables U and V, whose means are 1.0, is

expressed as

_ 12 uv T uZdv? T k
fyy (V) = 3 el 3 1oz 11,G o) Sk

for uz0 and v=20
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where k is a shape factor which lies between 0 and 1, and IO(-) is
the modified Bessel function of =zero-th order. This distribution has
not been successfuly applied for the joint wvariabilty of wave heights
and periods. The examination of this distribution was not pursued.
Recently Kimura (1981) examined the applicability of the bivariate
Weibull distribution. Since the Rayleigh distribution is a special
case of the Weibull distribution, Kimura's work represents a
generalized version of previous density estimation. In fact, most of
the empirical density functions have been proposed for the marginal
pdf of wave heights by virtue of the Weibull distribution. The

bivariate Weibull pdf of two random variables U and V is written as

£ (l_]. V) = mn um"lvn"].exp[_ 1 (ﬁ + V_n)]
uv: 4ab (1-k?) 2(1-k2) ‘a b
(60)
P
X I (1 u ‘& 2
a%b”iu k2)
for u20 and vz0
wherem, n, a, b and k are the shape parameters, and IO(.) is the

modified Bessel function of zero-th order. Evaluating the mean of U

and V, the respective means are expressed as

1 1

g[u] = 2 /™ /“‘r(—lmﬂ) (61)
1 1

m[v] = 2 /™ /Prdd (62)

It may be convenient to take the means equal to 1.0, then the random
variables are treated as normalized by their respective means. This

gives:
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-n
b = ls[l“(i;?'-)] (64)

It is easy to show (59) 1is a special case of (60); when m=n=2, (60)

reduces to (59). The marginal distributions of U and V are:

m
fU(u) = %Z u" 1 exp[- %E] (65)
n n-l (66)

n_ _v
Eg) =35 v expl- 5

Kimura made a series of random wave simulations in a wave tank to
obtain the empirical joint pdf of wave heights and periods, taking U
as the wave height and V as the wave period. The shape factors were
selected to fit the observed data. He found the shape factor m
was close to 2.0, Note m=2.0 corresponds to the Rayleigh
distribution. He also stated the shape factor m correlated with the
skewness of surface elevation. The shape factor, n, varies depending
on the spectral shape, and has a strong association between n and the
spectral width parameter. The correlation coefficient has a close
connection with the spectral width parameter. Kimura concluded that
all the parameters could be estimated from the spectral width
parameters. However, this may be possible only if the spectra have a
single peak.

Longuet-Higgins (1975) extended the Rayleigh law to obtain the
thecretical jeoint pdf of wave heights and periods. The normalized wave
height X and pericd Y, whose means are equal to 1.0, have the

following joint pdf:

2 _ 132
£y oY) = P exp[- Tx2(1 + LL\} 1] (67)
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for x20, —wo<y<w
where v is a spectral width parameter. The marginal distributions are

obtained by integrating f__(.,.) with respect to x or y.

XY

fx(x) T xexp[- %xz], x20 (68)

2

1
2v[1 + __(y—vl)2]3/2’

fY(Y) = —co<y <o (69)

It can be shown that the correlation ccefficient is zero; hence, X and

Y are linearly uncorrelated random variables. However, the product of
marginal distributions is not the joint pdf, therefore X and Y are not
independent. Since wave height and period have been observed as
highly correlated random variables, this is not a desirable feature.
Another undesirable property of the Longuet-Higgins distribution is
that thé period has a negative range. Venezian , Bretschneider and
Jagannathan (1980) describe a modification which removes the negative range

from the wave period. The modified Longuet-Higgins distribution is
2 2
m -1
frg(roy) = B exp[- T2 {1 + 3Dy (70)

for x>0,y20
This density function behaves as the Longuet-Higgins distribution and
it does not have a negative range. However, Cov[X,Y] is zero,
therefore, the correlation coefficient is always zero.

The shape parameter for the Longuet-Higgins distribution may be
evaluated from spectral analysis. Chakrabati and Cooley (1977)

confirmed the practical applicability of the Longuet-Higgins
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distribution provided the spectrum is a narrow band single peak
spectrum. However, in many cases, the spectral shape is a broad
spectral width and sometimes has multiple peaks. The multiple spectral
peaks may suggest the multimodal joint pdf of wave heights and
perieds. The aforementioned density function never exhibits the
multimodal peaks. Thus, nonparametric density estimation should be

taken into consideration as an alternative.

Nonparametric Density Estimation

Nonparametric estimation may be categorized into two groups; aj
series estimators and b) kernel estimators. The series estimator
approximates a pdf, which may or may not be known, in terms of an
infinite series. The kernel density estimator is a natural extension
of the classical histogram estimator. Parzen (1979) proposed an
alternative method to estimate an unknown density extending the idea

of the autoregressive spectra.

Series Estimators

A mathematical theorem states that an analytic function {such
as a pdf) can be expanded into an infinite Maclaurin's series.

o0

f(x) = 5 a,x) (71)
i=0
where .
f(J)(O)
a. &
] j!
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and f(j)(O)is the j-th derivative of f(x) evaluated at x=0. It is
possible to evaluate the coefficients { aj} if the function f(x) is
known. In general, if a finite number of samples {xl,xé,...,xN} is
available, then it is impossible to estimate {aj } from the samples.
However, it may be possible to estimate a £finite number of
coefficients, say m+l, of the following series:

m, .

fm(x) = _E aij (72)
j=0
The Gram-Charlier series has the above form. The coefficients {;j}

are usually estimated from the sample moments. Huang and Long (1980)
fitted the probability density of surface elevation employing the
Gram-Charlier series, and showed the skewed nature of the surface
elevation. Unfortunately the estimated pdf exhibits an undesirable

feature of negativity.

A more general expansion of the series estimator is given by
o
f(x) = £  e.¢,(x) (73)
j=moo J1
where {cj }'s are real valued constants, and {¢j(x)} are real or
complex functions. One would like to estimate the f(x) for -®<x<« ,
however, the samples have a finite domain, say [ a,b ]. Therefore, the
nonparametric density estimators usually have a finite support

[ a,b]. The estimated f(x) is a truncated density of true density,

say £(x) , such that

£(x) = --%-(-’9—“— (74)

g(x)dx
a
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The support of f(x) in the equation (73) is [ a,b ]. A general
strategy to approach this type of problem is to employ a complete
orthonormal set. A complete orthonormal set &%(xﬁ defined in a finite

domain [ a, b] with respect to a weighting function w(x) has the

property
a
J ¢j(X)¢k(X)W(X)dx = éjk (75)
b
where 1.0 if j=k
ajk = {

0.0 otherwise
The harmonic function and the orthogonal polynomials, such as the
Jacobi, Legendre, Chebyshev and Laguerre polyncmials, are usually
applied.

Kronmal and Tarter (1976) used the complex harmonic function for

{ ¢j} to estimate a density function:

_ e—2ﬂ13x

: (76)
¢J
where i2 =-1.0
Hence the estimate fx(x) of the pdf fx(x) for the sample
{xl,xz,...,xN } can be expressed as
£ (x) = I e MM an
X m
m=-*
A N A
where C_ = %- e 2mimsxy
" =1
They suggest N - 2
Cm =0 if Cmc_m m
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where N is the number of samples. Large values of m produce é wiggly
form of E(x). Kronmal and Tarter suggest the mazimum order of m=10.
Recently, Woodfield (1982) successfully applied a similar technique to
estimate bivariate density functions in the gquantile domain. He
applied an objective way to choose the optimal order m based on the

Akaike Information Criteriomn, AIC (Akaike,1974).

Kernel Estimators

Most kernel estimators are based on the idea of a histogram.
Rosenblatt (1956) introduced this type of a technique, and Parzen
(1962) proposed the detailed theoretical justification. The Rosenblatt
estimator of a given sample {xl,xz,...,xN} is

A

£ (x) = # of sample points in (x~h,x+h) (78)
N 2Nh

where h is a real constant, which should be a function of sample size

and population density. Note that

- F,.(x+h) - F_(x~h)
) N N
N 2h (79)

where FN(x) is the empirical distribution functicn

e _ % of sample points s x (80)

Fy () N

Scott and Thompson (1983) proposed an extension of the histogram
estimator which they called the averaged shifted histogram, The
estimator is the average of successive adjacent bins of shifted
histograms. The extension to the multivariate problem is relatively

simple, They successfully applied this technique to represent the
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multidimensional data in terms of the density function. It should be
noted that EN(x) mentioned above is a discontinous step function,
therefore, it does not have a continuous derivative. To overcome this
shortcoming, the smoothing operator, the kernel K{u), may be

introduced

“ "1 x- o
£ () J 7 KEPD drgyn

-0

1

hN j=1

XX,
K1) (81)

N~ =

It can be shown when K(u)=1/2 for |u|<1.0, and K(u)=0 otherwise, the
equation (81) is egquivalent to (79). Several useful kernels are
shown in Tapia and Thompson (1978, p.60). The kernel K(u) must satisfy
the following properties (Woodfield, 1982):

i) sup IK(x)|<OD
X

it) fw |K(x) |dx<e .

iii) 1im |[xK(x)| = 0
b e
iv) J” K{x)dx = 1.0

Similar to the difficulty that a series estimator has in choosing
the optimal order, the kernel estimator faces the problem of finding
objectively a suitable window width, (or bin width), h. Most of the
kernel estimators have employed some sort of subjective way to adapt
the window width. Depending on the kernel used, negative values may
appear in the estimated density function. However, the positivity of
density function is constrained by the development of some kernel

estimators.
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Boneva, Kendall and Stefanov (1971) proposed the “"histospline”
estimator which is a smoothed estimator of unknown probability density
function £(.) with cdf F(.) having a finite support [a,b]. The

histospline estimator f(x) is the mimimizer of

b .
J (£ (x))?dx (82)
a
subject to
X441 . -
. f(t)dt = FN(xj+1) - FN(xj) (83)
|

for j=0,1,...,m

where x, =a and X1 = b, and a = xo,...,xm_'_1=b are an egual
partition of [ a,b ] for the histogram. The base function of the
histospline is the deltaspline named by Boneva et. al. in their paper,
which has the form of a piecewise cubic spline. , The histospline
estimator is in a class of C:qunction, which is an absolutely
continuous function up to the second order derivative. The idea
behind the deltaspline is to form a polynomial which acts 1like the
Dirac delta function. It should be noted that the deltaspline has
negative tails. Some confusion concerning histospline appears in Tapia
and Thompson(1978). They stated that the histospline was a smoothing
estimator of the empirical distribution function, but, in fact, it was
a smoothing estimator of the histogram.

Since ordinary spline functions o not recover the monotonicity of

the empirical distribution function without imposing the side

constrains, the density estimator can become negative. Shape
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preserving spline interpolation has become an important research area
in the numerical analysis field. The B-splines have been extensively
used in the present study; details concerning the spline functions are
discussed in Appendix A,

The B-spline has a high computational efficiency and is easily
extended to higher dimensions even though it lacks the shape
preserving property. Let the domain of the spline estimator [ a, b]

be divided into k-1 egual intervals, such as

k-1
[a’b] = .H [tj!tj+1] (84)
i=1
and
_ b-a
N ™=
The spline estimator is
~ m
F(x) = ¥ C,B,(x) (85)
ey 43
3
where m is the dimension of the B-spline, and
m = k+2
subject to the interpclation conditions
F(t,) = F_(t, (86)
(£5) = Fy(e)
dF(a) _ dF(b) _ 0 (87)
dx dx
where Fy(.) is the empirical distribution function. Similar to the

other kernel estimators, the spline estimator changes the estimated
density function in shape depending on the bin width h. &n objective
method to choose h is proposed. The optimal h for the sample
{x ,x ,..,XN} may be obtained by minimizing the Objective Least square

1 2
Norm (OLN), which is defined as
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§ if N-m-1
oLy, = gL ENEmEL=0 (88.1)

oo otherwise

where

N
-1
6- N-m-1 .E

(Fy(xy) - Flx,)? (88.2)
J

1

The reason for subtracting 1 from the denominator is that the {xj }
are normalized by the average value prior to estimates of density for
the sake of computational efficiency. If the original sample is {yj },

then the normalized sample {x. } is

h|
Y.
x, = = for j=1,2,...,N (89)
4 -
vy :
where N
_=-1_ 5
YTR j=1yj
Therefore, the mean of a sample {xj } is 1.0. Having obtained the

estimated pdf fx(.) of X, the pdf fY(') of Y can be estimated applying

a simple transformation, i.e.

£y (y) = yEg (%) (90)

~

The mean Uy and variance U% are straight forward.

0

by = yEy (y)dy
4~

rm ~
=y xfx(x)dx

)

=y (91)
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02 = r (S—VX‘l:Y)%X(X)dX

= y2a2 (92)

Knowledge of fx(-) is equivalent to knowledge of fYC).

Joint pdf Estimation by Means of Tensor Product Splines

The bivariate extension of nonparametric density estimator by means
of B-splines (Spline Density Estimator) will be introduced in this
section. The technique was independently developed by the author,
therefore much effort was spent on establishing a FORTRAN computer
package. A similar technique using the tensor product B-spline was
introduced by Bennett(1974), de Boor(1l979) introduced an extremely
efficient algorithm for the tensor product spline. Making use of de
Boor's algorithm for the spline density estimator, the technique
developed in this study is computationally much faster than Bennett's
method.

First, it is necessary to define the empirical bivariate

- N
distribution function FN(X,Y) of N pairs of samples {xj oF } for
j=1
the random variables X and Y.
# of sample points = x and £ ¥ {93)

FGy) = N

The function FN(.,.) has the same statistical properties as the
univariate case and is a consistent and unbiased estimator of the
~population distribution function FXY(.,.l The bivariate histogram

plays a basic role in the spline density estimator. Suppose N pairs of
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N
samples {xj,yj}j=1 exist in the real domain [aX rby ] [aY 'by 1,
{which is a rectangle in the plane). Let the domain be divided into

equal rectangular elements, such that

ky-1
ky_)
[ay,by]= i [t y - ty4p57] (94.2)
and
b, - a
_ _ . X~ %
h, = ti41,x ~ Y4,% 1 (95.1)
b, — a
= - . S {
By = 51,y T Y, i-1 (85.2)

The bivariate histogram density estimator is

: — hY)= # of samples 1n[tj,x’tj+1,x]x [tj,Y’tj+1,Y] (96)
» b1 >
H X hXhYN
where tj,X £ X 5 tj+1,X
and t. £y s t,
j,Y j+1l,Y
The corresponding distribution function is
X (¥
F : - £ : 97
FH(x,y,hX,hY) J fH(u,v,hX,hY)dudv (97

8y &y

The population distribution function FXY(x,y) may be estimated by
interpolating %H(x,y;hx,hY). The technique used here is the tensor
product splines which is a tensor product of one dimensional B-
splines. Let %S(x,y;hx,hY) be the smoothed distribution function of
%H(x,y;hx,hY).

. ™ Ty
Fg(x,y3hy,hy) = I I C..B (x)B.(y) (98)
i=1 j=1 ™ L
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where My

l‘l'l.Y

C..
1]

= ky+2
ke +2

's are constants

Bi(.),Bj(.) are the cubic B-spline basis

The number of

coefficients

to be estimated the

oMy my

coefficients are obtained by the following conditions:

~

~

Falty w0ty vilghy) = Bty ooty yibyohy), (83.1)
for i=1,...,kxandj=1,...,kY
dFglay,ts y3hy.hy) ) dFS(bX,tj’Y;hx,hY) -0 (99.2)
dx dx ?
for j=1,... kY
dFS(ti,X’aY;hX’hY) _ dF (ty i, X Y’ X’ hY) (99.3)
dy dy
for i=1,...,kX
o . or
dx dy dx dy }
25 25 .
d?r (ax, v X,hY) i d FS(bX,aY,hx,hY) o
dx dy dx dy (99.3)

The number of conditions provided above is my mY=kaY+2(k +kY)+4 .

and the system of equations to obtain { C

to be solved is a (mX X mY)x( my, X mY) matrix.

. } is completed. The matrix

In general, this is a

large matrix so a vast amount of computational effort may be expected.
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However, the computational load can be reduced by intreducing de
Boor's algorithm (de Boor,1979) which makes two small tridiagonal

(mX X mx) and (mY X mY) matrices to be solved. This will be discussed

in Appendix A.

~

It may be shown that FS is a linear mapping of %H in the spline

space. The shape of F_, 1is significantly dependent on the choice of

H
bin widths hx and hy, which are called the smoothing parameters.

The wider they are, the smoother the estimated density function. The
optimal smoothing parameters may be cobtained by extending the idea of
Objective Least square Norm (OLN) to two dimensions.

§ if N-m-2>0

OLN = { (100.1)
® otherwise
where
1 N

F o 2
ol izl[ Fy(xgsyy) = Fglxpoy s ,h0)] (100.2)

)

N is the number of samples
and m is the number of spline coefficients
To make programming easy, the sample variables are normalized by their

N
average values. Suppose the original samples are {ui ,vi }i=1' The

normalized samples {xi . yi}§=1 can be obtained as follows:
u
x, = —= (101.1)
1 —
u
Vi
y, =% (101.2)
l —
v
where
_ 1 N
u = E-‘Z us (101.3)
i=1
— 1 N
v “ N .Z vi (101.4)
i=1
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Since the normalization process reduces two degrees of f£freedom, an
additional number 2 is included in the penalizing factor. In total,
one hundred different combinations of hx and hy are examined such

that

=
]

1/NIX for NIX=1,2,...,10 (1062.1)

P
I

1/NIY for NIY=1,2,...,10 (102.2)

It seems reasonable to check the proposed density estimation
technique using the data from a known population density function.
Figure 20 shows the scatter diagram of 500 samples generated from the .

independent bivariate normal distribution which is

£y OV = 57 e L %((x;:")z - (3%1)2)] (103)
where
B = 1.0
uy =1.0
g, = 1/5
e 1/5

Contour lines in Figﬁre 20 are the probability density of generated
samples. The true density function fxy(x,y) is depicted in Figure
21. The contour map of log values of the OLN for this data set is
shown in Figure 22. A logarithmic scale is used to compress
deviations of the OLN values. The peak of OLN appears at NIX =5, NIY

=4, Based on these smoothing parameters, the best estimate of the
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joint pdf for the proposed criteria is obtained and shown in Figures
23 and 24. The contour plots of the true and estimated densities were
visually examined to check whether or not the proposed technique was
acceptable. The location of the mode for both densities agrees well,
but the peak of the estimated density is slightly less than the true
density. Small negative values also appear in the estimated density.
Over-all, the features of both densities agree well.

Another numerical evaluation of the density estimation technique
was made generating 500 samples from the modified Longuet-Higgins
distribution (equation (70), p.69). A series of numerical simulation
runs: was conducted for different wvalues of the spectral width
parameter., The true density function is shown in Figure 25, where the
parameter is taken as 0.2. The true density function has a very narrow
mode. A realization of 500 samples is depicted in Figure 26 . Contour
lines in Figure 26 show the true probability density of generated
samples. Samples appear around ¥=1.0, which corresponds to the mean of
wave periocd. The estimated joint pdf is shown in Figures 27 and 28,
The estimated pdf does not have a density peak as high as the true
pdf; however, the basic feature of the true density function is
recovered in the estimated pdf. The spline density estimator seems to
work well and is acceptable, in a practical sense, even if it shows
negative values of estimate.

The joint pdf of wave heights and periods was estimated employing
the spline density estimator. A scatter diagram of a typical data set

of wave heights and periods is produced from data obtained by a
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Figure 20. Scatter diagram of 500 samples generated from independent
bivariate normal distribution. {Contour lines are the true
probabilty density)

Waverider buoy at 3 p.m. on March 13, 1980, near Port Mansfield,

Texas. There are 240 samples shown ih Figure 29. The OLN (see

Figure 30) chooses the optimal smoothing parameters NIH=2 and NIT=4,

B



TRUE-POF

3.97 |

2.65 |

Figure 21. The true independent bivariate normal density function.
(means are 1.0, variances are 0.04 and correlation coefficient is 0)

here NIH, NIT correspond to NIX and NIY respectively in the previous
notation. The best estimate of joint pdf is shown in Figure 31. The

mutimodal feature of the pdf can be seen in Figure 31. The contour
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Figure 22. The contour map of -log(OLN) for the 500 generated
samples. (The peak occurs at NIX=5, NIY=4)

plot of the estimated pdf clarifies the location of modes and %s shown
in Figure 32. The negative values may be replaced by zeros without
significantly altering the result. For better visualization of the
estimated joint pdf, the flat surface appearing in Figure 33

corresponds to the negative values. Comparing this data set with one
obtained in a different season, Figure 34 shows the best estimate of
joint pdf based on 319 samples cobtained at 3 a.m., August 13, 1981,

near Port Mansfield. The corresponding contour map is shown in Figure
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POF

Figure 23. The estimated independent bivariate normal density
function. (means are 1.0, variances are 0.04 and correlation
coefficient is 0)

35, The multimodal peaks appear in the estimated density. The peaks

possibly indicate the different wave generation sources. The joint pdf

estimation for the data obtained in March 1980 and August 1981 was
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Figure 24. The contour plot of estimated independent bivariate normal
density function. (means are 1.0, variances are 0.04 and correlation
coefficient is O)

also conducted. The multimodal peaks appeared in all cases, and the

location of modes consistenly moves with time. Adjacent data sets,
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Figure 25. The true meodified Longuet-Higgins density function. {the
spectral width parameter is 0.2)

six hours apart, do not change the joint pdf dramatically for the

March case, but the jeoint pdf changes significantly in some of the

August data sequences. The reason for this may be due to noise from
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Figure 26. Scatter diagram of 500 samples generated from the modified
Longuet-Higgins distribution. (Contour lines are the true probabilty

density)

wave sampling. The noise would be more noticeable if the wave heights

were not large enough to be measured by the device.
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Figure 27. The estimate of modified Longuet-Higgins density function.
(the spectral width parameter is 0.2)

The joint pdf which represents the long-term wave statistics may be
obtained using a large sequence of data sets. Figures 36-41 show the
estimated joint pdf based on 54 successive data sets, each of which

contains approximately 300 waves. The estimated joint pdf of March
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Figure 28. The contour plot of estimated density function. {the
spectral width parameter is 0.2)

1980 and August 1981 was selected to characterize the wave statistics

for each month. Note the single mode that appears in March and the

double modes that appear in August. The larger peak in August appears
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Figure 29, Scatter diagram of wave heights and periods samples.
(Data obtained by Waverider buoy B at 3 p.m., March 13, 1980, near
Port Mansfield, Texas)

at half the mean period. The second peak in August is located about

the mean value of the period. It should be emphasized that the
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Figure 30. The contour map of -log(OLN) for sample wave heights and
periods in Figure 29. (The peak occurs at NIH=2, NIT=4)

Longuet-Higgins distribution has a single mode which is located at the

mean period; hence, it never shows the multimodal joint pdf features

obtained by the proposed nonparametric density estimation technique.
Nonparametric density estimation is an excellent method for

representing a large amount of Ilong-term data in a concise form,
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Figure 31. The best estimate of joint pdf for data obtained by
Waverider buoy B at 3 p.m., March 13, 1980. (near Port Mansfield,
Texas)

without masking the statistical characteristics of the data set. This
was one of the major objectives of the study. The parametric density
estimation may significantly alter the estimated density profile from

the population density. Nevertheless, the direct practical application
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of the proposed technique may be difficult in the actual offshore
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Figure 33. The best estimate of joint pdf. Negative values are
replaced by zeros. (Data obtained by Waverider buoy B at 3 p.m.,
March 13, 1980, near Port Mansfield, Texas)

structural design. However, the wvisual impression of data
representation can be achieved by the method presented. A question
might be posed on how the joint pdf and spectra are related. Does the

spectral information provide the joint pdf estimation? 1Is it possible
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Figure 34. The best estimate of joint pdf for data obtained by
Waverider buoy B at 3 a.m., August 13, 1981. (near Port Mansfield,

Texas)

to estimate the spectra from the joint pdf information? The answer to
the first question is "NO" unless the parametric density estimation is
postulated. Longuet-Higgins (1975), Goda (1978), and Kimura (1981)

have examined the correlation between the spectral parameters and the
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The answer to the second question is "YES".

"parametric” joint pdf.
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Figure 36. Monthly joint pdf of March 1980. (Data obtained by
Waverider bucy B near Port Mansfield, Texas)

The author extended the idea of Bretschneider to estimate the spectra

from the joint pdf. This will be discussed in a separate chapter.
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Figure 41. Monthly joint pdf of August 198l1. Negative values are
replaced by zeros. (Data obtained by Waverider buoy B near Port
Mansfield, Texas)
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EMPIRICAL WAVE SPECTRAL ESTIMATICON
General

Spectral analysis has become a popular diagnostic method for the
description of random phenomena, and reveals a detailed energy
distribution as a function of frequency. It should be emphasized that
spectral analysis is a "statistical” technique employed to investigate
a "stochastic" process which is determined by a certain type of
probabilistic law. Ocean waves are a random phenomena and exhibit
very complex states. To investigate wave characteristics statistical
approaches have to be employed. The statistical properties of ocean
waves can be described in two ways: a) the wave statistics using the
zZero up-crossing method, and b) spectral analysis. The wave statistics
are discussed in the previous chapter. This chapter will be devoted to
introducing available spectral analysis techniques.

Extensive research on spectral analysis has been conducted in the
last two decades, however, most of the theories were developed by
statisticians, and involve the use of sophisticated statistical
.techniques. It is convenient to introduce modern empirical spectral
analysis techniques without including the rigorous theoretical
background. Spectral analysis may be classified into two categories:
a) nonparametric, and b) parametric estimations. The well-known
autocovariance method, commonly referred to as the Blackman-Tukey

method (1958), is nonparametric in nature. Cooley and Tukey (1965)

106



introduced the Fast Fourier Transform (FFT) to reduce a large amount
of computational effort of discrete Fourier transforms, The FFT has
been extensively applied to the estimation of spectra. It can be shown
that both methods; namely Blackman-Tukey method and FFT method, are
theoretically equivalent. These techniques are called nonparametric
spectral estimation. Parametric spectral estimation can be considered
as a model identification of time series. Burg (1967) made an
innovative study on spectral analysis employing the entropy concept.
The method consists of essentially finding a linear whitening filter
which maximizes the information entropy of data. Akaike (1969) and
Parzen (1969) found the linear whitening filter of data employing a
different approach. The linear whitening filter has the true
spectrum, hence the spectral estimation can be made finding an
adequate whitening filter, commonly referred to as Auto-Regressive
(AR) spectral estimation.

The main objective of spectral analysis is to detect the best
estimate of true spectrum from a sample observation. Chatfield (1980),
Jenkins and Watts (1968} provide a detailed discussion. A more
advanced discussion is in Priestley (1981). A concise summary of
recent developments on time series analysis can be found in
Newbold(1981).

A brief overview of the theoretical background of spectral analysis
is discussed in section 2. Nonparametric estimation is presented in
section 3. The AR estimator is outlined in section 4. & comparision

of various estimators will be found in the next chapter.
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A Brief Overview of Time Series Analysis

Thé theory of time series is discussed separately as discrete time
series and continuous time series. Most data sampling is made in the
form of digital reading with egual sampling time intervals. Since the
computer input must be in a digital form, the continuous data in an
analog form must be discretized before actual computations can take

place. The discrete time series is of the main concern; namely
{x(t), t=0,%1,%2,,,.,+=}

This is an infinite sequence of random variables. The mean of X(t) is

dencted by
u(t) = E[x(t)] (104)

The covariance, usually referred to -as the autocovariance, is

expressed as

R(t;1) = cov[x(t),x(t+1)]
E[(x(t) - u(t)) (x(t+1) - u(e+r))] (105)
T=0,%21,...,tm

These parameters are all dependent on time (nonstationarity) and it is

very difficult to deal with a nonstationary time series. It is
extremely convenient to assume that the parameters are all independent

of time and the means are all zero, namely:

u(t) = E[x(t)] = 0 (106)

E[x(t)x(t+1)] {107)

R{t)

108



The power spectral density function is a discrete Fourier transform of

R(T)

oo

S(f) = & R{t)e

T:—W

-2mift (108)

where f is the frequency -0.5< f <0.5 and 12 =-1. fN=0.5 is called

the Nyquist frequency. Since R(T }=R(-1 ), (108) can be expressed

S(f) = R(0) + 2 £ R(t)cos2nfr (109)
=1

It is easy to show

0.5
[ S(f)df = R(Q) = E[xz(t)] (110)
-0.5

The total area underneath S(f ), identically R{0), is the variance of
the series, and is proportional to the mean energy of the process. The
power spectra can also be defined in the following manner (Jenkins and
Watts, 1968):

N/2

I x{t)e
=-N/2

S(£) = lim —Znift (111)

N-so N

The power spectral density function is a counterpart of a pdf for
ordinary statistics. As a counterpart of cdf, the power spectral

distribution function T(f) can be defined in the following form:
£ .
r(f) = J 5(0)de (112}
-0.5
The autocovariance can be expressed in terms of T (f).
0.5
~2nif
R(T) =[ e “"HTar(e) (113)

-0.5

Sometimes the autocorrelation function p(t) , which is defined as
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R(1)
) (114)

p(T) =

=]

is used instead of R(T). Then the corresponding spectral distribution
function is upper bounded by 1.0. However, to aveid confusion, the
power spectral density function in terms of p{(t) will not be further

discussed. Technically there is a difference of the constant R(0) in

practical applications.

It is apparent that S(f ) is an even function with respect to f =0
by inspecting eguation (109). This is commonly called a two-sided
spectrum. Since the negative frequency domain of S(f) is completely
the mirror image of the positive domain, it is not necessary to look
at the negative fregquency which has no physical meaning. Therefore,

the power spectral density function is often represented by the one-

sided spectrum

8,(f) = 28(f), 02f<0.5 (115)

The linear filter theorem provides another way to define the power
spectrum. L general class of linear processes is the AutoRegressive
Moving Average process (ARMA), The ARMA process of order P and q is

denoted by ARMA(PDP, 4, o, 3,02),and defined

x(t) + o(D)x(t-1) + ... + a(p)x(t-p)
= g(t) + B(L)e(t-1)+...+B(q)e(t-q) (116)

where o , B are coefficient vectors
T
[a(D),...,a(p)]

[B(L),...,8()]

R
n

T

t ™
il
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e(t) = the independent identically distributed
white noise having mean 0 and variance 02,
denoted by WN( 0,02)

It can be shown that the process X(t) has the true spectrum ( see

Jenkins and Watts 1968) 2
o2 | 1+ § s(k)e‘z"ifk-,
S(f) = k;I —, —0.55£0.5 (117)
14+ Z a(j)e—ZFifjl
j=1

Most time series can be expressed in terms of ARMA processes. Special
classes of the ARMA process are the Auto-Regressive (AR) process of
order P and the Moving Average process of order q which are denoted
by AR(p,®,02) and MA(q, B, 02). The MA process is always a
stationary process. However, the AR process is only stationary when

the roots of the polyncmial

P i
14 I a(id)z’ =0 (118)
j=1

lie outside the unit circle. Having assumed the stationarify of time
series, the process may be expressed in terms of BAR. Parzen (1982)
assumes the stationary time series is AR(w= ), the estimate of AR( » )
can be obtained approximating the sample process by a finite order of

the AR equation. The spectrum of an AR( P) is

o2

P
1+ £ a(j)e
j=1

S(f) =

5 » —0.52£<0.5
~2mif (119)

Nonparametric spectral estimation is based on the definition of
(109) or (1113, and parametric spectral estimation is based on the

definition (119}.
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Nonparametric Spectral Estimation

The theory of time series states that a process is an infinite
sequence of random variables; however, practically it is only possible

to observe a finite number of sample values, namely

{x(t), t=1,2,...,N}
where N is taken to be an even integer for the sake of simplicity.
A natural estimator of the power spectra for a zero mean stationary

process is

I(f) -2nift

Z |-

x(t)e

o =2
[y

N
x(t)cos2nft)2 + ( & x(t)sin2nft)2}
: t=1

{« (120)

t

=]
=

1
which is usually called the periodogram.

The ©pericdogram can be expressed in terms of a  sample

autocovariance function estimator

N-1 )
I(E) = £  R(r)e 2THT
T=={N~1)
~ N-1 . (121>
= R(0) + 2 £ R{t)cos2nfrt
T =1
wherei . N1
R(T) = —N.' b X(t)X(t"‘T), T=0,1,-.-,N—1 (122 1)
t=1 ’
R{t) = R(-1) (122.2)

The estimator R( 1) is an asymptotically unbiased estimator of R{ t).
Another estimator of R( T) which often appears in the literature is
N-t1

I x{(t)x(t+t), 1=0,1,...,N~1 (123.1)
=1

A1

1
N-T
t
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R(1) = R(-1) | (123.2)
The estimator ﬁ(T ) can be shown to be an unbiased estimator,
however, ﬁ(r } has less mean square error (Jenkins and Watts, 1968).
The covariance matrix (Toeplitz matrix) of ﬁ(r ) is always positive
definite which implies that the inverse of the covariance matrix
always exists. This 'properfy becomes vital when autoregressive
spectral estimation is considered. Hence, ﬁ(r } is recommended for
the autocovariance estimator. It is a fact that I(f ) is a naive
estimator that displays a very wiggly shape due to the large variance.
The natural extension of the periodogram to overcome the shortcoming
of large variance was proposed by Bartlett. He suggested subdividing a
series into k pieces, then taking the average of each pericdogram.
Suppose Ii(f) is a periodogram of an i-th subseries, say of length

M, a smoothed spectral estimator §(f ) may be obtained

~ 1 k
S(f) == I I_(f)
k i=1 i
k M-1
~ ~ 1 ol
=-% I (R,(0) + 2 R,(1t)cos2 f1) . (124.1)
_ i i
i=1 =1
where
- 1 M—T

This is essentiaily identical to that performed for the whole series

as follows:

~ N-1 ~2mif
S(F) = 1 wp (T)R(T)e “THT
=—(N-1)
N M =
= R(0) + 2 WB(T)R(T)COSZHfT (325)
=1
where
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1 - % ]T]SM

W, (1) =
f}  otherwise

The function WB(%) is called the Bartlett lag window. It should be
noted how the lag window affects the estimated spectra.
Mathematically, it is a weighted average of the periodogram. The
variance of I(f ), var[1I(f )], 1is large and is independent of the
number of samples N. On the other hand, the wvariance of é(f Ve
var[S5(f )], can be reduced by letting M be a small wvalue. 1In other
words, ;(f ) is more closely distributed around E[é(f }]. However,
the bias, E[;(f 3]-S{f ), becomes large as M decreases. Hence g(f )
may differ from the true S(f ). In order to compromise the
contradictory facts, it is necessary to choose a suitable truncation
point M. The idea of the Bartlett 1lag window can be generzlized by

examining the properties of the lag window. The lag window can be

characterized as

(1) w(0) =1 (126.1)
(2) wit) = w(-1) {126.2)
(3) w(x) = 0 for 1>M (126.3)

As the power spectrum is the Fourier transform of the autocovariance
function, the spectral window W(f) is the Fourier transform of the

lag window

W(E) = Jf e (127.1)
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also

w(t) = | wipre " tas (127.2)

—co

The spectral window satisfies the following conditions
(1) I“ w(f)df =1 (128.1)
(2) W(E) = W(-£f) (128.2)

The smooth spectral estimator can be expressed in terms of the

spectral window.

R 0.5
S(f) = J‘ WOODI(E-A)dx (129)

-0.5
Therefore S{f ) is a convolution of the periodogram with respect to

Ww(.). Since the spectral window is the Fourier transform of the lag
window, the smaller M is, the wider the spectral window. Several lag
windows have been proposed. A comparison of lag windows can be found
in Neave (1972). Common types of lag windows and corresponding
spectral windows are shown in Table 11-. It can be seen that the
rectangular spectral window has zeros at j/2M where j's are positive
integers, and oscillate rapidly around zerco. This is an undesirable
feature since it may introduce a large negative peak. The Tukey window
also exhibits a negative tail in the spectral window, but the negative
contribution is considerably smaller than for the rectangular window.
The Bartlett window is no longer used because its properties are

inferior to the Tukey and Parzen windows (Chatfield, 1980). The Tukey

and Parzen windows give very similar estimated spectra. The Parzen
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window has a slight advantage of always being positive and therefore
will not prodﬁce negative spurious estimates. Neave (1972) shows that
the Parzen and Tukey windows are superior to most of the other
proposed windows. However, the Parzen window is recommended in most
cases.

A question of the optimal choice of a truncation point has not yet
heen solved in a satisfactory manner. Parzen (1964) suggested an
evaluation of the effect of a number of different truncation points.
Jenkins and Watts (1968) suggested trying three different values for
truncation points and then observe the variation of estimated spectra.
An empirical suggestion was made by Chatfield (1980} using a
truncation point M=2/N where N is the number of samples. Recently
Wahba (1980) developed an objective optimum smoothing procedure for an
estimate of the lag spectra based on smoothing the log periodogram
with & smoothing spline. The method employed by her is rather
complicated and has not become a popular algorithm in practical
applications.

Another possible method to estimate spectra having less variance
than the periodogram is the smoothing periodogram which simply groups
the periodogram ordinate in sets of size m and calculates their
average

~ m
S(f) = z

2 |~

I(f)) (130}
=1

Application of the FFT enables one to perform a dquick calculation of
the periodogram. The computational effort of spectral estimation can

be reduced from the one based on the estimated autocovariance.
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A measure of reliability for the spectral estimator can be
expressed in terms of a confidence interval. Assuming the normal
stationary Pprocess, meaning that each observation comes from a
multivariate normal distribution, it can be shown that the periodogram
has the form of the sum of the squared independent normal random
variables. Hence the ratio 2I(f )/S(f ) is distributed as a chi-
square distribution with two degrees of freedam. The 95% confidence

interval of a periodogram at an ordinate f is

—flifl——-<s(f)< —flifl—— (131)
X2,0.025 X2,0.975
where Xi 8 is a chi-square value for the degree of freedom o at a’
»

level B significance. The above confidence interval is rather broad
and is a reflection of a large variance of I(f ). A simple extension
leads to the confidence interval of a smoothed spectral estimator. The

95% confidence interval can be expressed in the following form

(Chatfield,1980):

<S(f)c ¥ (132)

2 2
Xv,0.025 Xv,0.975

where v is a degree of freedom for the selected lag window. The

vé(f)

valves of v for the Tukey and Parzen window are 2.67N/M and 3.71N/M
respectively. The corresponding v for the smcothed periodogram is

2m. The confidence interval around S(f ) is usually much smaller than

that of I(f ).
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Parametric Spectral Estimation

The basic idea of the Auto-Regressive (AR) spectral estimation is
simple. A mean zero stationary process {X(t)} may be well

apprcximated by a finite order P AR process

x(t) = —a()x(t-1)-a(2)yx(t-2)-.. .-—a(.P)x(t—p)+e(t) (133)

where g(t) is a white noise series with a mean of zero, and variance
o2 . As stated earlier, an AR process has a true spectrum. Hence the
methodology of the AR spectra is to estimate AR coefficients {o(.) }
and the optim;l order of the AR process .P. Several methods have been
proposed to estimate {2(.) }. The Yule-Walker Estimate (YWE) has been
extensively used for this purpose. Burg (1967) approached the spectral
estimation from a different way commonly called the Maximum Entropy
Method (MEM) of spectral analysis. The MEM spectral analysis is
identical to fitting an AR model to the random process (Ulrych and
Bishop, 1975). The only difference from the Yule-Walker Estimate is
the method of estimating the AR coefficients. Newton (1983b) calls it
the Burg algorithm rather than th? MEM spectra. A comparison of YWE
and MEM can be seen in Ulrych and Bishop (1975}.

The order criteria of AR model plays another wvital role of
parametric spectral estimation. The first objective criteria was
proposed by Akaike (1969) commonly called the Final Prediction Error
(FPE). Akaike (1974) proposed another objective criteria based on
maximum likelihood ideas, named the Akaike Information Criterion

(RIC)., Parzen (1977) approaches this problem in a slightly different
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way. His criterion is named the CAT ( Criterion for Autoregressive
Transfer function).

Since a rigorous statistical investigation was not the purpose of
this study, the following discussion will be made from a practical
application point of view.

The Yule-Walker equations of AR( P,?,cz ) can be derived without
mu;h difficulty. Multiplying X(t- 1) on both sides of the AR eguation

and taking the expectation leads to

R(t) = -a(L)R(1-1)-...~a(P)R(T-P) + &10% (134)
where R(1) = E[x(t)x(t-1)]
_ /1 =0
St = {5 10

Using the first P . autocovariance estimators, R(t )} in (122.1), the
AR coefficients, { @ }, may be estimated. The estimator { o« } can be

obtained solving the following linear systems of equations:

CRO) R(L) .... RP-DT [a(l) ] BION
R(1)  R(Z) .... R(P-1)]  |a(2) R(2)
R(P-1) R(P=2)... R(0) o (P) R(P) AL

The PxP matrix on the left hand side is called a Toeplitz matrix,

and is denoted by
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I'p = TOEPL(ﬁ(O),...,ﬁ(p-l)) G

since the first row contains the distinct elements in the matrix. The

estimate of 0° is called the residual variance of order P , and is

denoted by 0;
;; = R(0) + a(1)R(1)+. ..+a(P)R(P) (137)

¥

Let { o, } be the AR coefficient estimate vector of order P ,

namely
o _ o ~ ~ T
{U-p} [ap(l)sap(z)s"°,ap(P)] (138)

Levinson (1947) provides a recursion relation between { o } and

{ ap—l}' P-1 . .
[z o G)RE-3)]
. iz0 P
a (P) = - —3 - : (139.1)
P 52
p-1
ap(j) = ocp_l(j) + ap(P)otp_l(P—j),j=1,...,P—1 (139.2)
e I _ - _ -2
oy op_l[l ap(P)] 1 - o 2(P) (139.3)
and
- _ R
0!.1(1) = m {139.4)

of = R(O)[1-0 (1] 1-a,2(1) SLELoe)

Therefore { & } can be quickly calculated without solving a
P
matrix. The foregoing method is the YWE. It should be noted that the

estimator ﬁ(T ) considers values outside of the sample observations as

being simply zero, i.e.:

~ 1 N
R(t) =3 I y(t)y(t-1) (140)

t=1
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where vy(t£)=0 t<T and N<t + 1

y(t) = x(t) otherwise

Newton (1983b) addresses this effect as a possible cause for the poor
estimate of the AR coefficient in some circumstances, especially when

the roots of polynomial
1+ ap(l)Z+...+ap(P)ZP -0 (141)

appear around the unit circle, the YWE's display significantly poor
estimates. A numerical study of several AR coefficient estimation
techniques may be found in Newton (1983b).

A careful inspection of Levinson's algorithm leads teo the
following: all &p(j) and &i can be obtained from %(0) and &p(P),

P =1,..,M, where M is a maximum order of AR. R(0) is simply

R(0) =

It =

1
5 x? (t) (142)
t=1

The Burg algorithm employs a different approach to estimate ap(P).

~

The estimator up(P) is obtained by minimizing the backward and forward

prediction error of AR( P). It is denoted as Ep , given by

N-P P
r [{x(t) + ¢ ap(k)x(t+k)}2

11
E., = — ———
P =
2 N-P 1 k=1

t
P
+ {x(t+p)+ L ap(k)x(t+p~k)}2] L=
k=1

It can be shown that Ep achieves a minimum wvalue with respect to
ap(P) taking

J9E

Bap(®)  °

122



Recalling the recursive relation of ap(P), E, can be expressed in the

following form:e

P
1 1 2
== — I
Ep =2 np ol LB, (&) +ap®)F__ (£))° + (Fp_l(t)+ap(P)Bp_l(t»g]
where
p-1
Bp_l(t) = kio ap_l(k)x(t+k), ap_l(O) =1
p-1
Fp—l(t) = kio apnl(k)x(t+P-k), ap_l(O) =1
Hence the estimate of o_(P) can be expressed as
N-P
-2 B (0)F_ _(t)
- g=p Pl 7 Rml (144)
% (@) = "N-P N-P
0% Fp_l(t) + E Bp_l(t)

t=1 t=1
The right hand ;ide of (l44) contains only { &p—l('ﬁ' therefore
&p(P) can be estimated recursively using Levinson's algorithm in the
following manner:

-

1) p=1 Bo(t)

x(t)

Fo(t) = x(t+1)
N-1
-2 tElx(t)x(t-i-l)

N-1 N=1
T x2(t+1)+ I x2(t)
t=1 t=1

x{(t) + “1(1)x(t+1)

It

&1(1)

2y P=2  By(D)

Fl(t) = x(t+2) + a1(1)x(t+1)

N-2
-2 ¥ B,(t)F, (t)
=1 1 1
N-2 2 N-2 2
T F (t)Y + Bl(t)

t=1 . t=1

ay(1) = ap(1) + ay(2)ay (1)

[1-o2 (2]

&2(2)
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Therefore {Gp(l),---,aP(P) } can be obtained using equations (144)
and (139.2). Equation (139.3) gives the P-th order residual estimate

~

g2

P -

It is necessary to determine the optimal order of the AR model
which adequately approximates the stationary time series {x(tH}. As
stated earlier, three criteria are commonly employed for this purpose.
Bkaike's FPE, which is a similar expression of an unbiased residual

variance etimator of AR order p for the stationary series of length N,

is expressed as

N+P+l "o
N-P+1 °P (145)

FPE(P) =

and the order is determined as the wvalue of p minimizing FPE(p).
Akaike (1974) proposed an alternative order criterion, AIC, which has
been extensively applied to various statistical problems. The order p

is determined so0 as to minimize AIC(p) where:

~

AIC(P) = 2n 0% + for P 2 1 (146)

Parzen {(1977) introduced another order of determination criterion, CAT

for p>l which is defined as

CAT(P) = %
h|

-deto a -y of 147
(1 N)Uj (1 N) 9p ( )

I~

1
A comparisen of these criteria is shown in Beamish and Priestley
{1981). AThe RIC and-CAT are more frequently adopted for the order
criteria. It should be mentioned that both criteria provide almost

always the same order for long time series.



The order determination of the AR spectral estimation is a
counterpart of the choice of optimal truncation points for the window
spectral estimator. The window estimator has a theoretical
justification on the confidence interval; on the other hand, the AR
spectral estimator lacked a way to estimate the confidence interval
until recently. Newton and Pagano (1984) made a great breakthrough on
this limitation. The basic idea is that the inverse of the AR spectra
with a known order \is a linear combination of asymptotically
distributed normal random variables. A detailed discussion can be

found in Newton and Pagano (1984).
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PDF SPECTRAL ESTIMATION

General

The physical interpretation of power spectra is that the ordinate
of a given frequency is approximately proportional to the energy of
the frequency. The same type of function may be derived from a
different point of view. Accordingly, an alternative method of
spectral estimation is develcoped by means of the joint pdf of wave
heights and periods. Thus this method is named the PDF spectra. The
original idea was proposed by Bretschneider (1959} who introduced the
summation function of the joint pdf.

The PDF spectra will be derived in the next section, and a
comparison of the PDF spectra to selected empirical spectral

estimators is shown in a subsequent section.

PDF Spectra

The nonlinear effect of surface elevation has been discussed in a
series of studies by Longuet-Higgins (1963), Tayfun (1980), and Huang
(1983). However, the nonlinear effect does not contribute
significantly to the surface elevation process. The following
discussion assumes that the surface elevation is a linear process, and
statistics of the wave heigh; follows the Rayleigh distribution. Using

statistics of the Rayleigh distribution, the second moment of wave
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height H and the variance of surface elevation n have the following

relation;
n? ==H?

0|

(148)

Define the second moment distribution function of H as follows:

T
= 2 (149)
PH(T) Jo fm E PHT(E,c)dEdc

0

and H? = PH(m)

This function is the counterpart of the power spectral distribution

function Fn(f).

f
Fn(f) = J Sp(t) dt (150

o

where S,(f) is the one-sided power spectra, i.e.:

Sp(E) = 2 Jw R(1)e 2" HTgq (151)

R(t) = cov[n{(t),n(t+t)] (152)
and  n?=Tp(=)

Another way of obtaining Sn(f) is by differentiating Fn(f) with

respect to f, so that

Sy () = Qlﬂéil (153)

An analogy to the relationship above is the density function SH(g)

which can be defined as

_ drue) _ 2 (154)
Sy(e) = 7 £2P . (€,0)4dE
Q
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The PDF spectra is defined by transforming S (§) into the frequency

domain such that

B 1
s.(6) = | &) P, (155)

o]

Recalling equation (148), Sp(f) and S,(f) have the following

relation:
1
Therefore
S, (£)df =-l S, . (f)df 156
n 8 o] (156)
o o

Assume that the fellowing relation is true for any constant fo

f f
o

o]
I Sp(£)df = % S, (£)df (157)
o] 0

Then S5,(f) and SH(f) differ only by a factor of 1/8,i.e.:
Sn(f) = = 5. (£) (158)
n 8 “H

The PDF spectra reguire the estimation of the joint pdf PHT(i,Q) '
and therefore the nonparametric density estimation becomes vital. The
joint pdf PHT(E,Q) is estimated employing the technique by means of
B-splines discussed in a previous chapter.

The normalized wave height and period are

-
H
v-1
T 2
The truncated joint cdf of X and Y is estimated by
. My My
Py (6¥) = %0 % CyBrOOB;(y) (159)

i=1 j=1
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which has a finite support [0, a ]Jx[0,b ]. The joint pdf is estimated

by differentiating (159) with respect to x and y , so that

R Tx My

Pyy(6¥) = I I Cj4DyB; (X)DyBy(y) (160)
i=1 j=1

where DX’DY are differential operators with respect to x and y
respectively. Making use of the probability transformation, SH(f)

can be estimated as

s (£f) = LI Ci383DyBs(y) (161)
T i=1 j=1
where

H, T are the mean of H and T
= 1/yT

a
g{ = J 2D B. (x)dx
o

Comparison of Spectral Estimators

In total, 50 wave data sets from a Waverider buoy placed near Port
Mansfield during March 1980 and August 1981 were selected to examine
several spectral estimators. The statistical summary of the data sets
is shown in Tables 12 and 13.

There are several software packages for the general purpose of
spectral analysis. SAS and IMSL have been widely used in the various
problems. FESTSA of Brocks (1976) is designed for the purpose of

processing geophysical data. It performs the window spectral
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Table 12. Statistical summary of wave data from Waverider buoy B in
March 1980. (data obtained near Port Mansfield, Texas)

Number
Data of Correlation
NO D ;2 Skewness Kurtosis Waves Coefficient H?
1 MR13P3 0.2526 -0.0652 2.8882 240 0.6219 1.9017
2 MR13P9 0.1274 -0.0201 2.8332 236 0.6855 0.9287
3 MR14aA9 0.0565 0.0283 2.8870 258 0.6405 0.4300
4 MR15A3 0.1648 0.0509 3.1016 219 0.6870 1.2108
5 MR15P3 0.1326 0.0214 2,9019 216 0.6544 1.0052
6 MR16A3 0.1111 -0.0428 2.9314 238 0.7235 0.8157
7 MR16AS 0.1085 -0.0664 2.8120 246 0.7146 0.8147
8 MR16P9 0.1104 -0.0602 2.7200 230 0.7420 0.8333
9 MR1729 0.1173 0.0172 2.9042 206 0.6455 0.8742
10 MR18A9 0.2128 -0.0324 3.,1813 217 0.6866 1.5710
11 MR18P3 0.1626 -0.0559 2.7874 216 0.6586 1.2110
12 MR19A3 0.1407 0.0933 3.0375 200 0.7146 1.0311
13 MR19A9 0.1113 0.0213 3.0723 227 0.7188 0.8040
14 MR20A3 (0.0568 0.0306 2,9440 235 0.6946 0.4206
15 MR20P2 00,0544 0.0548 2.8526 224 0.6645 0.4134
16 MR21A3 0.081e -0.0271 3.0935 311 0.6591 0.5813
17 MR22A3 0.1206 -0.0237 3.1151 219 0.6690 0.8820
18 MR22A9 0.0818 -0.0605 2.9563 247 0.7428 0.5977
19 MR22P3 0.0588 -0.0931 2.9511 284 0.6991 0.4365
20 MR2329 0.1137 0.0247 2.9711 261 0.6922 0.8203
21 MR24A3 0.1112 -0.037¢ 2.7320 201 0.6337 0.8553
22 MR24PS 0.1161 -0.0611 2.8709 238 0.6792 0.8674
23 MR25A3 0.0682 ~0.0586 3.0317 252 0.6858 0.4877
24 MR26A9 0.1635 0.0137 2.8571 234 0.6519 1.2434
25 MR26P9 0.3598 0.0055 2.8811 193 0.6602 2.7236

estimation using boﬁh the Blackman-Tukey method and the FFT method.
TIMESBOARD of Newton (1983a) is a FORTRAN package of 250 subroutines
and 10 main programs. It is designed for general applications. ARSPID
is the main program of TIMESBOARD which performs both the window
spectral estimation and the autoregressive spectral estimation. A
comparison of spectral estimation was made uging ARSPID for 50 data
sets. The following were the selected methods used in this study from

available spectral estimation algorithms:
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Table 13. Statistical summary of wave data from Waverider buoy B in
August 1981. (data obtained near Port Mansfield, Texas)

Number
Data of Correlation
NO ID n? Skewness Kurtosis Waves Coefficient H2
1 AG11P92 0.0191 -0.0880 3.0105 412 0.5657 0.1402
2 AGl2A9 0.0206 -0.0261 3.0658 340 0.6870 0.1503
3 AGL2P3 0.0127 0.0110 3.0178 343 0.6792 0.0918
4 AGL3P9 0.0414 -0.0244 2.7689 327 0.6707 ~0.3025
S AGl4P9 0.0229 -0.0736 3.0123 334 0.7702 © 0.,15%0
6 AGLBA3 0.0264 -0.0105 3.1803 340 0.7276 0.1847
7 AGl1l5P3 0.0134 -0.0186 3.0895 362 0.7455 0.0875
8 AGl5P9 (0.0212 0.0015 2.9379 379 0.5711 0.1527
9 AGl6A9 (0.0104 0.0014 2.9133 343 0.6344 0.0971
10 AG17A3 0.0165 -0.1173 3.2099 426 0.5937 0.1160
11 AGLl7P9 0.0184 0.0191 2.8562 407 0.5633 0.1332
12 AG18P3 (.01l1l -0.1638 3.1294 401 0.6770 0.0716
13 AG18P9 0.0174 -0.0779 2.8806 400 0.5203 0.1262
14 AGl9A3 0.0140 -0.0393 3.1357 404 0.5496 0.1003
15 AGl9P3 0.0045 -0.1433 2.7910 464 0.5209 0.0292
16 AGl9P9 0.0124 -0.1388 3.0168 440 0.4957 0.0886
17 AG20A3 0.0095 0.0142 2.9012 362 0.5031 0.0728
18 AG20pP3 0.0106 -0.0376 3.0065 450 0.5359 0.0749
19 AG21A9 0.0234 -0.0264 3.0849 310 0.5012 0.1823
20 AG21P9 0.0203 -0.0266 3.1772 383 0.5862 0.1460
21 AG22A9 0.0139 -0,.0424 3.0153 368 0.5642 0.1013
22 AG23A3 0.,0260 ~0.0438 3.1142 327 0.6168 0.1929
23 AG24A9 0.0115 -0.0123 2.,9510 328 0.6219 0.0860
24 AG24P3 0.0148 ~0.0246 2.9340 367 0.6386 0.1063
25 AG24P9 0.0227 . -0.0539 3.0351 299 0.6757 0.1619

1) FFT method: A periodogram is estimated by a FFT
algorithm, then the Parzen window with a
truncation point 80 is used to obtain the smoothed
spectra.

2) AR method: The Yule-Walker algorithm is employed to
estimate the autoregressive coefficients. The

model identification is made by Parzen's CAT.
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Table 14. Spectral analysis summary of wave data from Waverider buoy
B in March 1980. (data obtained near Port Mansfield, Texas)

AR FFT PDF

NO ID AIC CAT S(f) f, S(f) fp S(fp) fp Lr  Yop
1 MR13P3 34 34 3,962 0.161 3,100 0.169 3.049 0.169 0.953 1.000
2 MR13P9 31 31 1.826 0.127 1.274 0.152 1.219 0.143 0.836 0.941
3 MR14A9 14 14 0.645 0.161 0.506 0.161 0.60¢ 0.180 1.000 1.118
4 MR15A3 41 41  3.397 0.135 2.353 0.135 2.047 0.150 1,000 1.111
5 MRL5P3 17 17 2,106 0.127 1.486 0.135 2.002 0.150 0.941 1.111
6 MR16A3 33 33 1.350 0.161 1.074 0.152 1.228 0.161 1.059 1.059
7 MR16A9 38 38 1.879 0.152 1.158 0.152 1.531 0.161 1.000 1.059
8 MR16P9 36 36 2.129 0.144 1,446 0,144 1,440 0.153 1.000 1.060
9 MR17A9 25 25  2.953 0.127 1.720 0.127 1.903 0.135 1.000 1.063
10 MR18A9 17 17  4.792 0.127 2.577 0.127 2.490 0.135 1.000 1.063
11 MR18P3 28 28  2.351 0.127 1.893 0.135 1.873 0.141 0.941 1.044
12 MR19A3 23 23  3.247 0.119 2.002 0.127 2.169 0.128 0.937 1.008
13 MR19A9 40 40 2.139 0.144 1.499 0.144 1.592 0.144 1.000 1.000
14 MR20A3 17 17 0.864 0.135 0.595 0.144 0.818 0.152 0.938 1.056
15 MR20P9 16 16 0.907 0.144 0.646 0.152 0.777 0.159 0.947 1.046
16 MR21A3 39 39 0.932 0.152 0.654 0.161 0.484 0.207 0.944 1.286
17 MR22A3 25 25 2.578 0.127 1.551 0.135 1.582 0.149 0.941 1.104
18 MR22A9 25 25 1.210 0.135 0.853 0.152 0.954 0.158 0.888 1.039
19 MR22P3 25 25 0.554 0.152 0.447 0.169 0.493 0.186 0.899 1.101
20 MR23A9 34 3¢ 1.952 0.161 1.311 0.161 1.341 0.162 1.000 1.006
21 MR24A3 45 45 2.291 0.127 1.605 0.135 2.188 0.141 0.941 1.044
22 MR24P9 35 34 1.930 0.161 1.533 0.152 2.063 0.161 1.059 1.059
23 MR25A3 35 35 1.024 0.161 0.783 0.152 0.774 0.161 1.059 1.059
24 MR26A9 35 35 3.239 0.135 1.914 0.144 2.829 0.155 0.938 1.076
25 MR26P9 21 21 10.365 0.119 4.898 0.127 5.270 0.127 0.937 1.000

The authors developed a FORTRAN brogram to perform the PDF spectral

estimation., Tables 14 and 15 show the spectral peak s(fp) and peak
frequency fp cf each estimator. The orders of the AR model determined
by AIC and CAT are also 1listed in the tables. The spectral peak

frequency plays a significant role in the design of offshore
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Table 15. Spectral analysis summary of wave data from Waverider buoy
B in August 1981. (data obtained near Port Mansfield, Texas)

AR FFT PDF

NO ID AIC CAT S(fp) fp S(fp fp S(Ep fp  “ap  Ppp
1 AG11P9 16 16 0.149 0.296 0.127 0.296 0.131 0.288 1.000 0.973
2 AG12A9 17 17  0.294 0.212 0.231 0.212 0.230 0.220 1.000 1.038
3 AG12P3 31 31 0.141 0.229 0.110 0.229 0.140 0.213 1.000 0.930
¢ AG13P9 20 20 0.398 0.178 0.314 0.186 0.345 0.202 0.957 1.086
5 AGL4P9 2¢ 24 0.241 0.178 0.218 0.178 0.193 0.196 1.000 1.101
6 AGL5A3 20 20 0.256 0.178 0.226 0.186 0.244 0.202 0.957 1.086
7 AGL5P3 13 13  0.193 0.178 0.135 0.178 0,100 0.186 1.000 1.045
8 AG15P9 21 21  0.110 0.178 0.097 0.186 0.119 0.265 0.957 1.425
9 AGL6A9 14 14 0.177 0.186 0.067 0.195 0.076 0.249 0.954 1.277
10 AG17A3 18 18 0.104 0.288 0.092 0.288 0.104 0.281 1.000 0.976
11 AGL7P9 33 33  0.132 0.332 0.118 0.313 0.136 0.285 1.029 0.911
12 AG18P3 52 52 0.234 0.102 0.044 0.279 0.054 0.209 0.366 0.749
13 AG18PY 40 40 0.108 0.110 0.083 0.330 0.114 0.300 0.333 0.909
14 AGl9A3 36 36 0.102 0.288 0.085 0.288 0.072 0.287 1.000 0.997
15 AGL9P3 25 25 0.028 0.135 0.018 0.144 0.012 0.262 0.938 1.819
16 AGL9P9 39 39 0.114 0.322 0.096 0.330 0.089 0.315 0.976 0.955
17 AG20A3 21 21  0.086 0.245 0.073 0.245 0,077 0.289 1.000 1.180
18 AG20P3 26 26 0.069 0.296 0.059 0.296 0.065 0.306 1.000 1.034
19 AG21A9 19 19  0.244 0.229 0.218 0.229 0.254 0.228 1.000 0.996
20 AG21P9 18 18 0.097 0.271 0.088 0.262 0.134 0.282 1.034 1.076
21 AG22A9 18 18 0.097 0.195 0.080 0.212 0.089 0,240 0.920 1.132
22 AG23A3 18 18 0.350 0.195 0.243 0.203 0.266 0.219 0.961 1.079
23 AG25A9 53 53  0.110 0.220 0.090 0.212 0.09¢ 0.235 1.038 1.108
24 AG24P3 54 54 0.100 0.178 0.076 0.186 0.081 0.256 0.957 1.376

AG24P9 49 49 0.220 0.229 0.144 0.229 0.181 0.230 1.000 1.004

o]
1941

structures, and it may be useful to look at the deviation of estimated
spectral peak frequencies among estimators. Ratios of AR spectral peak
to FFT and PDF spectral peak to FFT are denoted as QAF and QPF' and
are shown in the tables. .The general tendency of estimators may be

indicated by means of these values, which are as follows:
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1) 25 wave data sets in March 1980
Q,p=0.966 (+0.05¢)
Qpp=1.061 (+0.063)
2) 25 wave data sets in August 1981
Q,p=0.935 (£0.179)
Qpp=1.090 (20.210)
The number inside the parenthesis indicates corresponding standard
deviation. The data in March 1980 imply that the AR spectral peak
appears at a slightly lower frequency than the FFT spectral peak. On
the other hand the PDF spectra tend to estimate slightly higher
spectral peaks than the FFT spectral estimator.

Each spectral estimator is plotted at the same scale, and examples
are shown in Figures 42, 43, and 44. 1In general, the PDF spectra seem
similar to the FFT estimator, however, it has smoother features, and a
sharper slope in the lower fredquency. The AR estimator always
exhibits higher and narrower peaks than the FFT. Figure 44 shows the
worst case in which the PDF spectra significantly departs from the
other estimators. It seems that the PDF spectra tend to shift the
peaks to a higher frequency and provide a smoother shape over the
entire freguency domain.

These values EAF and ﬁfF of August 1981 imply a similar conclusion;
however, the .large standard deviation indicates that a careful
evaluation should be carried out. The spectral shape of Bugust 1981 is
a wider spectra of higher freguency than data in March 1980. Some of

the spectra show multi-spectral peaks. Figure 45 shows an example of a
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Figure 42, A comparison of spectral estimators, data ID MR13P3.

(Data obtained by Waverider buoy B at 3 p.m. March 13, 1980, near
Port Mansfield, Texas)

single spectral peak data set, where the PDF spectra again agree well
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Figure 43. A comparison of spectral estimators, data ID MR17A9,
(Data obtained by Waverider buoy B at 9 a.m. March 17, 1960, near
Port Mansfield, Texas)

with the FFT spectra. On the other hand, Figures 46 and 47  show

136



tNIXxIxXxT TCIODAOM VYT DMESD
o
=
1

T
0.05 D.10 0.15 0.20 0.25% 0.30 0.35 0.40 0.H4s D0.50 0.55
FREQUENCY 1tHZ)
LEGEND: STHM st AR w——s FFT a3 POF

Figure 44. A comparison of spectral estimators, data ID MR21A3.
(Data obtained by Waverider buoy B at 3 a.m. March 21, 1980, near
Port Mansfield, Texas)

considerably different features among estimated spectra. The AR
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spectra of data AGl8P9 (Figure 46). show a very high peak in the low
frequency range., FFT spectra also indicates the existence of spectrum
peak near the low frequency. However, the PDF spectra do not show
evidence of a lower frequency spectral peak. The sampling property of
individual waves, namely the zero up-crossing method, does not allow
the detection of the low frequency wave component, which reflects the

lack of PDF spectra resclution in the lower frequency domain.
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Figure 45. A comparison of spectral estimators, data ID AGl2A9.
(Data obtained by Waverider buoy B at 9 a.m. August 12, 1981, near
Port Mansfield, Texas)
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Figure 46. A comparison of spectral estimators, data ID AGl8P9.
{Data obtained by Waverider buocy B at 9 p.m. August 18, 1981, near
Port Mansfield, Texas)
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Figure 47. A comparison of spectral estimators, data ID AGLSA3.
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Port Mansfield, Texas)
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CONCLUSIONS
Conclusions of Present Study

An extensive literature survey was conducted to list available
diagnostic tools of wave data analysis, namely wave statistics and
wave spectra. Both strategies involve two approaches: nonparametric
estimation and parametric estimation. Therefore the wave data analysis
can be categorized as

1) Parametric Wave STATistic analysis (PWSTAT),

2) Nonparametric Wave STATistic analysis (NWSTAT),
3) Parametric Wave SPECtrum analysis (PWSPEC), and
4) Nonparametric Wave SPECtrum analysis (NWSPEC).

PWSTAT has the advantage that the pdf can be completely determined
by estimating a few parameters. For example, the Rayleigh distribution
of wave heights is a one parameter family. The parameter is usually
either the variance of surface elevation n? or the root mean square
of wave heights ﬁ?. A slight>modification of the Rayleigh distribution
is a practical and acceptable way to describe the wave .height
statistics of not only moderate but higher wave heights, if sample
wave heights exhibit a single probability density peak. Less

computational effort is needed in estimating ;2 than in estimating

H2. Having assumed the population density is the Rayleigh
distribution, the wave height statistics are determined. BHowever, the

sample wave heights cannot be characterized by a simple function, as

142



the sample distribution may exhibit multimodal density peaks.
Therefore PWSTAT is not a good method to represent a summary of wave
data.

Extensive research has been conducted in the last decade concerning
nonparametric density estimation. However, most of the work has been
done by the statisticians. Rigorous theoretical arguments make it
difficult to apply the techniques to other fields. A special effort
was made to develop a unique method of wave data analysis based on
nonparametric estimation of the joint pdf of wave heights and periods
employing tensor product B-splines. This method is a member of NWSTAT.
Most of the existing nonparametric techniques lack an objective method
for the choice of smoothing parameters. The Objective Least square
Norm (QLN) is proposed for an objective choice of smoothing parameters
for developed technique. Despite the lack of theoretical justification
of OLN, a numerical examination shows that the proposed technique
reproduces the population density very well.

The wave spectral analysis is the most popular diagnostic method of
analyzing wave data. The Blackman-Tukey method and the FFT method are
mathematically equivalent methods of NWSPEC. Because of significant
computational efficiency, the FFT has been almost exclusively used for
wave data analysis. A suitable spectral window and truncation point
are required to estimate the power spectrum. The Parzen window has
superior characteristics compared with other windows, and the Tukey
window gives a result very close to the Parzen window. Both windows

show almost the same result if equivalent window widths are chosen. An
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objective method to choose the optimal truncation peint has not
successfully been developed to date. There are only empirically
derived suggestions. Truncation points of 80-100 seem to work well
for the wave data used in this study.

A great deal of research has been conducted in AR spectral
estimation, which has become an important method of spectral
estimation. The method consists of basically fitting an Auto-
Regressive (AR) model to a time series. The wave spectra may be
estimated parametrically employing the AR spectral estimator, PWSPEC.
The AR model identification involves two stages: the estimation of AR
coefficients and the determination of the optimal order of AR model.
The Yule-Walker method is employed to estimate AR coefficients in this
study. Recently Newton (1983b) reported that the Burg method was
superior to the Yule-Walker method. The order determination was made
by Parzen's CAT in this study. Comparison with AIC showed that both
criteria agreed in 49 out of 50 wave data sets presented in this
study. The result is consisteﬁt with the comments made by Parzen
(1982). According to the present study, the wave data require a high
order of the AR model. A deterministic harmonic component tends to
increase the order of the AR model, therefore the high order AR model
of wave data may imply the existence of deterministic harmonics in the
data. Another interesting feature of the AR spectra shown in this
study is that the AR spectra always have higher and sharper peaks than
the FFT method. It.has not yet been determined whether the AR spectra
or the FFT spectra is superior for wave data analysis. However, the

FFT method seems to achieve an adequate estimation of wave spectra.
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The pdf spectra is classified in NWSPEC. The advantage of the pdf
spectra is that the long-term wave spectra may be estimated from the
joint pdf based on long-term data. The present study suggests that a
concise long-term data representation may be achieved by either the
pdf spectra or the nonparametric joint pdf.

A comparison of the FFT spectra, the AR spectra and the pdf spectra
shows that the pdf spectra agree well with the others. However,
consistent statistical properties of pdf spectra have not been

identified in this study.

Recommended Future Studies

The proposed nonparametric density estimation does not possess
positivity due to the non-shape preserving property of B-splines.
Linear programming techniques may be applied to remove the limitation
of subjecting the monotonicity condition on the spline coefficients.
According to a recent personal communication, Schumaker is developing
a density estimation technique by means of a spline by applying these
linear programming techniques. However, the bivariate extension is not
as simple as the regular tensor product splines and the computational
effort is expected to increase significantly. Carlson and Fritscﬁ
(1981) developed a bivariate monotone spline interpolation which is a
bicubic polynomial in a class Clof continuous function. Thus this
method guarantees reproduction of the properties of a joint cdf.

However, the spline is a Clclass function and the estimated joint pdf,
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obtained by differentiating the jeoint cdf, possesses discontinuous
derivatives at knots. The estimated joint pdf should require, at
least, a C2class function. It is desirable to develop spline
techniques which satisfy the condition of cdf and pdf.

Another approach is to transfer the data into some functional
space, and apply the regular B-spline technique. However. this method
may not guarantee the positivity of density functions.

The theoretical justification of the proposed nonparametric density
estimation introducing the entropy concept should be conducted to
investigate the statistical properties of the technique. The
Statistical properties of the pdf spectra should be investigated to
make it more compatible with empirical spectral estimators. The
confidence interval is an important diagnostic tool to indicate the
reliability of the estimator. Intuitively, it is a function of the bin

width of a histogram and the number of data in a bin.
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APPENDIX A
SPLINE FUNCTIONS

General

Functional approximation arises in many fields. The true function
may be estimated from observed data based on a certain type of
approximation theory. The spline function has been extensively studied
by mathematicians in the late 1960's to present. The B-spline is a
most useful class of spline functions. The spline is a relatively new
mathematical tool; however, Schoenberg (1946} suggested the idea of B-
spline was known to Laplace. B-splines with equal space knots were
first used by Schoenberg in 1946. A detailed historical note of
spline functions is described by Schumaker (1981).

The major difficulty arises as an interpolation problem in ordinary
polynomial interpolation. The ordinary polynomial interpolation does
not possess convergence (Schumaker,198l). In other words, interpolated
function does not approach the true function as the numbef of
interpolation peints increases. A superior property of B-splines is
that it possesses convergence in interpolation.

The importance of B-spline is the basic recursion relation of the
B-spline base which will be discussed in the next section. The
relation was discovered by three authors simultaneously, Cox (1972),
de Boor (1972) and Mansfield (1972 in Shumaker,1981). The recursion
relation of the derivative of the B-spline base was found by de Boor
(1972). Because it is easy to store, evaluate and manipulate data on a

digital computer, B-splines have been used in a variety of fields.

147



B-splines

Due to the lack of convergence of an ordinary polynomial, it was
decided to use smooth piecewise polynomials for approximation
purposes. The polynomial splines are smooth piecewise polynomials
defined in a closed interval. Let [a,b ] bea finite closed

interval. The knots A are defined

A = {xg}* (162)

¢

i=1

with a = xo< xl<...<xk < xk+1 =h

Define a partitioﬁ of A as follows

Ii[xi’xi+l) for i=0,1,...,k-1

and Ik[xk’xk+l]
Let m be a positive integer,Z corresponding to the order of the
pelynomial spline, and let M =( Mype ) be a vector of integers
with 1<m:.L <m, i =1,..,k corresponding to. the multiplicities of
knots. The space of the polynomial spline of order m with knots

A ={x ,.. } of multiplicities M=(m,.., m) is defined as

r X 1

S(Pm;M;A) = {s; there exist polynomials §_,5,,...,5,
in P_ such that S(x) =5,(x)for xel.
m 1 1
_ J | .
i=0,..,k and D Si_l(xi) D Si(xi) for

§=0,1,...,m=1-mg,i=1,...,k}

where Pm is the space of polynomials of order m, and D is the

differential operator of order j.
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For example, a cubic piecewise polynomial defined in a closed

interval [0,1) with the knots

A = {0.1,0.2,...,0.9}

is in a spline space S(.), such that

S(.) = {SO,--,Sq-are cubic polynomials
S(X)=Si(X)for xel, and DJSi_l(xi)

=DJSi(xi) for j=0,1,2,i=1,...,9}

Here k=9, m=4, m=(l,....,1). This means S5(x ) is a smooth
piecewise cubic polynomial with continuous derivatives up to second
order at the knots A .

‘A useful class of spline is the class of B-splines. The m-th order

B~spline base is defined as follows:

m : m-1 .
GRS F0 11 FPRPIS PN €35 o Il 2 Y1SXSY4 0

BT (x) ={ (163)
i
0
otherwise
, e N ik, :
where y;'s are called an extended partition A4 ={yi ' which is
defined as

. 900 £ a
¥y s Yp £

b= Yoer S 000 S Yok
and my IEIS

—~

Yl S o0 S Vogp T Xpsee o XpseeosXpseensX)

k
K= I m,
=1

The truncation function (x-y)$ (de Boor 1978) is defined as
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The m=-th order divided difference for a function f is

1

(x—y)i

YiseoooYigm

1,x xm-l f)

= 3 3+ sty 3

[y oeeeryy, If T (165)
i i+m

D i

1,x,...,%

D(

where D(.) is a determinant such that
m-1
, ; Lygjeeeyy 7 Ely))
i i m-1
1w . xm—%f) = Vi Yia FO)
I 5 . . (166)
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.

. - *

m—1
Yitm' Vitm £ Viem)

v y i i yi
grreee Yo ol om
) L yinaYia Vi (167)

. . .

D( o
1,%,...,%

i ) m-1 _m
Yitm YV i4m Viim
If some of the yi's are repeated numbers, derivatives must be taken of

the corresponding row (Schumaker 1981).
The importance of B-spline is a recursion relation. The m-th order

B~spline can be expressed as a sum of the (m~1)-st order B-spline

i yi+‘m_X Bm—l(x) (168)

: - 1+1
Yitm 7141

B L x) +

m
By (x) = i

i+m 7i

Observing theat the first order B-spline is
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i
BIGO = DNy 0y Dyey, 1 Gend
1 (x-yi)i

1 (x-y, .00

i+1’+
= (-1) (yi+1-yi) v,
1 Yir1
_ = O_ _ (8]
= Gy - Geyggdy

< x <
1 for Y € XSV

0 otherwise
Making use of (168), the m-th order B-spline can be recurrently
evaluated from the first order B-spline. The recursion relaticn
provides another property of B-splines. Since Bm(x)can'be obtained by
the lower order of B-spline starting with the first order, B-spline
B%x)is always a positive function, a careful observation reveals that

the m~th order B-spline is a positive function, i.e,
Bm(x)>0 £ <x<
i or Yi™*Vim

It can be proved that a sum of B-spline ordinates is a partition of
unity (Schumaker, 1981)
j m
z B,(x) =1 (169)
i=j+l-m
An unknown function f can be approximated in terms of the m-th
order B-spline with knots A, extended partition A and
multiplicities M,

Af(x) » S(x)
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where 4 is the spline operator. The dimension of the B-spline space

k

is m+K=m+ I m; . Simple knots are extensively used in most practical
i=1

applications. The dimension of the space for simple knots is m+k ,

S(x) can be expressed as a linear combination of B~splines

mtk o
S(x) = izl CiBi(x) (170)

A value of B?(x) at a given peoint X can be evaluated from (168).
Therefore one does not actually deal with the divided difference.
Remembering that BT(X) is a 1locally supported positive fuction, the
matrix of the system of equations to be solved is a 2Zm+l bounded
matrix. It has been shown that this matrix is positive definite. The
solution of this tfpe of system of equations is known to be
numerically stable.

Once Ci's are calculated, S(x) at a given point should be

calculated using the following relation rather than the  recursion

relation of B?(X) (Schumaker,1981)

ntj-1 . 4
seo = 1 oo™ g (171)
i=1

for any j=1,...,m

[1]

where Ci = Ci,i=l,...,n

and the CEJ](x) can be computed recurrently by setting =0,

e

all j and using
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[3] ;
Gy e 6 + 7y 0o o

i+
CEJ lE:\:) ={ otherwise
Yo Y.
Hn=] 731 (172)
0 if yi+m—j_yi=0
for i=1,2,..,n+jand j=1,2,...,m-1
If ygSX5yg+1 « then
n+m=1
1
S(x) = & CEm](x)Bi (%)
i=1
- C[m](x) (173)
3
[5]

Therefore S(x)can be evaluated by constructing the ¢ array. 'This

i
method is computationally faster than (168).

The derivative of the B-spline representation of S(x) can be
evaluated using the following recursion relation (de Boor 1972,

Schumaker 1981). Suppose 1=<dsm, then for all ym5x<yn

n

Di“ls(x) = g c{Dpmdtl (174)
i i
i=d
where Cgl) = C.,i=l,2,.,n«'-2l.nd
1 1
G- _G-1) Ym0
¢d) = (m-j41) 2 i (175)
itm-j+1 01
0 otherwise

For example, the first order derivative of the cubic B-spline can be

obtained as

n
D+S(x) = ¥ CFZ)B?
. i i

i=2

(x)

where
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V4374

C.-C,
c§2) oy e
1

3

The derivative of B-splines can be expressed as a function of the
difference of the B-spline coefficients.

The indefinite integral of the m-th order B-spline can be expanded
in terms of B-splines of the (m+l)-st order (Schumaker,198l). The
integration can be considered as the antiderivative of a spline. The
integration form of B-spline has a similar expression with (174). Let

-1
Dy S(x) be the antiderivative of S(x), then for all

1
x n
0 ls(x) = | s(t)dt = c§“1)3T+1(x) (176)
Y1 i=1 +
Yi
where
_ iy .-y
¢V p eI ya12,. . amn
i S j m

LAE) FYRTRS ACTTIS SN are the extended partition
The interpolation schemes of B-splines must be introduced for
practical application purposes. Here the complete cubic spline
interpolation scheme is discussed and is used in this study. Suppose
data {23 } are given at k+2 distinct points { t.} for an unknown
function f. The spline S(x), which interpolates these data points,

is defined in a closed interwval [t0 ,ﬁqu. The knots A are taken as

X; < ti for 1i=1,2,....k
The extended partition A is
YiZYyTYg®Y, =t

yi+4=ti’ i=1,2,...,k

V45V kt6 k47 T k48" Fkt1
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The dimension of the space is n=4+k . Since the number of data points
is k+2, two more conditions must be specified to complete a set of
linear equations. If first order derivatives are known at both edges,
the number of conditions coincides with the dimension of the space,
and the scheme is called the complete spline interpeolation. When the
first order derivative of f is not known, one may take the second
order derivative to be zero. This type of interpolation problem is
known as natural spline interpolation. The elastic beam problem may

be treated by natural splines.

Tensor Product Spline

The surface approximation problem has been studied by a number of
mathematicians. A fairly complete summary of recent developments can
be read in Schumaker (1982). A special case of the surface
approximation problem is when the data are given at regular grid
points. The most computationally efficient method is the application
of the tensor product spline.. The tensor product spline has the form
of 2 tensor product of one dimensional polynomial splines (de Boor
1978, Schumaker 1981). An important feature of tensor product splines
is that the algebraic properties of the one dimensional spline spaces
are not altered in tensor product space.

Suppose the function f£(x,y) to be approximated is defined in a

closed rectangle, such that
a sxsb
X X

a xy<b
y o v
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Let Ax and Ay be partition of a closed interval in x and y

A =1{a_ = x <X <...<X =b
X { by x,0 Tx,1 x’kx+1 x}
A = {a = x <X _<...<X =b }
y y Ty,0 'yl Yakoyy
and partition data sets Ax,Ay are defined similar

dimensional spline

=

yx’ls.. yx,mxsax

y

Se X ga
v,1 yy.my Y

B m +e 41507 Y, 2m 4Kk
X X X X

b <y <. <y
s+ +1 2m_+k
yUY.m ky ¥s2m tk,

Yx,m 415003 yx,m +k
x X X

v <o SV
+1 m +k
Y:my ¥ vy

A }

% {yx,l""’yx,Zm +k
X X

A {y NGO aay }
1000 Yy om 4k
y y Y vy

Associated multiplicity vectors are

It

M

X (mx,l’m Poook )

%,27 " ™ kx

M=«

S | ces,yMm )
y Ty, 1y, 27 Ny ey

(178.1)

(178.1)

to the one

(179.1)

(179.2)

{180.1)

(180.2)

Then the bivariate tensor product polynomial spline space is defined

by

= g(P M P oM -
Sey = Sy ileit) Sy M 38 )
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where P is a m_ th order polynomial space and P is a m_ th order
My X My y
polynomial space.
Because of a computaticnal efficiency, the B~spline is a most
useful spline for practical purposes. Further discussion will be

concentrated on the B-spline tensor product splines. The tensor

product spline space may be expressed as

m my mx+kxmy+ky
where X
= L
Kx i=1mx’i lgmx,ismx
k
K = i .
v { my, i 1$my , lsmy

i=1
It should be noted that the tensor product is bilinear.

A function f (x,y)may be approximated by the tensor product B-spline.

Af(x,y) =+ S(x,¥)

where 4 is a spline operator, and

m +k  m +k
X X Vv m my
S(x,y) = I r C..B.T(x)B.7(y) 183
1=1 =1 11 j (183)
The C,.'s are coefficents, the dimension of space is

ij
(mx+kx )x(my+ky).
As a specific application of tensor product splines, the complete .
cubic tensor product spline with simple knots is discussed. The
multiplicity vectors are
M o= (1,...,1)

X

M
y

[

(1,...,1)
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The order of the cubic spline is 4, therefore the dimension of the

space is

dim S (4+kx) (4+ky)

k k +4(k +k ) + 16
Xy Xy

where kx and ky are the number of distinguished simple knots in x
and y. The tensor product cubic B-spline base with simple knots is
depicted in Figure 48,

Suppose the values of f(x,y) are given at Ax(:)Ay
(178.1),(178.2). LetZij be the data, such that

1=0,1,...,k ,k +1

Z,, = f(xi,yj) for (184)

1 .
d N N
The approximated surface has the values
i=0,1,...,k ,kx+l
S(Xi,yj) = Zij for 5
j=0,1,...,ky,ky+1

The number of conditions provided is
(kx+2)(ky+2) = kxky +2(kx+ky) + 4
Therefore the number of edge conditions to be added is
2(k_+k ) + 12
Xy

Suppose the first order derivatives are known at the edges. Let

—i = X i =

% f(xo,yi) Zo,i for i 0,1,...,ky+l
g y =2 i for i=0,1 K +1
ax -k +1°75 k_+1° Or A Lre-nky

X

Ji—f(x vy ) = Zy for i=0,1,...,k +1
3y i*7o i,ky+l [ *Tx
ji»f(x y ) = z7 for i=0,1,...,k +1
dy i? ky+l i,ky+1 2 Tx
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BASE

0.30 |

Tensor product cubic B-spline base,
simple knots locate 0, 1, 2, 3 and ¢ in X and Y

Figure 48.
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and
i=0,k +1
X

£(x, z3Y for
AR R =0, k_+1
y

The above condition completes the non-trivial set of linear equations.
Since the order of the spline is specified (cubic), the upper script
of B;(X)can be omitted without confusion. Let n_ and n_ be dimensions

of space in X and ¥

n_=k +4
X x
n_ =k +4
¥y y
nx Ny
S(x,y) = £ I C. By (X)B (y) (185)
i=1 j=1 i3

de Boor (1979) introduced an efficient method to calculate the tensor

product spline coefficents Cij . Let Vij be the given condition at

Xg and vy for i =1,2,..,nx and j=1,2,..,ny ¢ the system of linear
equations is
CllBl(xl)Bl(yl) + ClzBl(xl)Bz(yl)+...+Cln Bl(xl)Bny(y1)+'“'
..+Cnxanx(x1)Bl(yl)+ .o +C B (x,)B (y.) =V

nn n 1""n 1 11
Xy X y

C1qBy (x)By (¥,) + C,B, (x)B, (¥,) . .. oy B OB Gy

LG b (xl)Bl(y2)+ ree ¥ B (xl)Bn (yz) =V
X X Xy x ¥

12

ll 1(x )Bl(y ) + 012 l(x )Bz(yn )+...+Cln Bl(xn )Bn (yn Y+, ..
y y X y y

-...+Cn an (xn )Bl(yn )+...+Cn n Bn (xn )Bn (yn )=Vn 0
X x  0x v Xy X X 'y 'y Xy
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The above system can be expressed as

dllBl(xl) + dlsz(xl)+ veo + dlannx(xl) = Vll
leBl(xl) + d22B2(x1)+ ves + d2annx(xl) = V12
dnlel(xl) + dn 2Bz(xl)+...+ dn annx(xl) = Vln
dllBl(Xn ) + dlZBZ(xn M+ oL + dln Bn (xn } = Vn
X X X X -yl

dn 1 Bl(xnx) + dn 2B2(xn ..o+ dn n Bn (xn ) = Vn 0
where ¥ X X X X Xy
dji = Clel(yj) + CiZBZ(yj)+"'+Cin Bny(yj)
i=l,2,...,nx and j=1,2,...,ny
A careful observation reveals that the above system is

to ny independent n_.m, linear systems of equations.

eguivalent

Considering

that the original system of equation is (nx X nx)x( nyx ny) linear

systems of equations,
can be expected.

forms as follows:

Bl(xl) Bz(xl) ‘e an(xl) d1l Vll
By (xp) Bylxy) . an(xz) d2 | |V
Bl(xn )BZ(xn Y ... Bn (xn ) d1n Vn 1
i x x X x| ) L TxT
Bl(xl) BZ(xnx) .o an(xl) d21 V12
Bl(xz) B2(x2) .o an(xz) d22 V22
i Bl(xnx) BZ(xnx) : an(xnx)_ _dan_ | ny2 |
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The above system of equations can be put into matrix



Solving the coefficient matrix {dij},

can be calculated by
Bl(yl) BZ(yl)"'

Bl(yz)

-

.

rBl(xl) B, (x;)

.

.

Bl(xz) BZ(XZ) o v an(xz)

_Bl (an) Bz (an) . an (xnx)

Bz(yz)...
_Bl (Yn.y) B2 (Yny) L]
[B, (v) By (yy)---
Bl(yz) By(yy)--.

Bl(Yny) Bz(yny)..

[B,(v;) By(yp) ...

B, (v,) By(yy) -..

B, (ny)B, (7 ) -

. Bn (xl)
X

Bny(Yl) ]

€1 ]

€12

_Clny i

C21

a2
C?_I'I.y

[Cny1 ]

Cnx2

Cnxny.J

[d17 ]

d21

d
Mol
42
422

the coefficient matrix {Cij}

It should be noted that the transpose of the {dij} matrix is used

solving for

{cij

}.

The importance of this

162
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it only



requires two small size inverse matrices and the matrices are bounded
matrices. In particular, the matrices are tridiagonal matrices for the

case of a complete cubic spline with simple knots. Once the [ Cij]

matrix is obtained, the one dimensional B-splines algebraic properties
can be used for the tensor product spline. The interpolation can be

achieved as

n jul
x Uy

S(x,y) = I I C,.B (x)B,(y)
k=1 j=1 O 1 73

Ex L

= 3 z C..B.(x)B.(y)
i=g -3 j=g -3 &+ J
X y

(186)

where

L X< y

Xy 8y X, Rytl

y =y ¥
Now voay 57y

2
v

S(x,y) = L e, (x) B,(y) (187)
§=t-3 ]

where
L
x
(x) = & Cij B, (%)

e
] 1=1 -3 1
X
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APPENDIX B
BASIC PROBABILITY NOTIONS

The cumulative distribution function (cdf) of a random variable X,
denoted Fy(.), is defined to be a function, which satisfies
F_(x)=Prob[X< x], i.e. probability of X less than or equal x, for
every real number X (Mood et. al. 1974). The cdf Ex(x ) has the
following properties
1) 1='x(-°°)=)1(-:';u_1m Fx( X )=0, and F (X )=)Z!._:i;g Fx( X )=1.0
2) Fx(-) is a monotone, non-decreasing function; that 1is,
| F (@ )<F (b) for a=x<b

3) Fx(.) is continuous from the right; that is

Fx(x +h)=Fx( X)
o<h-o
The cdf Fx(- } can be defined uniquely for either discrete random

variables or continuous random variables. However, both random
variables, discrete or continuous, have different definitions of the
probaﬁility density function (pdf). The pdf fx(.) for a discrete
random variable X has a value at distinct points Xl' xz,..., Y SURERY:
such that

Prob[ X =xj] ify = Xj' 51,2, 000, gas

fx(x) = { . (188)
0 otherwise

and possesses the following properties:

1)fx(xj)>0 for j=1,2,..., (189.1)
2)f (x)=0 for x#xj} §=1,2,..., (189.2)
NDIFf (x.)=1.0 189.3
),] X(XJ) ( )
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On the other hand, the pdf £ (X) for a continuous random variable X
has the following relationship with the cdf Fx(x >: if the F (X ) is
sufficiently smooth,

~ de(x)
fx(x) = -;g:""— (190)

and £ (x) satisfies

l)fx(x)zo for all x (191.1)
2) J fx(x) dx= 1.0 (191.2)

A difficulty that arises in practical estimation of the pdf for a
continuous random wvariable, is that only a finite number of sample
observations from a pdf can be drawn. Density estimation is one of
the main interests in the field of statistics. There are essentially
two methods of estimating pdf, i.e., parametric estimation and
nonparametric estimation. Nonparametric density estimation is given
in chapter 3. It is necessary to discuss the expectations and moments
of a random variable before proceeding to the discussion of parametric
density estimation. The following discussion assumes that random
variables are continuocus. The mean of a random variable X is denoted

by W and is defined by

oo

w, = E[X] = x£_(x)dx (192)

-

The mean 1y describes where the values of the random variable X are
centered. The variance of a random variable X is a measure of spread
or dispersion of the density of X, is denoted by oi, and is defined

by

Oi = var[x] = E[(x—ux)z] = (x-ux)zfx(x)dx (193)

-0
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It can be easily shown 0}2{ has an alternative expression, such that
2 = -y )27 = 27 - 2
oy = ELGx-u)?]) = E[x?] - p2 (194)
The r~th moment of X about o is denoted M and is defined by

= E[(x—ux)r] = (x-ux)rfx(x)dx (195)

The third and fourth mcments often provide useful information on the
_ distribution of a random variable. The third moment U3 measures
asymmetry or skewness. The skewness is denoted B;, and is defined by

H3

B1 = =N (196)
X

When a random variable has a normal distribution, B; is zero. But the

converse is not true. The fourth moment is sometimes used as a measure

of. excess or kurtosis. The kurtosis is denoted B, , and is defined by
_ M
B =icw (197)

When a random variable has a normal distribution, 8, is 3.0. But
again converse is not true.

The expected value of a function of random variable X, sayg(x) , is
denoted E[ g(x) ] and is defined by

Elg(x)] = rg(x) £, 00dx (198)
-0

Another class of statistical parameters, guantiles, provides other
measures of characterizing the density function. The g-th quantile of
a random variable X is denoted Q(q) and is defined as the smallest

number X satisfying FX( X)>q,i.e,

166



Q@) = F,'(q) = inf{x:F _(x)2q, 0sqsl.0} (199)

The function Q(q) is sometimes callied the quantile function of X.
The normal distribution is commen in many application fields. A
random variable X is said to be normally distributed if the pdf

has the following form:

X"ux 2
) 5 —00<y <00 ( 200)

fx(x) = exp |- ( 5

2mo X
X

where parameters Mo and o satisfy —w<y <o, o >0 . The normal
X X

distribution fx( X) is a two-parameter family. Given w and O the

density function can be obtained. It is easy to show the parameteryp x

is the mean of X, i.e. ux=E[x] and the parameter c;f is the variance
of X, i.e. 0}2{=Var[x]. If one is willing to accept that a random

variable X is normally distributed, the only task left is to estimate
M and o, of the density function. Suppose i!=_[xl,x2, T bf is a
random sample vector drawn from a normal density function having
parameters My and ¢ < The parameters ux and ox may be estimated by
estimators g,(.) andg,(.). Let f.x and Sx be estimated values of M and

Gyt which are defined as

=
i

= 0y (X) (201.1)

Q
n

8, (X) (201.2)

The best estimator of u, is the sample wean, which is denoted by X

and defined as

w = X = (202)

Z|-
o~z
<
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A popular estimator of Gx is the sample variance estimator, which is

denoted by S, and defined as

~

VETLINES
01vc - Sx - N-1 iil(xi_x) SRk

A

One may estimate the pdf using ux and Ux. The estimated pdf is

denoted by £ (x) ¢
X

~ 1 XU

£ = —=— exp [-(5

Xy2 (204)
g
2n o X
X

This type of density estimation is called parametric density
estimation. In general, an m parameter ALr O seeer® family of

density function for a random variable X is denoted by

fx(x) = fx(x;a1,a2,---.am) (205)

The parametric estimation of the density function can be achieved by
estimating al,az,...,anlby estimators o) P02 eeey & if the random
variable is drawn from the aforementioned density function. The
estimated pdf is
fx(X) = fx(x;al,az,...,am) (206)
Scmetimes a situation involves two random variables. The joint
behavior of random variables X and Y is characterized by the joint cdf

Fyy(¥»¥ ) or the joint pdf f, (x,y) . The joint caf Foy(X,y ) is

defined by

F (¥, y )=ProblX<x ,¥<y ) (207)
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and has the following properties

1) By (=>sy )= limFy, ( x,y)=0 for ally,
X+

FXY(&—“‘ y= 1im XY(x,y )=0 for all x, and
Y-

F,

XY(°°,°° )= limFXY( x,y7=1.0

X 0
'y-)-m
2) If xy <xy andy; €<yj3, then
P!.'Ob[ X]_SXS X2:¥1 <¥< y2]=FXY(x2’y2 )_FXY(xz’yl )
-FXY(xl »¥2 .)+FXY(x1’y1 )>0
i.e. FXY(.,. y is a bivariate monotone
increasing function.

3> FXY(" .) is right continuous in each argument; that is

lim F,, (x+h, y)=1lim F__( x,y+h)=F__ (x,y )
O<hr0 XY 0<hso XY 7 e

As in the univariate case, the joint pdf fxy(_,,)may be obtained
by differentiat.ing FXY(.,.} with respect to x and y if FXY(.,.) is

sufficiently smooth:

32F
f (x y) = ﬂl
Xy’ %9y (208)

It has similar properties to a univariate pdf, i.e.

1) fXY(x,y) >0 (209.1)

2) rerY(x,y)dxdy=l.0 (209.2)

The marginal probabil.ity density functions of bivariate random

variables X and Y are denoted fX(X) and fY(Y) , and obtained from

fx(x) = EfXY(x’Y)dy {210.1)
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fY(y) = JmeY(x,y)dx (210.2)

o0

It should be noted that fx(x)and fY(y)do not characterize the joint

behavior of X and Y, unless X and Y are independent, i.e:
E (s y) = £ (0 () (211)

The conditional probability density function of Y given X= x,
denoted by leX(ny) , is defined by

fXY (X,Y)

fy)x 01 = “F o5 (212)

Similarly fX[Y(xly) is the conditional probability density of X

given Y=y, and is defined by

fXY(x’Y)
fxly(xly) T T (213)
Y ¥
The functions fYIX(Y|X) , fle(X|Y) have the same properties as a

univariate probability density function. The "linear" association of
random variables X and Y is measured either by their covariance or
their correlation coefficient. The covariance of X and Y is denoted by

G and is defined as

XY
Oy = cov[X,Y] = E[(X—ux)(Y-uY)]
= - - (214)
The correlation coefficient of X and Y is denoted by Pyy and
defined as
- covIX,Y[
Pxy 040y (215)

170



The covariance Oyy tends to measure the linear relationship ¢f X and
Y. However the actual value of OXY does not show the relative
magnitude of linear association, because UXY depends on the

variability of X and Y. The correlation coefficient Py, has the

following property,i.e.
logyl < 2.0 (216)

Xy * When DXY has the

value of zero, the random variables are said to be linearly

and the variabilities of X and ¥ do not alter ¢

uncorrelated.
The bivariate normal density function plays an important role among
bivariate random variables. The bivariate normal pdf fXY(-,-) has the

following form

1 1 *Ux.2
ey (%o¥) = e exp{ - . .
ZHGXOY 1—DXY 2(l—pXY) I X
=, y=u y-u
- 2 (D + (5D (217)
X Y Y ’

for —<y<w,  —o<y <o

where u_ ,u_, 0

X v X s 0. ,and p

are parameters and it can be shown that

Y Xy

those parameters are:

Hy = E[X]
My = E[Y]
0; = Var[X]
0% = Var[Y]
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Oy = cngX,Y]
Xy

The marginal density functions have the form of univariate normal
denstiy functions. It should be noted the bivariate normal
distribution is independent, i.e. £y (%, y)=f ()f.(y), if, and only
if, the réndom variables are linearly uncorrelated. However the

general eclass of bivariate distributions can be dependent even if

random variables are linearly uncorrelated.
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