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Introduction

Let us first look rather precisely at the questions, what is
an external, and what is an internal gravity wave. For this pur-
pose we will consider a physical fluid system with only those two
modes, consisting of two homogeneous incompressible layers,
with the lighter one superposed on the denser.

The numbers to the right
of the figure are identifying
subscripts, even numbers for
surfaces, odd for layers. The
system will be regarded as of
infinite lateral extent. The
perturbation equations for the
system may be written

z
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aul ahi + h 0
at' + g x + gx
at Ps axau.~ Pl h ahs 

ah + - 0hi -0

ahl + H 8h.w = 0
8at ax

-h + H3 -u =°
at ax
O~hp + H,~ Ous _0
at ax

where u is velocity, p is density and

hi = zo - Z2

hs = z2 - Z4

Z4 = 0

and H is the time-space mean of h.
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eQ.~ kWe will now look for constants a, b, cl, c2 so that the pair
of equations

- (au +u3) + cl C x.(bhl +hs) = 0 (5)
at ax

-t (b hi + ha) + c2-x (aul +us) = 0 (6)

is consistent with the set (1), (2), (3), (4). These are parametric
equations for a wave in the variables (a ul + u3 ) and (b hi + hs) with
wave speed

c = 1 C

The motivation for this approach is that we expect to find a
i:.:: -- pair of sets of a, b, c, one member of the pair corresponding to

the isolated external gravity wave of the original system, the other
the internal.

Proceeding, we multiply (1) by a and add to (2), and multiply
(3) by b and add to (4).

l

.. a.(a ul + us) + g a [(a + Pi) hi + (a + 1) ha 0 (7)O 8~~~~~t ax Ps

I (b hi + h3 ) + _ [b HI ul + Hs us 0 (8)
* at ax

For (5) and (7) to hold simultaneously,

cl b =g (a + Ps) (9)

cl = g (a +1) (10)

and for (6) and (8),

c 2 a = b H 1 (11)

Ca = H 3 (12)
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Simultaneous solution of (9), (10), (11), (12) yields

a= H - Ha+ /(HI + Ha)2 -4 PS 1 H Ha

2 Ha

b = c-Ha = /(HI + Ha )2 _ 4' pa H, H.
2 H1

c = cl c2 = g H1 + Ha+ /(H 1 + Hs)2 4 Pa P H1 Ha
2

(13)

(14)

(15)

The upper signs correspond to the external gravity wave, for
as the density difference (p3 - P1) approaches zero, we get

c 2 g (H1 + H3 ) (16

a H, (16
Ha

b 1 (16

On the other hand, the lower signs correspond to the internal gravity
wave. As the density difference approaches zero we get

c2 0 (17

a - -1 (17

b Ha- H s (17
H1

a)

b)

c)

a)

b)

c)

In the case of the internal gravity wave, we can find how c 2 approaches
zero as (p3 - P1 ) approaches zero by expanding the radical in (15) by
means of the binomial series. Then

c2 - Ps -P
Ps

g H1 H3

H1 + H3

3

(17d)
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In summary, (16) suggests that the equations for the external
gravity wave may be derived by mass-averaging the equations of
motion and summing the h-continuity equations. On the other hand,
(17) suggests that the equations for the internal gravity are approxi-
mated by differencing the equations of motion and taking the difference
of the h1 -equation weighted by H3 (the mass of the lower layer) and
the hs -equation weighted by H1.

In the work of Gerrity et al. (1971), the equations were not
treated completely that way. In their so-called modified semi-
implicit method they treated the vertically integrated continuity
equation semi-implicitly and the vertically differenced continuity
equation explicitly, which indeed corresponds to correct use of the
two roots (16c) and (17c) of b.

... ~,,.,..;-.t They treated the equations of motion at each level semi-
:::'"~"' .implicitly, however. My interpretation' of the-resulting system

is that both the equations of motion and mass continuityfor the
external gravity wave were correctly treated implicitly, but the
treatment bf the equations for the internal gravity waves was
mixed. The equations of motion were treated implicitly, the equations
for mass continuity explicitly.

/

Analysis of "Mixed" Equations

We should be able to investigate the stability characteristics
for such a mixed system by analyzing the simplest kind of gravity
wave. Consider

-2t
u2 t + g h2X 0 (18a)

h 2 t + Ho U2x = 0 (18b)

u = U exp i (qt + rx) (19a)

h = H exp i (qt + rx) (19b)

The operators ( )2x and ( )2t are the usual centered difference
approximations to the x- and t- derivatives, respectively. The
operator -)2t is a simple centered average at points two time-steps
apart. The frequency equation for this system is

sin2 q A t - A cos q A t = 0
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where
sin rAx \2

A = g H o Ax/At ) (20)

and Ax and At are the space and time increments, respectively.
The frequency equation may also be written

cos2 qAt + AcosqAt-l = 0

or
-A + ByA2 +4

cos qAt = 2

In the case of the upper sign

~;;;~.-.i~:i!:' 0 ~ -A + 0 / + 4 1
2

since A > 0, and stability is therefore indicated. This is the
physical mode, and has two roots, since

cos qAt = cos (-qAt).

(K~ ~In the case of the lower sign, representing the computational*\~ ~ modes,
-A-TA9 +4 •-_

2
and q must therefore be complex. To pin down that at least one root
is an amplifying one, let

qAt =y + i z

where i = /T and y and z are real. Then

cos qAt = cos ycosh z - i sin y sinh z

A+/ + 4
2

The single imaginary term must vanish, so either y = (2k + 1) IT
where k is an integer, or z = o. (Since the hyperbolic cosine of
a real number cannot be negative, y cannot be an even multiple
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of IT). However, z cannot be zero, for then cosh z = 1 andcos y s -1 which cannot be, for y is defined as real. Therefore,
y = (2k + 1) Tf and

coshz = A+,A-
2

There are two roots of z, since cosh z = cosh (- z). The solution
may be written

z = cosh - 1 w = + ln (w+ w/--I)

where

A + /A- -+4
w =

2

The frequency then is

y+iz (2k+ 1) Tl i ln(w +/--)
At A t

and

(K~~~ ~~u = U exp i (qt + rx)

= U exp irx exp i(2k+I)TT2t exp t ln(w+/w2l)]

·~ ~~~~ .
=U *exp irx *(-1)Et* (w+/-l:) Z

at grid points. The lower sion the last exponent represents anamplifying root, since w+ w2-I > ,

A Stable Mixed System

In place of (18) consider

-tt
u 2 t + g hex = 0 (21a)

hat + e umx = 0 (21b)--ttwhere the operator ( ) is the centered time-average with weights
4, 2, 4 at adjacent grid points. Substitution from (19) leads to the
frequency equation

sin qAt - A cos 2 qAt = 0
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or

4 sin2 qAt cosJ qAt - Acos2lqAt = 0

which can be expressed as the two root equations

4 sin 2 qAt = A

cos 2 3qAt = 0

The former contains the two frequencies for the physical mode, the
latter the computational mode. The two computational modes are
identical, i.e.-

qAt = (Zk+l) IT
·:..~.;:i::::. : which is a pure two-increment period, unconditionally neutrally stable.

The frequency equation for the physical mode

sin qAt = + JV

also exhibits neutral stability with the condition

!..-f-, :..or, referring to (20),
At <2 Ax

This is twice the time step allowed by conventional centered differences.
Also note that the system (21) (as well as (18)) requires no integrations
of equations corresponding to the Helmholtz equations of Robert's
semi-implicit system.

Analysis of a system with two internal modes and the external.

The weights (16b) and (16c) for the two-layer case suggest thatthe external mode can be isolated approximately by summing the
equations of motion and summing the continuity equations, if HI = Ha.One would expect intuitively that summation would hold up as the
principle for isolating approximately the external mode in cases ofmore than two layers. In the next section we will investigate the
nature of the approximation in the simple summation, but in this
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section we will look at another question.

The weights (17b) and (17c), if H1 = E6, suggest that the
difference between the two equations of motion and the difference
between the two equations of continuity are a set in which the
internal mode is isolated. The question is, what is the generaliza-
tion for systems with more than two layers? We know a priori that
a system with n layers has n-Il internal modes. How should the
equations be weighted to isolate one mode from all others?

We will only set out to get a feeling for the answer, not
answer the question in its full generality. For this purpose,
consider the equations for a three-layer system, similar to the
two-layer system illustrated by the figure on the first page.

-:'; .... . ..- ac8tl+gahi; ig 8hs + hs = 

aus+ pI g ah pa ah 3+ ah5 0
at pa +ax gax ax

--- ~ ~~~~~ar 8 i hi + Ps a~ hs3+ Lh s 0

08~ a~h1 + H 8-uh = 0
at ax

hs+ H 8us = 0
at ax

-!¥:'7'":::!! 8hs + H _u = 0
at ax

The symbol H here is the mean for each of hl , h3 , h5 . For sim-
plicity each layer has the same mean depth.

We take the weighted sum of the three equations of motion,
using weights a1, as, as ; and the weighted sum of the three equations
of continuity, using weights bl, bs, b .
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a (ai u + a3 U3s + as U5 )
at

+g a (al + a s r2 +a.
ax +(al + as + r4 a5 ) hr

+(a + a3 + a5 )h5

= 0

at (b, hl + bs hs +b 5 h5s) + H a (bl u +bsu3 + b u5 ) = 0

where
Ps

r4 E _Ps
Ps

We will choose the a's and b's so that t'ese equations are
identical to the system

8 (alui + a3 us + a u5 ) +cl a
at ax

a aa (b1 h, + bahs + bs hs) +C 2 a

(bl h + b3 h3 +b5 h5 ) = 0

(al u1 +a 3 us + a s u ) = 0

Thus

c1 b= g (al + as r2 + a r2 r4 )

cl bs = g(al + as + r4a5 )

cab5 = g(a 1 + a3 + a5 )

c2a = b, H

c2 as = b3 H

c2 a5 = b5 H

Eliminating bl, b3, b5, we have

(c2- gH) a1 - r 2 gHas - r2 r4 gHa5
-gHa 1 +(c2 - gH)a 3-r 4 gHa5
-gHa 1 - gHas +(c2 - g H)a5

= 0

= 0

= 0
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e ,. (where cm= cl c2 , and is the square of the wave speed.

This set of simultaneous equations can yield relationships
among a1 , as, a5 only if its determinant is zero.

c2-gH -r 2 gH -rar 4 gH
0 = -gH c2 _-gH -r 4 gH

-gH -gH c2 -gH

We thus obtain the frequency equation

o c 3 (A 2 &+ [2( £+e )-e2 4] -e a

;::, :~;.where e I l1-r2
4 = l-r4 ...

We will assume that

e2 <<1
e4 <<1

Now, we note that if we neglect the last two terms, in the
frequency equation, which contain coefficients of the order of e or

U,7~.~. ~ smaller, two of the roots vanish, and the third root is

2
c o = 3
gH

which represents the external mode. The two vanishing roots
represent the two internal modes. Since they are vanishingly small
compared to that for the external mode, we may approximate them
by neglecting the cubic term, if they are of the order e . Solving
the resulting quadratic equation, we find (neglecting e2 e4 in com-
parison to 2(Ce2 +e4 ) in the linear term)

C 2 [ (e2 +e 4 ) + I(e2+e4 )2 _ 3e2 64]
gH

and, indeed, we note that these two roots are of order ¢.
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~~( ~For illustration of weighting patterns and for convenience,
*e ~ first let e2 = e4 = e. Then

2 1
C = (2 + 1) e
gH

Thus, the two internal modes are represented by

a
Cl= 6
gH

2
C 2 = 

gH

We may now return to our simultaneous set in the a's, make
:;.-:::.<. the same order approximations as we did in deriving the wave speeds,

and find the weighting pattern indicated in the6-following table.

External Internal #1 Internal #2
al +1 -1 +1
a3 +1 0 -2
a 5 +1 +1 +1

-. \ ca 3gH egH 1egH

The only point I make here is that weighting patterns other than
the two shown for the internal modes do not isolate the two internal
modes from each other. If we add the two patterns (-1, 0, +1) and
(+1, -2, +1), we get (0, -2, +2); if we subtract we get (-2, +2, 0). Each
of these resulting patterns would (approximately) not include the ex-

i[;:';-;- ternal mode, but they would each contain a mixture of the two internal
modes. Thus, if we merely wanted to isolate the external mode for
special treatment as with implicit differences, but were willing to
treat the internal modes explicitly, this could be accomplished by
treating the summed equations implicitly, and explicitly a set of
equations obtained by differencing equations for adjacent layers. On
the other hand, if we wanted to treat both the external mode and the
fastest internal mode (c2 = egH) implicitly, then the weighting pattern
shown in the table would have to be used.
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The consequences of approximations in isolating the external mode
~~* ~ for implicit treatment.

We have so far concentrated on approximations, under the
assumption that density differences among layers are small.
This is not a bad approximation if our models are to represent
the atmosphere. As I recall, N. Phillips through similarity con-
siderations determined that P1 /P -- 9 if the two-layer model is
to represent the atmosphere.

However, if the simple weights (16b), (16c), (17b), (17c), in
the case of the two-layer model are used to approximate the isolation
of the external mode from the internal, what will the nature of the
approximation be? The resulting set for the internal mode will
include the effects of the external to some degree, for precise

~i~::.-: , isolation can be accomplished only through the weights as given by
(13) and (14).

In the context of this discussion we want to know, when the
external mode isolated approximately is treated implicitly and
the approximately isolated internal mode is treated explicitly,
whether what remains of the external mode in the explicit treat-
ment is manifested by (1) a small-amplitude mode with the full
speed of the external, or (2) a mode with a reduced speed. It is

*w~ ~ case (2) which will allow a longer time step than a fully explicit
treatment. If case (1) were true, the external mode would have
to be isolated precisely, which is rather complicated even for the
relatively simple physical systems with which we have been dealing.

-:-:::,:,i To investigate the problem, we return to the two-layer model
of the introduction, and let H1 = H3 = H. To approximately isolate
the external mode we add equations (1) and (2) and equations (3) and
(4).

--a (ul+us) +g g [(2-e)hl+2h5 ] = 0
-at ax

a (hi+h3) + H a (u1 +u) = 0at ax

12



*.\ (These we treat implicitly

r ~~2t 2t
(ul+u) 2t + g (Z-6)(hl)x + 2 (h) 2 x ] =0

u 2t(hi)at + (h )at + H (ul + US )2ax

p1where e = 1--
p.3

Next we approximately isolate the internal by subtracting instead of
adding, and treat the result explicitly.

(u 1 -us )2t + g e (h )2x = 0

5ii:~:'=, -e (hl)2t - (hs 3 )2t + H (u1 - U )2 X = 0

Consider

hl =' 1 exp i (qt + rx)
h3 =1i exp i (qt + rx)
u1 = U1 exp i (qt +rx)
us = U3 expi(qt+rx)

The frequency equation is then

0 = (4-e R2 +4R 2) sin4 qAt - (4+ eR)R 2 sin 2 q A t + e R4

whereR2 _ 2gH * (At)2 sin 2 rAx,:~.,;.:;!: ...whereR
(Ax)2

or

sin2 qAt = R2 4+ R2l/(4- e R2-4e)(4-e R2)
2(4- eR2 +4R2)

For stability, a necessary condition is that the radicand be positive.
This will be so if either both factors are positive or both factors are
negative. If the larger of the two is negative both are, but this condi-
tion leads to

4
R 2 --
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(
which cannot generally be satisfied, for sin2 rAx, and therefore
R2, is not limited away from zero. On the other hand, if the
smaller of the two factors is positive, both are, which leads to

4-e R' 4¢
or R2 s 4 (_- 1)

This condition along with

0 sin 2 qAtS 1

are necessary and sufficient for stability.

The last condition may be expressed as

'~¢:i;!i%!:- R (4+e R ) + R 2 /(4-e R - 4 e ) (4-e R' ) 

;2(4- eR2 + 4R2 )-R 2 (4+eRe )

= (4- R 9")(2Z+R a)

These are two independent conditions, one for each sign. The left-
hand inequality is satisfied automatically for the upper sign, for a

*\~ ~ positive number is always equal to or greater than a negative number.
The right hand inequality is satisfied for the lower sign for the con-
verse reason. We thus have the following two conditions which must
be satisfied for stability.

-/(4- eR2-4¢)(4 - e R2) 4+e R2

/(4- eR2-4e)(4-eR) - (4- e R2 )(2+R 2)

The first of the last two leads to

4 -e R2 - 4R2

and the second leads to

-(4- e R2)(2) (2+2ZR2 ) f4e R

both of which are true under the previous condition, i.e., 4- e R2 4 .
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The necessary and sufficient condition for stability is thus

1
R2 4 ( - 1)

For the worst case, sin2 rAx = 1, and

/~:hAt < 2-
Ax e

This is to be compared with the condition for the fully explicit
system for the precisely isolated external mode,

f2gH-* (At)e 2 l-fI --e
Ax 2e 

and with the condition for the internal mode precisely isolated
and treated explicitly

/T TH. (At)i c2 I+I-
Ax 2

For example, if e .1

gH. At 6
Ax

V-gH (At)e • 1.01
Ax

v2gH'(At)i 6.24
Ax

We thus see a factor about 6 is gained through a modified semi-
implicit treatment, and only about 4% is lost in terms of At by
making the approximations in isolating the two modes.
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