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Abstract

A new mass-field variable is defined for use in normal mode initialization

of a sigma coordinate model. The new variable is a nonlinear function of

surface pressure and temperature whose Laplacian gives the full mass-field

contribution to the divergence tendency. It is found that gravitational

zeroing results in significantly smaller changes and a better balance with

the new mass variable than with the old. For first order nonlinear initializa-

tion, use of the new mass variable yields only minor improvement in a global

sense, but may be significant in the areas of high resolution steep orography.

(
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1. Introduction

There are many forecast models with a vertical coordinate which is some

function of P/Ps, where P is pressure, and Ps is surface pressure. A frequently

used vertical coordinate, introduced by Phillips (1959), is (C = P/Ps, which

will be the only vertical coordinate addressed here. In addition, many such

models use some form of normal mode initialization, the subject of which has

been reviewed by Daley (1981). For normal mode initialization with such

models, it has been conventional to employ a mass-field variable whose gradient

gives the linearized pressure gradient force. For example, Temperton and

Williamson (1981) use a mass-field variable W = + RTologPs, where is

the geopotential height of the 0r surface, R the gas constant, and To = To(Cr)

only is a mean temperature. The model's linearized equations can then be

written as functions of the winds and W , making possible a separation of

horizontal and vertical dependence. Normal modes can then be calculated and

used for initialization with the model.

Although the above conventional linearization works well in practice, it

may not be optimal as -VW is not the full pressure force, -_ - W-t

logPs. Thus -vW/ differs from the full pressure gradient force by (T-To)17

logPs, which can be significant, especially over mountains. The use of A/

in linear initialization, where gravity mode amplitudes in the initial state

are set to zero, can lead to error. For example, consider an initial model

state that is geostrophic. Here we expect linear initialization to make

small changes to the initial state. However, when a modal analysis is

performed using W as the mass field, the initial state will not be analyzed

as being purely geostrophic as -V W is not the full pressure gradient

force and does not fully balance the Coriolis force. Thus the linear

initialization will produce unnecessary height and vorticity changes in areas
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that were geostrophic. These unnecessary changes tend to be largest over

mountains and may be large enough to not be corrected by nonlinear initializa- 

tion.

When one uses nonlinear normal mode initialization, the error in using W

as the mass-field variable is more subtle. We know that the nonlinear

initialization adjusts the initial vertical velocity so that the mass field

and wind field tendencies are approximately geostrophic, Leith (1980).

However, when W is used as the mass-field variable, it is only an approxi-

mation of the net mass field that is used, which could lead to error in the

initial vertical velocity.

In this paper a new mass variable W1 is introduced, which is a nonlinear

function of , T, and the surface pressure. Here W is defined so that

V /2 W gives the full contribution of the mass field to the divergence

tendency, which is relevant as the model and its modes are in divergence and

vorticity form. To compare the use of INS instead of %Al in normal mode

initialization, a 12-level version of the National Meteorological Center's

global spectral model, Sela (1980), with rhomboidal trunction to 24 waves, is

used. Earlier work on initialization of the model can be found in Ballish

(1980), and more details on the model can be found in Sela (1982).

The normal mode initialization schemes used in tests here will be fairly

basic. The first scheme to be examined is linear normal mode initialization,

also referred to as gravitational zeroing, which was first tested by Williamson

(1976) with a shallow water model. Some experiments will use Baer-Tribbia

(1977) initialization, hereafter referred to as BTI, to first order accuracy.

The first order BTI differs from the frequently used Machenhauer (1977)

procedure in that BTI uses gravitational zeroing before any nonlinear balance

is attempted. In addition first order BTI requires only one iteration of
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nonlinear correction. To illustrate the differences in these schemes, we

write a gravity mode tendency as Y = irY + N (X,Y), where Y represents a

single gravity mode, Y represents them all, X represents all the Rossby

modes, / is the single modes frequency, and N represents nonlinear contribu-

tions to Y. First order BTI results in Y= -_- O) The Machenhauer

procedure requires first calculating Y and then setting = -- Y -/V-

in attempt to make Y = O. Since the system is nonlinear, one can iterate in

attempt to make Y exactly 0. If the iterative procedure converges it results

in Y/ / V Nt )() . The first order BTI is equivalent to gravitational

zeroing followed by one iteration of Machenhauer's nonlinear correction.

The conventional Machenhauer procedure uses no zeroing and usually involves

a number of iterations. Here we are concerned with how the use of W'

instead of W affects the performance of the initialization procedures.

2. Normal Mode Decomposition

a. Model Equations

The model's basic dynamic variables are vorticity ~ , divergence D,

temperature T, and the logarithm of surface pressure logPs, which will here-

after be referred to as Q. The model is hydrostatic with the geopotential

given by 4 + A 7 , where the tilda indicates that we are
-.- A, ) -I

dealing with a 12 level vector (V = ( -_ I ) , is a vector

with the surface geopotential at all 12 levels, and A is a constant

12x12 matrix. Model tendencies are written

-LE X -)RT V g tAi D (1)at'~~~~ -v._~~~~~~~ _ + >~ (2)~ ~ (20)
.J
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(3)

+Mf/VL 9 (4)

Here V is a 2-dimensional vector holding the 2 horizontal wind components, NL

represents nonlinear terms which are calculated in the model, A is a vector

designed so that A D is a finite difference version of - b) , and

B is a constant 12x12 matrix.

b. Standard Normal Mode Calculation

The first step in deriving normal modes is to note that the divergence

tendency may be written

-)=D _ K vx . V -VV + A/LD
(5)

where W/ - + R To Q . For the tendency ofA W/ , we see that

% ¢/%t ~ =A 3D +A N. T and -al' R 7q( " - ES {i N L + )
Now we can rewrite the model's linearized equations in terms of D, t , and

W , see Sela (1982).

--- - --.Vx,-v

-' =- v v f v
-E 

W - (AX3'R

- 7 I w
(6)

(7)

(8)

Note that derivatives of fv will be evaluated spectrally in terms of k and

D. /

-01�--a T- -[3 -D +

,^- -Ij
,-bo- - .lbA

Z -6

I

*-.-V ~ -r ev
T, A ) D = G T��

INLJ
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Temperature and surface pressure are no longer directly involved in the

linear equations, but we will see later that they can be calculated from .

The only vertical coupling that occurs in (6)-(8) is that 'V//2 depends

on D at all levels. A separation of variables occurs if we expand D, . ,

and / simultaneously in the eigenvectors of G. The eigenvalues of G are

written as -gh, where h is the equivalent depth. The eigenvectors of G are

the vertical modes. Then for a given vertical mode the horizontal linear

equations are

%~ _ K'v x V --~V ath :u~-f~V *-7 j
(9)

(10)

Horizontal modes can now be solved on a computer.

After the horizontal modes have been computed, we still have the problem

of how to decompose v/ into its contribution to Q and T. We solve the

problem by requiring all model fields in the linearized equations to oscillate

with frequency .< for a given isolated mode of frequency V' . Thus

aQ Zr -A_ t 1 rand 9 _ l} AVW- iDgives

A /Ik § (12)

where Q is the logarithm of surface pressure associated with X/ , where W

is the vector of i due to one vertical mode evaluated on model levels. Once

Q has been evaluated, we can calculate T by using the definition of W
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Now that the normal mode calculation has been discussed, we can examine 

how to use the modes for initialization purposes. For linear modal initializa-

tion, we calculate W/ from model fields and then use D, . , and V/ to

modally analyze the gravitational projection of the model fields. The

gravitational projection for / is converted to the projection in T and Q.

These gravitational projections are then subtracted from the given initial

fields, with the result being the linearly initialized fields. To perform

the first order correction of BTI or to do one iteration of Machenhauer's

procedure, one calculates model tendencies D, , T, and Q. Then W/ is cal-
. #

culated and the gravitational projection of D, . , and is performed.

For a given gravity mode tendency Y, a change A Y - is made.

The gravitational changes are converted to changes in D, , and By , with

the changes in W converted to changes in T and Q.

c. Mass Field Modified Modal Calculations f

The model divergence equation can be written

m= ;¢:xtv _¢ _..'r~t _v7 Pe,
/ SA(13)

+ IVL~

where AL/z is a nonlinear function of D, , and Cr only. Equation

(13) can be written more compactly as

_ _ i- W ¢Vx T _V/ kJX +V IV
e)t - (14)

where

(15)
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with ( V ) _ OO, for mean spectral fields and is - a /) (X -+/)

for spectral coefficients with 71 ~ 0 , with a the radius of the Earth and n

a spherical harmonic meridional integer index. The special case of setting

( V2 ) ao for 71 0O is to prevent division by 0.0 but does not harm

the results of (15) as a mean mass field with 71 = O has no gravitational

projection or contribution to / D/ t . Now the full contribution to the

pressure gradient force is contained in 7 2 W' , and /\LD contains

less nonlinear terms than does NLD.

Although W contains more information on the pressure gradient force

and gives a more efficient linearization of X than does W ;

it adds some complexity to the mass field tendency. Before we had
~~~ ~~~~~J -

2 W/a E ) t f L+ , which is replaced by

__ _ G D + NLw, (16)

where NLw~ has some cubic nonlinear terms that are not present in NLW .

It is possible that the added complexity of cubic nonlinearity may lessen the

net beneficial effects of using W/ instead of W .

When W' is used as the mass-field variable the linearized equations

remain unchanged except that W is replaced by Wlin (9)-(11). Thus one does

not have to recompute normal modes. However, there is some difference in how

the modes are used. The standard linear and nonlinear initialization procedures

require respectively input values of D, ~ , and,/ or D, , and W . When

using W instead of Wd , W and A/ must be replaced by W and \ respectively.

On output of both the standard linear and nonlinear procedures will be desired

changes in D, , and W . When H/ is used, these procedures request

changes in D, , and W . The changes in temperature and surface pressure
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due to the change in W are derived from (12) and the definition of / ·

It is more complicated when changes in A are requested, as it is a nonlinear

function of temperature and surface pressure. In this paper changes ST and

gQ based on S W# are calculated the same way as with g W . Thus i T and S Q

only approximately give the desired change in gS . One could try iterative

procedures for finding exact values of 6 T and ~ Q that would give the desired

g W", but that is not considered here.

3. Results of Gravitational Zeroing

In this section we examine gravitational zeroing applied to various

cases. Standard zeroing is compared to zeroing using W instead of W .

Attention will be given to the magnitude of the changes produced by the zero-

ing as well as the state of balance after zeroing. The assumption is made

that it is beneficial and desirable for any change in the initialization to

result in both smaller changes to the model fields and a better balance.

Before testing zeroing with actual analysis cases, we examine the dynamics

of linear initialization when using standard atmospheric data.

a. Standard Atmosphere Case

Before investigating model normal mode initialization with standard

atmosphere data, we examine how much -V Wdiffers from the pressure gradient

force in a constant lapse rate standard atmosphere. Here we assume that

there are zero winds and a uniformly constant lapse rate T/ ;- .

Using the hydrostatic assumption, one finds

1O9 ( PW ) = s 1O 0
P, ( v z )(17)

where Too is T at Z = 0 and is a constant, with P1 and P2 being respectively

pressures at heights Z1 and Z2. In addition, at a constant CT level we have
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oaar el Ca ( T

where Zs is the surface height. Furthermore, P - g ( P
'ro /

where Ps is the surface pressure and Poo is the pressure at Z = 0. Now - W

differs from the full pressure gradient force by i F= R(TT r-TX) v/

where To is the mean temperature used in the linearization. Here we take

TO T l C) = t r/ , then

=~ ~ fe s (18)

We now estimate the magnitude of F in the spectral model over the

Himalayas with the above lapse rate condition. Based on maps of the model's

orography, we take a point with Z 2 km, and a gradient of roughly 2 km in

height over 500 km horizontal distance. If we take ~ = -6.5°/km and assume

Too = 285 °, we find i R 2.88 x 10-3 m/sec 2 . This is large and corresponds

to a geostrophic wind of roughly 39 m/sec. Thus -V / differs significantly

from the full pressure gradient force. This difference can be significantly

higher in models with high resolution orography.

Now we examine performing gravitational zeroing with the model when its

initial data is derived from a standard atmosphere, which has zero winds and

constant heights. These fields are used to extrapolate the fields of

temperature and surface pressure required by the model. This extrapolation

is not perfect, as the model has small nonzero pressure gradient forces in the

levels. The amplitude of imbalance due to the above error is small; for

example, if Machenhauer's initialization is applied to this case for all 12

vertical modes, the vertically averaged temperature change is .097°, and the

maximum surface pressure change is only .122 mb.
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Although Machenhauer's nonlinear initialization results in small changes

with the standard atmosphere case, we will see that simple linear initialization

results in some significant changes. When standard gravitational zeroing is

applied in this case for all 12 vertical modes, the following maximum changes

in model fields result: in surface pressure, 12.3 mb; in temperature, 4.66°

at level 9; in wind speed, 14.0 m/sec at level 8, all occurring over the

Himalayas. When only 4 vertical modes are zeroed, the maximum changes are:

in surface pressure, 12.6 mb; in temperature 4.87°; and in wind speed, 6.65

m/sec. These changes are unnecessary and are large enough to have impact on

possible further initialization steps.

When gravitational zeroing is performed for all 12 vertical modes with

the standard atmosphere case, but with V/ used instead of W , the maximum

changes are: in surface pressure, .029 mb; in temperature, .094° at level 8;

in wind speed, .429 m/sec at level 7. These changes are due to small imbalances

in the model rather than due to error in the modified zeroing. Thus the mass

field modified linear initialization is making small changes to the standard

atmosphere case.

b. Application to a 24 Hour Forecast

Here we examine gravitational zeroing applied to a 24 hour forecast from

an analysis valid 0000 GMT 11 March 1981. The forecast should be fairly

balanced as first order BTI for all 12 vertical modes was used at the initial

time plus the model tends to disperse transient gravity waves. By applying

initialization to this forecast, we can judge the initialization scheme

according to the size of the changes produced. Here smaller changes are

preferred. If we were initializing an analysis, such judgment is less valid

as the initialization may be correctly making large changes.
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For gravitational zeroing for N vertical modes, we use the notation ZN.

Thus Z12 represents gravitational zeroing for 12 vertical modes. For gravita-

W
tional zeroing using W instead of VA/ , we use the notation Z'6 to represent

zeroing for 6 vertical modes, etc.

In Table 1 we compare RMS changes to model fields due to Z12 and Z'12

gravitational zeroing of the 24 hour forecast. Vertically averaged RMS

changes in temperature, and vorticity are denoted as ST7- and $2 respectively,

while SQ denotes the RMS change in Q. In addition, the table lists (SPs)max

the global maximum change in surface pressure due to the zeroing and D the

vertically averaged RMS divergence tendency after initialization. The Z*12

initialization procedure will be discussed in Section 3d. The RMS changes in

divergence and the RMS vorticity, temperature, and surface pressure tendencies

are similar after the two zeroings, and are not shown in the table. From the

numbers in Table 1, it is clear the Z' zeroing results in both smaller changes

and a better balance then the standard zeroing. The Z' zeroing results in

distinctly smaller mass field and vorticity changes and a smaller divergence

tendency. If less vertical modes are zeroed, the RMS changes are reduced.

Table 1

Some Diagnostics on Results of Gravitational Zeroing on a 24-Hour
Forecast from 0000 G@T 11 March 1981

Diagnostic Initialization
Z12 Z'12 Z*12

S Q .243x10- 2 .126x10-2 .199x10-2

g T .748° .5991° .72700

if t .6298x10-5 sec-1 .5786x10- 5 sec- 1 .6180x10-5 sec-l

($PS)MAX 15.43 mb 5.60 mb 11.03 mb

D .1562x10 - 8 sec-2 .7694x10 -9 sec- 2 .1161x10 -8 sec-2
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c. Application to Analyses

In this section, gravitational zeroing is applied to analyses resulting

from the NMC assimilation system described in McPherson et al. (1979) and

Kistler and Parrish (1982). Again we find that the mass field modified

zeroing results in significantly smaller changes to the initial state and a

noticeably better balance.

For the analysis valid 0000 GMT 11 March 1981, we apply Z6, Z'6, Z12,

and Z'12 initializations. Table 2 gives vertically averaged RMS changes in

temperature, divergence, and vorticity, denoted as ST, SD, and S , while 5 Q

denotes the RMS change in Q. Also, D is the vertically averaged RMS divergence

tendency after the zeroing. We see that the Z and Z' zeroings result in

similar RMS changes in divergence, but the Z' zeroing results in smaller

changes to vorticity, temperature, and surface pressure. Not shown in the

table is the result that the Z and Z' zeroings result in similar vorticity

and mass field tendencies. However the Z' zeroing results in a significantly

smaller RMS divergence tendency. We see that the 12 vertical mode zeroing

produces bigger RMS changes than does 6 vertical mode zeroing, except for the

RMS change in Q. The Z' zeroing results in a smaller RMS divergence tendency,

with Z'12 zeroing giving the smallest value of D.

For the analysis at 0000 GMT 9 August 1982, Z6 and Z'6 zeroings were

performed. In this case, the analysis is less noisy and energetic than in

the 11 March case. Table 3 gives the same diagnostics as in Table 2, but for

this experiment. Here there appears to be a larger difference between Z'6 and

Z6 zeroing than in the previous comparison. For example the Z'6 zeroing has

less than one half the RMS change in Q of the Z6 zeroing. The larger rela-

tive difference is probably due to this analysis having a fairly good balance.
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Diagnostic

SD*

SE*

T

S Q

D**

Table 2

Some Diagnostics on Results of Gravitational
Zeroing of the 0000 GMT 11 March 1981 Analysis

Initialization
Z6 Z'6 Z12

.7927 .7915 1.199

.5177 .4597 .9528

1.014 ° .8543° 1.032 °

.355x10-2 .249x10-2 .353x10- 2

.1477 .1208 .1387

*units of 10- 5 sec-1

**units of 10-8 sec-2

Table 3

Some Diagnostics on Results of Gravitational Zeroing
of the 0000 GMT 9 August 1982 Analysis

Initialization

Diagnostic

6 D*

*

T

DQ

D**

Z6

.5725

.3245

.7299°

.433x10-2

.1190

Z'6

.5723

.2884

.5876°

.200x10 -2

.0679

*units of 10- 5 sec-1

**units of 10-8 sec- 2

Z'12

1.199

.9124

.9304°

.249x10-2

.0846
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The results of these gravitational zeroing experiments indicate that the

Z' zeroing is superior to the standard zeroing. The conventional zeroing

uses a simplified mass-field variable which makes the vorticity and mass

field relationship seem less geostrophic than it really is. The modal analysis

then makes unnecessary vorticity and mass field changes. As a result, the

conventional zeroing causes larger RMS vorticity and mass field changes as

well as a larger divergence tendency. However, the divergence changes are not

appreciably altered by the mass field modification.

d. Rest-state Modified Zeroing

As pointed out in Section 3a, a standard atmosphere is analyzed to have

significant gravitational projection when W , not W' , is used in modal

analysis. These gravitational fields have their largest amplitudes over

mountains. Thus standard gravitational zeroing can result in unnecessary

sizable changes over mountain areas. In attempt to correct this defect in

zeroing, Ballish (1980) introduced a modification of the zeroing step. After

setting to zero the amplitude of gravity modes being adjusted, he added on

the gravitational fields of the model with standard atmosphere data. This

modification was an improvement over pure zeroing, but we will see that it is

considerably less effective than the mass field modified initialization

introduced here.

When the above rest-state modified zeroing is applied to the 24-hour

forecast used in Section'3b, we find that the RMS changes are smaller and the

balance is better than when pure zeroing is performed. Table 1 gives some

diagnostics on the results of rest-state modified zeroing for 12 vertical

modes, denoted Z*12, applied to the forecast. We see that the Z*12 zeroing

gives smaller changes and a better balance than regular Z12 zeroing, but the

Z'12 zeroing is better yet. Evidentally the balanced gravity wave fields
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associated with mountains are only roughly approximated by the gravitational

fields of a standard atmosphere with mountains.

4. Results After Nonlinear Balancing

In this section, the results of experiments with first order BTI using

mass-field variables W and W/ are discussed. We will use the notation

lBT6 to denote first order BTI for 6 vertical modes where W is the mass-field

variable employed. The notation lBT'12 denotes first order BTI for 12

vertical modes withW/' the mass-field variable, etc. With the new mass-field

variable we found that gravitational zeroing led to smaller changes and a

better balance than standard zeroing. Here we find that 1BT' initialization

results in smaller changes and a better balance than 1BT initialization, but

the differences are smaller than with gravitational zeroing.

For the analysis at 0000 GMT 9 August 1982, 1BT6 and lBT'6 initializations

are applied, with diagnostics on these experiments given in Table 4. These

diagnostics include vertically averaged RMS divergence and temperature

tendencies along with RMS tendencies in Q for the analysis, the initialized

analysis, and the results of six hour forecasts after initialization. Based

on the tendencies shown in Table 4, it is evident that both the 1BT6 and

1BT'6 initializations result in a significantly better balance than the

analysis. The 1BT'6 experiment appears to have a better state of balance at

both t=O and t=6 hours than that of the lBT6 experiment. In addition,

Table 5 shows that the lBT'6 initialization resulted in smaller RMS changes

to model fields.
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Analysis

1BT6 (t=0)

1BT'6 (t=0)

1BT6 (t=6)

1BT'6 (t=6)

Table 4
RMS Model Tendencies for the 0000 GMT 9 August 1982 Case

D T

2.142 1.894

.4938 .4555

.4749 .4546

.4951 .4704

.4876 .4630

x10-8 sec-2 x10- 4 °/sec x]

Q

2.953

.0926

.0867

.1527

.1273

10-6 sec-1

RMS Model Changes Due

Initialization

1BT6

1BT'6

Table 5
to Initialization of 0000 GMT 9 August 1982 Analysis

g * g'* T i Q

.5302 .2708 .5124° .1886x10 - 2

.5288 .2696 .5088° .1799x10-2

*units of 10- 5 sec -1

The above 1BT6 and 1BT'6 initializations were also applied to the analysis

valid 0000 GMT 11 March 1981. This case is unusually noisy and may present

problems for the initialization schemes. In Table 6 we list some RMS model

tendencies for 1BT6 and 1BT'6 initialization experiments both at t=0 and t=6

hours after initialization. The tendencies indicate a better balance in the

lBT'6 experiment, but the differences are smaller in this noisy case. In

addition, as indicated in Table 7, the 1BT'6 initialization again results in

smaller RMS changes.
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Analysis

1BT6 (t=0)

lBT'6 (t=0)

1BT6 (t=6)

1BT'6 (t=6)

Table 6

RMS Model Tendencies for the 0000 GMT 11 March 1981 Case

D T

3.059 2.368

.9465 .8043

.9358 .7954

.9490 .8248

.9403 .8105

xlO-8 sec-2 x10- 4 °/sec xli

Q

3.22

.114

.106

.142

.138

0-6 sec-l

Table 7

RMS Changes Due to Initialization of 0000 GMT 11 March 1982

Initialization SD* * S T

1BT6 .7324 .4229 .7800°

lBT'6 .7321 .4213 .7791°

Analysis

g Q

.217x10- 2

.214xj0-2

*units of 10- 5 sec -1

Nonlinear initialization expeirments were also performed with the 24-

hour forecast discussed in Section 3 as input to the initialization. This time

a modification of lBT12 and lBT'12 initializations was used. The modification

was an additional iteration of the Machenhauer procedure for the external

made only after performing first order initialization. These initializations

with the extra external mode step are denoted lBT12+ and lBT'12+. Here we do

not explain all the reasons for the modification, but note that it results in

a reduction of surface pressure oscillations during forecasts. Table 8 lists

some RMS model tendencies for the forecast, the 1BT12+ and 1BT'12+ initializa-

tions of the forecast, plus the tendencies after 6 hours of forecast after

initialization. The tendencies indicate that the initialization is improving
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the balance of the forecast. But we should note these diagnostic tendencies

do not include the effects of latent heating, convection, horizontal diffusion,

or the semi-implicit time intergration, all of which are significant in the

forecast. The lBT'12+ initialization indicates a better balance initially

and at t=6 hours of forecasting. In addition, the lBT'12+ initialization

resulted in smaller RMS changes as indicated in Table 9.

Table 8

Some RMS Model Tendencies Associated with the 24-Hour
Forecast from 0000 GMT 11 March 1981

Forecast

lBT12+ (t=0)

1BT'12+ (t=0)

lBT12+ (t=6)

1BT'12+ (t=6)

D

.6103

.4727

.4551

.4963

.4787

x10-8 sec-2

T

.7619

.7615

.7496

.7647

.7526

x10- 4 °/sec

Q

.992

.984

.968

1.01

1.01

x10-7 sec-1

Initializati

lBT12+

1BT'12+

Table 9

Some RMS Changes Due to Initialization of the 24-Hour
Forecast from 0000 GMT 11 March 1981

-on i D* l * S T

.8063 .5313 .4526°

.8026 .5285 .4482°

*units of 10-5 sec-1

Q

.314x10-3

.308x!0-3
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5. Discussion

We have found that conventional gravitational zeroing employing W

as the mass field has problems in mountain areas. Such zeroing leads to

unnecessary vorticity and mass field changes due to a/not containing sufficient

pressure gradient information. Over the Himalayas,-VW may differ considerably

from the actual pressure gradient. The unnecessary vorticity and mass field

charges are undesirable in terms of mass and wind analyses but also lead to

imbalances and a large divergence terdency. These problems with the conventional

zeroing are no doubt related to the fact that the normal modes are calculated

from a linearization that does not include orography.

With the new mass-field variable /W , whose Laplacian gives the entire

mass field contribution to the divergence tendency, gravitational zeroing

results in considerably smaller vorticity and mass field changes as well as

a better state of balance. This modification was successful even though

changes in surface pressure and temperature were only approximate and do

not give the exact change in WI requested by the modal calculations.

Further work on iterative procedures for calculating changes in surface

pressure and temperature as a function of requested changes in needs

further investigation for both gravitational zeroing and nonlinear initializa-

tion.

Although the use of W I in gravitational zeroing resulted in a significant

improvement in performance over conventional zeroing, we found that use of W

in first order nonlinear initialization only results in a minor improvement

in performance in terms of global diagnostics. There are at least three reasons

for the use of W having less positive impact on nonlinear initialization

than it does on gravitational zeroing. First, in all of the nonlinear initializa-

tion experiments, model tendencies are calculated exactly employing all aspects
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of the pressure gradient force. Thus if there is an imbalance between the

mass field and vorticity after gravitational zeroing, 
the nonlinear initializa-

tion attempts to correct the problem. Second, in the approximate sense, we

know that the nonlinear initialization step adjusts 
the vorticity and mass

field in attempt to make the divergence tendency zero. Given a nonzero

divergence tendency, the nonlinear initialization requests 
a change in the

mass field which is the same regardless of whether we 
are using V/ or W

as the mass field. Since the V/ initialization experiments adjust Ir and 

as the same function of W/as is done when using W , there is no difference

in this particular aspect of the nonlinear initialization. 
The third reason

involves the divergence changes produced by the nonlinear 
initialization.

We know that in an approximate sense such initialization 
adjusts the divergence

in attempt to make the vorticity and mass field tendencies 
geostrophically

related. When using W in nonlinear initialization, the change in divergence

is proportional to t-V , while when using WI, the change is proportional

to V W . With the linear initialization, 7 differs substantially

from , whereas in the nonlinear step, and V W are not significantly

different.

Apparently the biggest reason for the net improvement 
in first order

BTI with W instead of ~J is the improvement in the gravitational 
zeroing

step. Zeroing using 4/ introduces unnecessary error that is not com-

pletely corrected by the nonlinear step. In a global sense, the nonlinear

initialization succeeds in correcting most of the error 
introduced in the

zeroing step. However, it is possible that gravitational errors introduced

by simple zeroing will not be adequately corrected by 
the nonlinear adjustment.

This problem could be most serious when we have a strong 
flow pattern such

as a jet stream over a mountain area.
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Conventional Machenhauer initialization without zeroing was not considered

in this paper. This is in part due to the focus or the paper being W versus W

instead of zeroing versus no zeroing. In addition, use of V/ in the nonlinear

initialization without zeroing can lead to problems due to increased cross

vertical mode interaction. For example, suppose we are initializing 6 vertical

modes and there is large amplitude divergence in vertical modes 7-12. This

divergence can have significant linear effect on Q and T. The linear contri-

bution of this divergence to vertical modes 1-6 of A/ is zero, but it is not

zero for . Thus divergence in modes 7-12 could have some significant

effect on the adjustment of modes 1-6 when / is used in the nonlinear

step. This vertical mode interaction could easily lead to error but may be

beneficial in some cases. An alternate example is the case where the analysis

results in large erroneous divergence in the external mode. This divergence

has a very large linear contribution to Q and T which affects only vertical

mode 1 of W/ but affects all vertical modes of W/ . In this situation,

convention Machenhauer initialization using t' could make unnecessary changes

to all 12 vertical modes, where as if W was used instead of W/ , the

initialization would have essentially removed the erroneous divergence in

the external mode. Further work needs to be done to investigate how to

minimize any error due to increased cross vertical mode interaction associated

with using W/.

The mass-field variable Wmay have other applications than normal mode

initialization. For example, Phillips (1982) has suggested that an analysis

should analyze only slow modes. Such an analysis may have problems in mountain

areas if W is used as the mass-field variable. In addition, W may be

useful for modal analyses or modal time integrations.
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In conclusion, we have found that use of W/ instead W of is beneficial

for first order BTI, even though we do not know how to fully optimize its

use. Further work needs to be done on how to specify changes in surface

pressure and temperature as a function of mass field changes. Further know-

ledge is needed concerning the problems and possible benefits of the increased

cross vertical mode interaction associated with I/I. The experiments discussed

here were performed with a model with relatively smooth orography; thus we

may see more substantial benefits with using W in some of the high resolution

models in existence today.
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