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ABSTRACT

An iterative four-dimensional objective analysis scheme is
described. The method is derived by approximating a variational
algorithm which should give an optimal four-dimensional analysis.
The complete set of operationally available observations, and
operational analysis and forecast codes, are used. In this the
scheme differs from most other studies of optimal four-
dimensional analysis, which make less approximations in the
algorithm, but use simplified models and data.

The scheme was developed using the optimal interpolation
analysis, nonlinear normal-mode initialization, and nested-grid
forecast model from the Regional Analysis and Forecast System of
NMC. To these were added an approximate adjoint of the forecast,
and a code to implement a simple descent algorithm. Tests used
the operational observation database.

The scheme was successful in producing a dynamically
consistent four-dimensional analysis which fit the observations,
without totally impractical computer costs. However for the one
test case studied, the forecast from the scheme's analysis was
slightly worse than that from the operational analysis.

The tests highlighted some deficiencies of the current
operational analysis, initialization, and forecast codes. They
also indicated areas where further development of the scheme is
desirable; in the adjoint forecast model and analysis error
estimation.
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1. INTRODUCTION
____________
The objective of this work is to try to implement, in a

practical environment, some of the four-dimensional analysis

theory which has been developed theoretically, and tested in

simple models. If errors introduced by a forecast over the

period spanning the observations are neglected, then the

"optimal" analysis is defined by the three-dimensional, balanced,

state which best fits simultaneously a background state and, when

forecast using the standard model, the observations over a period

of time. The full solution to this variational problem is set

down; it is this that has been tested with a very simple model in

Lorenc (1986b).

The aim here is to construct an approximation to the

theoretically correct method, using if at all possible existing

programs for three-dimensional analysis (3DOI), forecasting, etc.

By using the full observational dataset used in operational

forecasting, and the operational forecast model, we hope to

demonstrate that the scheme is capable of practical

implementation. Compared to the "three-and-a-half" dimensional

analysis given by currently operational data-assimilation

schemes, a four-dimensional scheme should more correctly use

tendency information in the observations, and be more readily

adaptable to the use of asynoptic data. We also hope to indicate

a way in which the current methods can be modified to become more

nearly four-dimensional, without a disruptive sudden change to a

conceptually different scheme. By using available programs as

components in the new scheme, we will be able to switch to up-to-

date versions as they become available, and to transfer the
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method easily to other models, allowing this research to proceed

in parallel with other developments. We also minimize the amount

of new code required. In particular all the handling, sorting,

selection, and spatial interpolation of observations, which take

the bulk of the effort in coding a practical analysis scheme, are

kept unchanged in the 3DOI component.

An ideal four-dimensional scheme should be able to use the

tendency information in observations, for instance observations

indicating that a low is deepening should generate upper flows

which would cause the model forecast fields to similarly deepen.

As well as this, the method has potential in alleviating the

practical "spin-up" problem of current operational forecasts. If

successful, the scheme will well fit the observations at the end

of the 4D analysis period with a forecast from the beginning.

This forecast will be consistent with the model's dynamics and

physical parameterizations and can be extended into the future,

avoiding some of the spin-up problems, in parameters like

convective rainfall, which occur when initializing a forecast

from a three-dimensional analysis.

The scheme has not been developed for operational

implementation in the near future; current computer constraints

rule that out. One practical use might be to produce dynamically

consistent four-dimensional analyses of research datasets, for

diagnostic study.

A review of analysis methods for numerical weather prediction,

which discusses the relationship between so-called Optimal

Interpolation (OI), constrained variational minimization, the
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Kalman-Bucy filter, and the adjoint equation method, has been

published by Lorenc (1986a). We shall not repeat this review

here, however it is appropriate to list research which actually

attempted to perform a four-dimensional analysis constrained by

nonlinear prediction equations. For a method to be truly four-

dimensional, the use made of any observation must depend on

whether there are similar observations at other times, defining

tendencies, and on what these tendencies are. Lewis and Bloom

(1978) used a variational technique on gridded fields. Ghil et

al (1981) used the Kalman-Bucy filter method for a simple one-

dimensional example. Lewis and Derber (1985) and Courtier and

Talagrand (1987) used the adjoint method. Hoffmann (1986) solved

the minimization problem in a straightforward (computationally

expensive) way for a very simple model. None of these examples

used an observational database which approached in magnitude the

operational database used for this work.

The method used here can be considered a combination of OI

with the adjoint equation method. Equations for this were

derived and tested in a simple one-dimensional model by Lorenc

(1986b). This work uses the same notation and basic equations,

set out in section 2. Section 3 shows how, with some

approximations, the 3DOI program which is used operationally can

be modified to calculate some terms in the equations.

Approximations are needed especially in estimating the analysis

error covariances. Since we do not have available the adjoint of

the operational forecast model, it must be approximated. Section

4 describes how this is done by integrating backwards an

adiabatic perturbation form of the model. Many of the above
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mentioned approximations are only valid for "balanced" fields;

the concept of balance also provides useful information for

constraining the analysis. Section 5 discusses this aspect.

Section 6 sets out the iterative procedure which results from all

the preceding discussion. Section 7 describes the test scheme

implemented using the operational analysis and forecast programs,

gives results from test analyses and forecasts for a single case,

and discusses how the approximations made have affected results.

Finally in section 8 we give our conclusions.

2. BASIC EQUATIONS
_______________

a. NOTATION

x 4-D analysis, represented as a single vector.

X observations, distributed in 4-D, represented as a single

vector.

t subscript indicating "true", hence:

xt "true" value of x, obtained by projecting the true

atmospheric state onto our finite basis for x.

Zt "true" value of y, which would be obtained from hypothetical

error free instruments, with the same resolution and

averaging characteristics as the actual instruments.

Zo observed data values.

n subscript to function, indicating that it can be nonlinear.

Kn generalized interpolation from x-representation to X-

representation, such that if we have an estimate xi of xt,

then yi=Kn(xi) is the best estimate of Zt.

w 3-D analysis at the initial time covered by the 4-D
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representation x, with the same space-representation.

Gn forecast model, used as prognostic constraint on permitted

values of x, by the relationship x=Gn(w).

wt "true" w, as xt. NB we are assuming our forecast model to

be perfect, in order to justify its use as a strong

constraint, so xt=Gn(wt).

Wb background field for w; the best available estimate of wt

given our prior knowledge, without using yo.

* adjoint. Hermitian transpose.

B background error covariance matrix. B=<(wb-wt)(Hb-wt)*>

O observation error covariance matrix. O=<(Zo-yt)(xo-yt)*>

F representativeness error covariance matrix.

F=<(Kn (xt ) -yt )(Kn(x2t )-yt )*>

v transformed control variable. v=B-l(w-wb)

i iteration index. E.g. wi is the best estimate of wt at the

i'th iteration.

ixi difference of current best estimate from observed values.

dxi= yi-xo= Kn(xi )-o = Kn(Gn(wi ))-o = Kn(Gn (Wb+B vi))--o

J(w) penalty function, whose minimum defines the "best" analysis.

L(v) penalty function equivalent to J(w), expressed in terms of

the transformed variable v.

f subscript for penalties J and L denoting the component of

the penalty measuring the fit to observations. (NB in

Lorenc (1986b) the double subscript of was used for

this, to indicate its origin from the convolution of

instrumental and representativeness error distributions.)

b subscript which when applied to x w or v denotes the

6



background prior estimate of the best analysis, and when

applied to penalties J or L denotes the component of the

penalty measuring the fit to the background.

differentiation of function by argument.

m subscript distinguishing time-slice. (It is convenient for

manipulation of the 4-D representations x and y, to

partition them into a finite number (N) of time-slices

denoted by subscript m).

S smoothing operator for the diagonal matrix of normalized

analysis errors.

Tm nominal validity time for observations in time-slice m.

t o n b f are mutually exclusive subscripts, and always precede i

(iteration) and m (time-slice) which are added in that order.

b. Penalty function and derivatives
___________________________ ____

Lorenc (1986b) showed that, if Gaussian error statistics are

assumed, and errors in the forecast model during the time spanned

by the current observations are ignored, the optimal analysis can

be obtained by minimizing a penalty function J with respect to

the three-dimensional field (w) at the beginning of the current

period. The penalty function measures the deviation dZ from the

observations of a forecast from w, plus the deviation of w from

the background information. (In section 5 below we discuss an

additional constraint that w be balanced.)

dy = K (G (w)) - (1)
n n o

* -1 *-1
J(w) = d (O+F) dy /2 + (w-w ) B (w-w ) /2 (2)

b b
We use an iterative descent algorithm to search for this
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minimum. Subscript i is used to indicate values at a particular

iteration. As explained in Lorenc (1986b), if we are to use only

a few iterations and not deviate too far from the background, it

is better to use a descent algorithm derived in terms of a

transformed variable v, rather than the basic variable w. In

this section we set out the equations defining the terms which

will be used in a such a descent algorithm. Note that, despite

the use of v conceptually to derive the equations, the fields

need never be represented in terms of v. Indeed this would be

impracticable since we do not have a convenient representation

for the background error covariance matrix B or its inverse,

which enters in the transformation from w to v:

-1
v= B (w -w) (3)
i i b

We call the penalty function in terms of this transformed

variable L. Thus the "best" analysis can be obtained by an

iterative search for the minimum of:* -1 *
L(v ) = d (O+F) dZ /2 + v B v /2

i i i i i i

= L (v) + L () (4)
f i b i

where Lf and Lb are notations for the individual components of L.

To manipulate the four-dimensional distribution of

observations using the three-dimensional analysis program 3DOI,

we partition them into N time-slices, indicated by subscript m:

* * * * *

y = { , z , ... , ... z } (5)
1 2 m N

The four-dimensional field x, defined by a forecast Gn from
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the initial conditions w, is similarly partitioned:

* * * * *
x = { , x , ... x , ... x } (6)

i ii i2 im iN

x = G (w) (7)

im nm i

For simplicity we do not interpolate in time, but assume that all

observations in time-slice m are valid at Tm. Hence Kn becomes a

space only interpolation at each time Tm:

x = K (x ) (8)
im nm im

If there is no correlation between observational and

representativeness errors in different time-slices, then O and F

can be partitioned into submatrices which can be inverted

separately, and the observational penalty Lf can be partitioned

into time-slices:

* -1
L () = dx (O +F) dy /2 (9)

fm i im m m im

The partitioned total penalty is:

N

L(v ) = L ( ) + L (v ) (10)
i fm i b i

m=1

A similar partitioning can be done for the vector of partial

first derivatives of the penalty function: 

N

L'(y ) = E L '(y ) + L '(y ) (11)
i "-fm i b i

m=1l

and for the matrix of partial second derivatives:
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N

L''(Y =) L ''(v ) + L '' (y ) (12)
i fm i b i

m=1

We assume locally valid linearizations K and G exist :

K (x +dx ) = K (x ) + K dx (13)
nm im m nm im m

G (w +dw ) = G (w ) + G dw (14)
nm i nm i m

Then we get:

· * -1
L '(y ) = B G K (O +F) dy (15)
fm i m m m im

Note that Gm and Kn are both in general functions of vi.

Neglecting this dependence in comparison with that of dyim,

gives: * * -1
L ''(y ) = B G K (O +F ) K G B (16)

fm i m m m m m m

The partial derivatives of Lb are:

L '(v ) = B v
b i i

= W -w (17)
i b

L ' ' (y ) = B (18)
b i

c. BASIC DESCENT ALGORITHM
____ __________________

For the approximately quadratic penalty functions that we

assume above, if all the terms above are known, the best

algorithm for finding the minimum of the penalty function is that

of Newton: If vi is an approximate minimum of L, then a better
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approximation is given by

v = - {L''(v )} L'(y ) (19)
i+l i i i

For our basic variable w this gives

-1
w = w - B {L''(y )} L'(y ) (20)
i+l i i i

3. USE OF THE THREE-DIMENSIONAL ANALYSIS PROGRAM 3DOI
_____________-_____________________________________

a. USE OF INCREMENTS, ERROR, AND FIT OF OBSERVATIONS TO GUESS__________________________________________________________

The four-dimensional analysis problem is difficult to handle

in practice for operational resolutions. However there is

considerable experience with a reasonable approximation to the

equivalent three-dimensional problem, the so called optimal

interpolation method (OI). At time Tm OI gives an approximate

minimum for:

* -1 * -1
J () = dy (O +F) dy + (x - ) B (x -x ) (21)
m m im m m im m bm m bm

Knm is assumed linear, so the minimizing field xam is given

explicitly by

-1
x -x = - J ''(x ) J '(x ) (22)
am bm m bm m bm

* -1 -1 -1 * -1
x -x = (K (O +F ) K +B ) K (O +F ) (y -K (x )) (23)
am bm m m m m m m m om nm bm

We call the programs for doing this the 3DOI. They actually use

the equivalent form (Lorenc 1986a):
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* * -1

x -x = B K (O +F +K B K) (y -K (x )) (24)
am bm m m m m m om nm bm

They approximate this large matrix inverse problem by many

smaller ones, each for a small selection of the data, and each

providing only a few elements of the analysis increment vector

Xam-Xbm.

3DOI programs also usually calculate the estimated analysis

error variance; the diagonal of Am:

*
A = <(x -x )(x -x ) >
m am tm am tm

* -1 -1 -1
=(K (O +F) K +B ) (25)

m m m m

Or else they calculate the normalized error variance; the

diagonal of Am divided by the diagonal of B.

Thirdly, since they calculate all the observation increments

dym (defined as yom-Knm(Xbm)), they can readily calculate the

observation penalty Jf m for the background field Xbm.

If, instead of the background field Xbm, we feed such a 3DOI

program with the current best estimate xim from an iteration of a

four-dimensional analysis, then it will give us estimates of the

observation penalty for xim, and expressions involving its first

and second derivatives. Using dxm to denote the analysis

increment from the 3DOI program, we get:

* -1
J (x ) = _x (O +F) dyx (26)
fm im im m m im

* -1 -1 -1 * -1
dx =-(K (O +F) K + ) K (O +F) y (27)

m m m i m m m m im
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and the (normalized) diagonal of Am.

b. APPROXIMATIONS TO COVARIANCES_____________________________

Our intention is to use a 3DOI program to calculate the values

just described, as a component of an iterative procedure for

finding an approximate minimum to L(v), our four-dimensional

penalty function. We need first to justify some further

approximations in our handling of B Am and Gm, since we cannot

store and manipulate these matrices for a full resolution NWP

model. Let us first non-dimensionalize x by a diagonal

normalization matrix Z, such that (Zx)*Zx is a measure of energy.

The normalized background error covariance is then given by:

* * *
< Z (x -x ) (x - ) Z > = Z B Z

b t b t

= E b E (28)

E is a matrix whose columns are the normalized eigenmodes of the

background error covariance, and b is a diagonal matrix of error

energies for each mode. E is self-inverse. If both the truth

and the background are balanced, then a linearization of the

balance relationship leads to some of the elements of b being

near zero. The same, unbalanced, modes should also then be near

zero in results from the 3DOI program, both in Am and dxm. We

neglect these modes, and concentrate on the balanced modes.

Applying the normalization to the linearized forecast model Gn,

and expressing it as a sequence of time-steps, gives

-1
G =Z M M ... M M Z (29)

m m m-1 2 1

It seems plausible to assume that the error structure of the
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forecast background can be described as a random distribution of

energy among modes of the model. Phillips (1986) suggested

equipartition of energy among Rossby modes, with random phases.

If this is so, then the modes in E must be expressible as simple

sums and differences of the modes of M, in complex conjugate

pairs. If the partition of energy in b is equal within each

pair, then M and b will commute:

b M = M b (30)

Hence B and Gm also commute:

B G = G B (31)

m m

These assumptions are only valid for spatially homogeneous

error distributions (otherwise the random phase assumption above

is not correct). If B has some spatial variability, for instance

from variations in observation density at earlier times, then we

are neglecting the advection of this structure in the errors

during the forecast.

We need also to make some assumptions about Am, since the OI

program only provides information about its diagonal. The

correlation structure of the analysis errors is a function of

observation distribution. Where there are no observations,

analysis errors are identical to background errors. Where there

are observations, the spatial correlation of analysis errors will

tend to drop to zero at about the observation separation

distance. We make the convenient, but rather gross, assumption

that the structure of Am is similar to that of B, so that

-1 -1
B A =a (32)

m m
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where am is a diagonal matrix made from the normalized error

variances calculated by the OI program. The validity of this

assumption depends on the representation chosen for x. We are

not at liberty to allow any arbitrary values for the elements of

a. For instance B is often modelled (see section 7 below) using

the geostrophic assumption and a fixed horizontal correlation

structure. This determines the local relationship between height

and wind error variances. Since we are assuming that the

analysis is similarly balanced, and has similar error

correlations, we must ensure that the analysis error variances

implied by a obey the same relationship. Thus locally, the

elements of a for height and wind must be approximately equal.

The 3DOI estimates of normalized analysis error variance have no

such constraint; they allow large differences between the implied

correlation structures of the analysis errors and the background

errors. Thus before use in this approximate scheme as the

elements of a, these normalized analysis errors should be locally

averaged over height and wind, and spatially smoothed.

c. USE OF 3DOI RESULTS IN FOUR-DIMENSIONAL SCHEME______________________________________________

Using the above approximations, we can now use the results

from the three-dimensional analysis program in the four-

dimensional scheme. Note that we use the current best estimate

xim as "guess" for the 3DOI, rather than the background field

xbm, so the actual three-dimensional analysis produced will not

be an optimal combination of background and observations. For

each time-slice m the 3DOI program gives us the contribution to

the observation penalty Jfm, the analysis increments dxim and the
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normalized analysis error variance am. Using these we get:

L (yv) = J (_x

fm i fm im

* -1
= dy (0 + F ) dy (33)

im m m im

The first derivative of this is:

* * -1
L '(v_ ) = B G K (O + F ) dy (34)
fm i m m m m im

which with our approximations is given by:

* -1
L '(v ) = - G a dx (35)

fm i m m im

Similar approximations give an expression for the second

derivative:

* -1
L ''(v ) = G (a - I) G B (36)

fm i m m m

This is still impracticable for computation for large operational

models; we have to make a further approximation as to the effect

of operating on the normalized error matrix by the linearized

forecast model G. We will make the gross approximation that this

can be modelled as a simple spatial smoothing similar to that

used in obtaining an estimate of a from the normalized analysis

error variances. We denote this by Sm. So finally we get:

-1
L ''(v_ ) = S (a - I) B (37)

fm i m m

These expressions can be substituted into a Newton iteration to

find the minimum of L(v), our four-dimensional analysis problem.

(Strictly, because we have ignored second derivatives of Gn in
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our expression for Lfm'', we are using a Gauss-Newton algorithm).

If vi is an approximate minimum, a better estimate yi+l is given

by:

N N
-1 --1 * -1

v = V +B {( S (a - I)) + I {( G a dx ) - B v }
i+l i m m m m m i

m=l m=l
(38)

For our basic variable w the matrix B conveniently cancels,

giving:

N N
ok -1 ~- *1 -1

= w + {( S (a - I)) + I } {( G a dx ) + w -w }
i+l i mm m m m m b i

m=l m=l
(39)

4. ADJOINT MODEL G*

We have already assumed that the analysis we require can be

expressed in terms of balanced, slowly varying, modes.

Furthermore, in the arguments used to justify the commutability

of B and G we have implicitly assumed that these modes are

normal, and the same for all the forecast timesteps Mm. Each

complex normal mode of Mm has associated with it a complex

frequency a-il, so that multiplication of a state by Mm is

equivalent to multiplication of each of its modes by

exp((iQ+l)dt). Multiplication by the adjoint Mm* is thus

equivalent to multiplying each mode by exp((-iQ+l)dt). This can

be thought of as running energy conserving parts of the model

backwards, while retaining diffusion and damping terms. The non-

linear model Mnm can easily be modified to do this for its

dynamical terms, and for simple physical parameterizations such
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as diffusion and friction. We denote this modified model by Hnm.

Multiplication by the adjoint of the linearized model, Mm*, can

thus be approximated by:

* -1 -1
M a dx = { H (x +k a dx ) - H (x ) } / k (40)
m m m nm im m m nm im

Here k is a small scaling factor chosen so as to improve the

approximation we are making in using a perturbation to a non-

linear model instead of the linearized model. Theoretically it

should be infinitesimal, but in practice, because of numerical

truncation errors in the computation of Hn, a small finite value

is used. This multiplication by Mm* gives weighted increments

valid at time Tm-il, further multiplications by Mm-l* etc. are

required to give the equivalent of multiplication by Gm*;

weighted increments valid at the initial time of w. However,

because we are approximating a linear adjoint model, it is valid

to combine these further multiplications with those necessary for

the weighted increments from time Tm-1 , and so on, so that all

the adjoint model integrations Gm* can be implemented by a single

series of integrations of MN*, . . . Mm*, Mm-l*, ... Mi*.
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5. INITIALIZATION
______________

We have based many of the preceding approximations on the

assumption that both the background and the estimates to the

"best" analysis should be balanced. The 3DOI program, although

it attempts to maintain a linear geostrophic balance to the

increments, does not necessarily ensure full balance. Neither

will our approximated adjoint integration, nor the descent

algorithm for finding the state which minimizes L(_). It is

necessary therefore to include in the procedure a step which

explicitly ensures balance, either by nonlinear normal-mode

initialization, or some equivalent means.

In an ideal optimal analysis scheme our prior knowledge that

the atmosphere is balanced should be used in the analysis. This

can be done linearly, through the eigenmodes of B, or non-

linearly, through an additional penalty in the variational

minimization, for instance adding a factor proportional to the

mean square change during an initialization to the penalty

function J. This would then lead to a term containing the

adjoint of the initialization operator in the iterative analysis.

Since we do not have the adjoint of the nonlinear normal-mode

operator, we cannot include such a nonlinear penalty. Instead,

between iterations, we initialize the new estimate wi+l. This

method of combining initialization with 3DOI in an iterative

analysis is a generalization of the unified analysis-

initialization technique of Williamson and Daley (1983). Their

technique did not include the background field except to start

the first iteration, so that iterated indefinitely it tends to
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the balanced field which fits closest to the observations,

independent of the initial background. Our new scheme does

include the background, so that in the degenerate case of a

single time-period, it will tend to the balanced field which fits

closest the observations and the background, with the relative

weight for each determined by the 3DOI.

6. ORGANIZATION OF THE ITERATIVE FOUR-DIMENSIONAL ANALYSIS
________-______________________________________________

a. BASIC ITERATION

The preceding equations and iterations lead to a procedure for

the iterative search for an approximate minimum to J(w) as

follows:

1 Initialize the current best estimate wi , to ensure balance.

2 Forecast Gnm(wi) to obtain the estimates xim at each time-

period m=l,N.

3 Zero accumulated weighted increments and accumulated sum of

weights. Loop back through the time-periods m=N,1,-1 :

1 Run the 3DOI program using xiim as guess. Calculate the

observational penalty Lfm(yi), the analysis increment dxm,

and smooth the normalized analysis error variance to give

am.

2 Weight the analysis increment by the inverse of the

normalized error variance, to give am- 1 dxm.

3 Add this to the accumulated weighted increments.

4 Add (am-1 - I) to the accumulated sum of weights. Smooth

this with a spatial filter to model the effect of pre- and

post-multiplying by the adjoint model matrix.
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5 Add the accumulated weighted increments to xim, initialize,

and integrate using the dynamically backward model Hnm to

get a field valid at time Tm-1.

6 Similarly initialize and backcast xim, and subtract from

the results of 5, to get accumulated weighted increments

valid at time Tm-i.

4 Add the forcing towards the background, Wb-Wi, to the

accumulated weighted increments.

5 Add the weight (I) given to the background to the accumulated

sum of weights.

6 Use the accumulated weighted increments as an approximation to

L'(vi), and the accumulated sum of weights as an estimate of

L''(vi), in a descent algorithm to give a new estimate of the

field that minimizes L(yi). (The field actually calculated is

wi+1, the untransformed variable, rather than vi+i).

b. FIRST ITERATION
_______________

It seems natural to start the iteration procedure just

outlined from the background value Wb. However, in order to save

time, it is desirable to cut the number of iterations required to

a minimum by starting from the best available estimate. If the

nominal time T1 of the first time-period of observations is the

initial time at which Wb is valid, then Xii is identical to wi

and a better starting estimate can be obtained by a conventional

3DOI of the time-period 1 data, using the background Wb as guess.

The 3DOI used in this way finds the wi which minimizes

Jf1 (W1 )+Jb (w1), or equivalently minimizes Lfi(vl )+Lb (v1). Hence

we have the relationship:
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L '(v ) + L '(v) = 0 (41)
fl 1 b 1

Using this enables us during the first iteration to omit the

calculation of these terms. That is, steps 3.1, 3.2, 3.3, for

the first time-period of observations, and step 4, which would

cancel with them, can be omitted. The normalized analysis error

al is still needed, but this is available from the 3DOI done to

make wi. -Thus by performing a zeroth iteration which consists

solely of the 3DOI, we get a better guess for the first iteration

at no net computational cost, since we can omit that 3DOI from

the first iteration.

c. ALTERNATIVE DESCENT ALGORITHMS______________________________

Our use of the 3DOI program, and the approximate adjoint

model, has given us the following information about the

components of L(vi) and their derivatives:

Lf(vi) is given by adding the terms Lfm(vi) from each 3DOI.

Lb(vi) is unknown. However is was shown by Lorenc (1986b)

that this should remain small for a few iterations

with v as control variable.

Lf'(Vi) is given approximately from the adjoint model

integration.

Lb'(vi) is given by wi-wb.

Lf''(vi) is approximated by the diagonal matrix of the

accumulated sum of weights, multiplied by B.

Lb''(vi) is the identity I, multiplied by B.

The Newton descent algorithm is optimal if the penalty
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function is near quadratic, and if the Hessian is accurately

known. We have some gross approximations in our estimation of

Lf'', and the forecast model is nonlinear, making the penalty

function non-quadratic. The simplest modification to the method

is the addition of a step-length s, which has to be determined so

as to ensure that the method is converging.

-1
v v - s {L''(y )} L'(y ) (42)
i+l i i i
This "damped" Newton method is globally convergent even for

non-quadratic penalty functions (Gill et al 1981). Ideally the

step-length should be chosen, using an iterative search, to

ensure that the penalty function decreases each main iteration.

In the example given in the next section, we have used this

method, but with a fixed value for s initially chosen in

preliminary tests to be 0.5.

If we were to regard our approximation to Lf'' as worthless,

and instead used the identity matrix I as Hessian, then the above

algorithm would become the method of steepest descent, which is

known to converge slowly. An improvement on this, which uses

information about L and L' remembered from previous iterations,

is the method of conjugate gradients (Navon and Legler 1987).

This method is related to limited-memory quasi-Newton methods

(Gill et al 1981), which take our approximation to L'' as a first

estimate of the Hessian, and refine it in subsequent iterations

using differences between L' at different iterations in a finite-

difference approximation to a second derivative.
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7. EXPERIMENTAL TEST
_________________

a. DETAILS OF METHOD

As discussed in the introduction, one objective of this work

was to use operational datasets and programs as much as possible,

in order to test the four-dimensional ideas in a practical

environment. The scheme which we chose to adapt was the Regional

Analysis Forecast System (RAFS) of the National Meteorological

Center (NMC), as operational during March 1987. This consists of

an optimal interpolation (OI) analysis, nonlinear normal-mode

initialization (NNMI), and Nested-Grid Model (NGM) forecast. The

background field for the analysis comes from a 6-hour forecast

from the global data-assimilation system; it is interpolated from

a rhomboidal-40 spectral representation to the 180*60 longitude-

latitude, 16 sigma-level grid used for the hemispheric analysis.

Details of the analysis are given by DiMego (1987). It is an OI

scheme, multivariate in geopotential height, and wind components.

Humidity is analyzed univariately. Height, wind, and humidity

data are used to calculated analysis increments at the forecast

model's sigma levels, but on a longitude-latitude analysis grid.

The height increments are converted to equivalent temperature and

surface pressure increments, and the increments are added to the

background, which has been interpolated to the same grid. The

background error variances used in the analysis are estimated in

a simple fashion from the data distributions at the previous

analysis in the global data assimilation scheme, using its

estimated analysis errors. They thus vary significantly between

data-sparse and data-dense areas. The height error correlation
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is modelled as a function of separation in horizontal distance

and pressure. Wind error correlations are calculated to be

geostrophically consistent with this model. These estimated

error variances and correlations define our background error

covariance matrix B. The programs which perform this analysis

are referred to collectively as the 3DOI.

The analysis is converted to a rhomboidal-80 spectral

representation, and initialized in a hemispheric nonlinear

normal-mode initialization (Sela 1980). The initialized field is

interpolated horizontally to the nested polar stereographic grids

of the NGM, which have resolutions varying from 366km for the

hemispheric outermost grid to 91.5km for the grid covering North

America.

To use the 3DOI in our scheme, it was modified slightly to

provide, in convenient form, the observation penalty Jfm(xim),

the analysis increment dxim, and the normalized analysis error

variance aim. The observational penalty included deviations from

the guess of all height and wind data, normalized by the

observational error variance assigned to them in the OI scheme.

Data which were rejected by the quality control scheme, which is

part of the 3DOI, were assumed to give a constant contribution to

the penalty, equal to that of data on the borderline of

rejection.

The basic control variable w was taken to be the vector of

the analysis variables on the latitude-longitude-sigma grid. In

order to do a forecast from this using the NGM, it was

interpolated horizontally to the model's grid points, via the
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spectral representation used for initialization. Three programs

not used operationally complete our iterative scheme:-

(1) a backcast model made by removing all physical

parameterizations except the diffusive filter and dry

adiabatic adjustment from the NGM,

(2) a bi-linear horizontal interpolation from the NGM grids to

the analysis grid,

(3) a new program to process the fields, increments, and errors,

and implement the descent algorithm.

Since our scheme assumes "balance" in its derivation, and

forces "balance" by incorporation of the NNMI each iteration,

an additional step was included to ensure that the background was

balanced according to the same criterion. This was achieved by

interpolating the background on the analysis grid, as obtained

from the global data-assimilation system, via the spectral

initialization, to the NGM grid, and then immediately back to the

analysis grid.

The observations used in our experiments were also taken from

the operational RAFS, which runs every 12 hours. They were thus

partitioned into sets nominally valid at the main synoptic hours

00Z and 12Z, including asynoptic observations from up to 3 hours

before and about 2 hours after these times.

b. EXPERIMENTS PERFORMED

A series of experiments were performed to test the scheme, and

its sensitivity to changes in some of its components. Those

presented here used the observations for OOZ and 12Z on 27th

February 1987. They are listed in table 1.
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Table 1. experiments performed

A basic scheme: iterative four-dimensional analysis.

B as A, but only using Ti observations. Equivalent to
iteration of 3DOI and NNMI at T1.

C as B, iteration of 3DOI and NNMI at T2.

D as A, but only using T2 observations.

E as A, with persistence replacing backward NGM in adjoint model.

F as A, without NNMI.

G "periodic spin-up": 3DOI(T1) - NNMI - forecast - 3DOI(T2).

H as A, then NNMI - forecast - 3DOI(T2).

I as A, without NNMI of final analysis.

Experiment A was the basic scheme, with a steplength chosen

on the basis of an earlier experiment to be 0.5. This was run

for four iterations. The steplength was then halved to 0.25, and

a further four iterations performed.

Experiments B and C were three-dimensional analyses

incorporating iteratively a nonlinear normal-mode balance

relationship, as discussed in section 5. The background for

experiment C was interpolated from the global data-assimilation

system background valid at the second time: 12Z 27th February

1987. The first iteration of experiment B or C was almost

identical to the current (March 1987) operational regional

analysis system. Further iterations should improve the non-

linear balance, while maintaining the fit to the observations.

Each iteration of experiment B actually performed a forecast

to T2, and measured the fit to the data, to calculate the

observational penalty function. Thus experiment B can be
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regarded as identical to A except that the observations at the T2

were given zero weight. Experiment D was the other extreme from

this; the observations at T1 were given zero weight. It can be

thought of as attempting to find the field valid at T1 which,

when forecast, best fits the observations at T2, subject to

constraints on balance and fit to the background at T1. After

two iterations of experiment D it was found that the iteration

was not converging, so the steplength s was halved to 0.25.

Experiments E and F were identical to A except that one

aspect of the scheme was replaced by a simple dummy version.

Thus experiment E used persistence instead of the backcast model

in the adjoint calculation, and F omitted all nonlinear normal-

mode initializations.

Experiments G, H and I were actually by-products of

experiment A. Experiment G tested a scheme (called the "periodic

spin-up"), which is currently being investigated as a compromise

between having a completely independent data-assimilation cycle

for the regional model, and the operational system which performs

each 3DOI with a background interpolated from the lower

resolution global model. The UK Meteorological Office (Bell

1986), and the US Navy (Barker, personal communication) have

implemented such schemes with success. Because the basic

experiment A had a "zeroth" iteration using only T1, the analysis

produced while calculating the 3DOI increments for iteration 1 T2

was the product of: 3DOI (T1) - nonlinear normal-mode

initialization - forecast - 3DOI (T2). This T2 analysis, from

the first iteration of experiment A, is thus the "periodic spin-

28



up" analysis of experiment G. The similar analysis, from the

eighth iteration of experiment A, was called experiment H.

Experiment I tested whether the balance achieved by the iterative

scheme was sufficiently good to permit the omission of the

nonlinear normal-mode initialization of the final analysis from

A, before the forecast described in section d below.

c. FIT TO OBSERVATIONS
___________________

A necessary property of a good analysis is that it should fit

the observations used, within a tolerance governed by the

expected observational error. In our formalism this property is

measured by the observational penalty Jf. The wind observational

penalties for experiments A-F (see table 1) are plotted in Fig.1

as a function of iteration. The penalty plotted is that of the

current best estimate at the beginning of the iteration; for

iteration 0 it is that of the background field. The penalty

function was evaluated during each iteration, so that for the

latest estimate at the end of the last iteration is not shown.

The behavior of the geopotential height observational penalties

was similar to that of the wind observations; unfortunately

because of a coding error not all the values are available for

plotting.

If our analysis were the true field, then, because of the

definition of the observational errors, the mean observational

penalty per datum should be N1/2, where Ny is the number of data.

It is easy to show for the OI equations that this is an upper

limit; an analysis which has available less than the perfect

observation set necessary to analyze the true field, should fit
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the observations used in the analysis more closely than the true

field would. This result only holds if the statistical estimates

of observational error variances used in the calculation of J£

are correct. The observational penalties are plotted in Fig.l

scaled by 2/Ny, so the values should be between zero and one.

This is clearly not true. In an effort to obtain a close fit to

the data by the analysis, the observational errors specified to

the 3DOI program have been reduced below the theoretically

correct values, and the resulting observational penalties are

higher than expected. However for our purposes this is not

important, since the values are approximately correct, and we are

more interested in the relative reduction in penalty than the

actual value.

The zeroth iteration of experiments A B and E were identical;

the observations for T1 were used to update the (initialized)

background field. Fig.la shows at iteration 0, the fit of these

observations to the background, and at iteration 1, their fit to

the resulting initialized analysis. The effect of the NNMI can

be seen by comparing these with the values for experiment F;

without a balance constraint a closer fit to the observations is

possible. Fig.lb shows the fits of the observations at T2. At

iteration 1 we can compare the values for experiments A B and E,

for a forecast from the iteration 0 analysis, with that for

experiment F, which omitted initialization. The NNMI, which

degraded the fit to the T1 data, slightly improved that to the T2

data. Fit to data which have been used in the analysis is often,

as in this case, a poor measure of the likely accuracy of a
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forecast from the analysis. We can also compare with experiment

D iteration 1, a forecast from the initialized background. As we

would expect, the Ti observations do improve the subsequent

forecast. Experiment C only used T2; its iteration 0 value

measures the fit of the appropriate six-hour forecast from the

global data assimilation cycle, and its iteration 1 value that of

a 3DOI analysis at T2.

Let us now consider the improvements in fit gained by

iterating. We can see from both experiments A and D in fig.lb

that the scheme is managing to find a state at T1 which, when

forecast, better fits the observations at T2. Hence in a basic

way the iteration is working, although the reduction in

steplength at iteration 5 of A and iteration 3 of D was necessary

for this. Some initialization is necessary, as evidenced by

experiment F. Our approximate adjoint of the model integration

was also beneficial, as compared to simple persistence used in

experiment E. This is particularly true for the wind data

penalties shown in fig.1, which reflect smaller scales than the

geopotential height penalties (not shown). However the success

is only partial; the four-dimensional analyses did not fit the

data at T2 as well as the 3DOI of experiment C. There was no

demonstrable benefit at T1 from the use of the T2 observations;

experiment D fields at T1 did not fit the observations (which it

never used) any better than did the background. The improvement

in fit to the T2 observations, seen in experiment A fig.lb, was

achieved at the expense of the fit to the observations at T1

(fig.la), so that the total observation penalty (not shown) for

experiment A stayed almost constant. That for experiment E
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slightly increased. We can at present only speculate on the

improvement in these results which might be achieved by a better

approximation to the adjoint of the forecast model.

d. FIT TO BACKGROUND

Our prior knowledge about the true state wt can be expressed

by Wb, the most likely state, and (for a Gaussian system) by B,

the error covariance matrix of Wb, defining which modes are more

likely to be in error. We have Wb from a forecast from the

global data assimilation system, but we do not have a explicit

definition of B. Instead we have an estimate of the prediction

error variance, the diagonal of B, and a correlation model used

in the 3DOI which implicitly defines the rest of B. Thus we

cannot easily calculate the background penalty function. We can

however calculate the mean-square deviation from wb, normalized

at each gridpoint by the background error variance; this is

plotted in fig.2. The correlation model used in the 3DOI is

based on assuming smoothness and approximate linear balance in

the background errors. We can get a measure of the balance of

the deviations from the background from the changes made during

the NNMI. These are shown in fig.3, also normalized at each

gridpoint by the background error variance. Since the background

is made to be balanced in these experiments by applying the NNMI

to it, imbalance in the analysis implies an imbalance in the

deviations from Wb. As for fig.1, the values plotted are for the

estimate at the beginning of the iteration. The NNMI is applied

as the first step in each iteration; fig.3 shows the changes made

during this NNMI. For iteration zero fig.3 shows the changes
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made during the NNMI of the background. These changes were

largely due to imbalances introduced when changing the orography

in the background representation, since a forecast field from the

global data assimilation system (which has its own NNMI) should

otherwise be reasonably balanced.

Lorenc (1986b) showed how the transformation to control

variable v, from the model variables w, means that during the

first few iterations of a descent algorithm the background

penalty should remain small. This is partly borne out by fig.2

and fig.3, however by iteration 5 of experiment A and iteration 3

of experiment D values have got quite large. This deviation from

our prior assumptions about the atmosphere was also visible in

the corresponding plotted fields. There was a very sharp trough

in a strong upper westerly flow at 50N off the west coast of

Canada, with associated maxima and minima in vorticity and

vertical motion. This pattern looked very "unmeteorological",

indeed without the halving of descent steplength to 0.25 in

experiments A and D the NGM forecast failed in the next

iteration. With the halved steplength, most of the extremes were

removed in the subsequent iterations. The position of the

anomalous feature was such that it was probably associated with

advection, by the strong upper flow, of 3DOI increments which at

T2 were caused by coastal observations. The approximate adjoint

model used in this work would advect these back along the flow to

the oceanic position at T1, where there were few other data. Our

neglect of model advection in the corresponding approximate

adjoint forecast of the error covariances meant that the
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increments would then be given inappropriate weights. Experiment

E, which did not use the approximate adjoint, instead using a

persistence approximation consistent with that used for the error

variances, had no such feature. Note however that despite this

shortcoming, the net effect of the approximate adjoint was

positive.

Experiment F had no NNMI; the small changes plotted in fig.3

were caused by the spectral grid transformations. Without its

controlling effect, "unmeteorological" features such as that

discussed above grew each iteration, adversely affecting the fit

to observations (fig.1) and the fit to the background (fig.2).

e. FORECAST RESULTS

The ultimate test of any analysis scheme for NWP must be the

accuracy of the subsequent forecasts. The RAFS system was

developed for short range forecasts for the USA. Our analyses

have therefore been tested by running the NGM for 48 hours. For

all except experiments F and I, nonlinear normal-mode

initialization was performed on the analyses before integrating

the forecast model. The forecasts were verified against

available observations from the 850mb, 500mb, 250mb, and 100mb

levels, from a standard set of 110 stations in North America.

Results, averaged for these levels, are plotted in fig.4. In

keeping with operational nomenclature, the nominal time of the

latest observations available to the analysis (our T2) is called

0 hours. Curves are labeled with the experiment and cycle

number. In keeping with our nomenclature on earlier figures, the

cycle number refers to the estimate at the beginning of the
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cycle. Thus curve Al is for a forecast from the output field

from the zeroth iteration of our basic experiment, which was the

input field for iteration 1. Apart from an extra NNMI of the

background field, this is equivalent to the operational RAFS

analysis valid at T1 (-12 hours). Curve A9 is from the basic

experiment after 8 iterations of the four-dimensional analysis

scheme. This analysis has used the 0 hours observations, and

hence verifies better against them. The improvement is

maintained throughout the forecast. Curve D9 is from a similar

four-dimensional analysis only using the 0 hours observations.

This forecast is almost as skilful at later times as A9,

indicating that the -12 hours observations are in this case

adding little skill to the forecast, except at the earliest time.

(It should be remembered that the four-dimensional analysis is

defined by a forecast from the field at the initial time, so

these forecast experiments run from -12 hours.)

We saw in fig. lb that neither of these experiments achieved as

good a fit to the time T2 (0 hours) wind observations as could be

achieved by a simple 3DOI. This is borne out by curves C1 G1 and

H8 in fig.4b. These were all forecasts from 3DOI analyses at 0

hours, using various backgrounds. Cl used the initialized 6-hour

forecast from the global data assimilation system; it was thus

equivalent, 12 hours later, to A1. G1 used the NGM forecast

valid at 0 hours from Al. H8 used the field valid at 0 hours

from AS. The better wind verification scores are maintained

throughout the forecast; by this criterion the four-dimensional

analyses were not as good as the "traditional" three-dimensional
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ones.

Another comparison that can be made in fig.4 is between the

"traditional" 3DOI followed by NNMI, and an iterative balanced

three-dimensional analysis as described in section 5. Experiment

B iterated the 3DOI and NNMI using the background from the global

data assimilation system, and the observations, valid at Ti (-12

hours). Experiment C did the same for T2 (0 hours). Scores for

the forecast after four iterations of B are shown as BS, this can

be compared with Al, the forecast from the 3DOI analysis of the

zeroth iteration of experiment A. Scores after the zeroth and

the first iteration of experiment C can similarly be compared.

Differences are marginal, and contradictory for the two cases;

there is no indication that the iterative analysis is better.

It appears from fig.4 that the best forecasts were from

experiment C. The distinguishing feature of this experiment was

its use of the six-hour forecast background from the global data

assimilation system valid at T2 (0 hours). This has had the

benefit of the observations valid at -6 hours. Another

difference was the global forecast model. A direct measure of

the quality of this background is shown in fig.lb, as the fit to

the observations at iteration 0 of experiment C. This can be

compared with that of experiment B in the same figures.

Experiment B only used the Ti observations, so the T2 fits

measure the accuracy of the resulting 12-hour NGM forecast. The

global forecast is better for height, but slightly worse for

wind. Note that fig.1 uses all observations in the hemispheric

RAFS domain, while fig.4 only uses North American radiosondes.

Finally in this section, we can mention that the scores for
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the forecast from experiment I were very little different from

those for experiment A. At -12 hours, the time of the

observations most directly used in the analysis, the fit to the

heights of forecast I9 was 3 meters better than that of forecast

A9. The fit of the winds was 0.2 meters/sec better. At other

times the scores were indistinguishable, so I9 is not plotted in

fig.4.

8. EFFECT OF APPROXIMATIONS
_____________________ __

In this section we discuss in turn the effect of the

approximations made in deriving a practicable method, as

demonstrated in the results of the previous section's

experimental test. One type of approximation is the use of

operational programs (3DOI, NNMI, and NGM) as if they are

perfect. Another type is in the evaluation of the penalty

function, its gradient, and their use in a descent algorithm.

a. 3DOI

We assume that the analysis increments given by the 3DOI

program are truly an optimal weighting of observations and

background. We saw in section 7a that the observational error

variances used are far from the theoretically correct values. On

the other hand the normalized mean square deviations from the

background (fig.2) are between zero and one, indicating that the

background errors variances are probably more nearly correct.

Since the relative weight given to the observations and

background depends on the ratio of the assumed error variances,

it follows that the 3DOI gives too much weight to the
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observations. This might partly explain why there is little

difference between the scores of forecasts from the analyses A9

G1 D9 H8 Cl and C2 in fig.4a. These were all 3DOI analyses using

the same data, the only difference was in the background fields

used for each.

b. NNMI and NGM
____________

The nonlinear normal-mode initialization is included as a

strong constraint in our scheme for two reasons:

(1) because of the observation that the atmosphere is usually

slowly varying. NNMI is an approximate way of including this

extra knowledge into our scheme, which would otherwise allow

rapidly varying solutions.

(2) because the approximations in our handling of the forecast

model's adjoint can only be justified for "balanced" slow

modes.

The latter effect is demonstrated in fig.l. Experiment F,

without NNMI, did not converge to fit the observations. The

former effect is shown in fig.5. Forecast F5 had a large scale

height oscillation of an amplitude not seen in reality. Fig.5

shows the mean verification against North American radiosonde

250mb heights for forecasts from the experiments related to NNMI.

There was a large scale upper trough covering north America on

27th February 1987. The NNMI filled this slightly, as can be

seen by the difference between the -12 hours mean errors of

forecast F1 and Al, and of forecasts I9 and A9. (The latter

difference is probably smaller because the NNMI was used while

making the experiment I analysis, it was only omitted before the
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final forecast). The subsequent forecasts tended to deepen the

trough again. This seems to indicate that the balance achieved by

the NNMI was not that required by the NGM forecast model. A

similar behavior of a similar NMC NNMI scheme in large-scale

troughs was noted by Hollingsworth et al (1985). Note that the -

12 hours mean error in experiment D was larger than that of A,

because D was only trying to fit the 0 hours observations.

The oscillations in forecast F5 in fig.5 were in the external

mode; they were as large in the 850mb height (not shown). In

contrast the large change between -12 hours and 0 hours in

forecasts from experiments A D and I were mostly in the 850-250mb

thickness. Forecasts initialized at 0 hours (C1 C2 G2 G1 and H8,

not shown on fig.5) showed a similar decrease in 250mb height in

their first 12 hours. However in these forecasts, most of the

change occurred in the 850mb height. It is unclear how much of

the bias error in 250mb height was due to NNMI, and how much to

the NGM forecast model. It is possible that differences in

calibration between satellite derived height observations over

the oceans and radiosondes over the land also contributed. There

is evidence however that part of the bias is due to the NGM. All

the forecasts, including the uninitialized ones, showed a steady

cooling of the model's lowest layers, about 1C during the first

24 hours at 850mb. Further experiments would be required to

unravel the causes of these biases. It is clear however that

they makes it difficult to achieve a close fit to both the -12

hours and 0 hours observations.

Another failing of NNMI, particularly of adiabatic
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implementations like that used here, is the underprediction of

rainfall in the subsequent short-period forecast. It was hoped

that by moving the NNMI to -12 hours, instead of 0 hours as in

the current operational system, this "spin-up" problem would be

alleviated. However although there were differences between the

rainfall forecasts of, for instance, A9 and G1, there was not a

clear signal that one was better for the single case studied.

c. Penalty functions, derivatives, and descent algorithm
_____________________________________________________

We discussed in section 6c the approximations made in deriving

expressions for the penalty function and its derivatives.

Practically, our objective is not to set up an algorithm for

finding the exact minimum of the total penalty function, but

rather to perform a few iterations which at least decrease it

from that given by conventional 3DOI analysis/forecast cycles.

The total penalty needs to be used in a practical scheme at least

as a check that it is converging. The simplest approximation to

the Gauss-Newton descent algorithm did not converge; it was

necessary to modify it by including a step-length. Some form of

total penalty, formed as a weighted sum of the partial penalties

shown in fig.1 fig.2 and fig.3, would probably be a sufficiently

good measure of "improvement in the analysis, for detecting

convergence. It would have been possible with such a sum to

detect the lack of convergence which eventually forced the

halving of the step-length in experiment A iteration 5 and

experiment D iteration 3. Note that, in contradiction to the

result from Lorenc (1986b), the background penalty is important

for this. The Lorenc (1986b) result that the background penalty
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always remains small is no longer true in the presence of our

other approximations.

Neither experiment A nor experiment D achieved as close a fit

to the observations as was achieved in the similar idealized

experiments of Lorenc (1986b). This was of course to be

expected; the earlier experiments were of "identical twin" type,

with model generated observations. Thus there were no model

errors analogous to those discussed in the last sub-section. The

exact adjoint used in the idealized experiments enabled changes

to be made to the advecting wind in response to tendency

information from an advected tracer. The linearized

approximation to an adjoint used in the present work was probable

not accurate enough to get this effect, which needs a better

adjoint for the dynamical part of the model. It would need a

large effort to code the accurate adjoint of the full forecast

model, including its physical parameterizations (without which

its forecasts are significantly degraded). Such an effort is

probably premature; research on using observations such as cloud

amounts and deduced diabatic heating rates in three-dimensional

analysis schemes is still in its infancy. So even if the

forecast adjoint is improved, any improvement to the descent

algorithm used in this work should take into account that the

calculated gradients of the total penalty function are only

approximate.

We discussed in section 7d an "unmeteorological" feature,

apparently caused by inconsistent approximations in our adjoints

of the forecast and the error covariances. Our approximation to
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the latter is exactly analogous to that used in the operational

NMC scheme for estimating background error covariances, something

which should be done using a Kalman-Bucy filter. The crude

smoothing which replaced this in our adjoint scheme was

completely untuned; probably considerable improvements are

possible even to this. If the operational scheme were to be

improved, for instance by implementing a simple advection of

variances by the mean flow, then presumably its adjoint could be

used in this scheme.

8. CONCLUSIONS

We have shown that a four-dimensional analysis of the full

operational observational database can be made, by iterating

modifications to the operational analysis and forecast codes and

an approximate adjoint model. Computer resources required are

only an order of magnitude greater than those for the operational

scheme. This is much less than the theoretical requirements of

some other proposed algorithms. It means that the technique is

practicable now for research experiments, such as producing a

dynamically consistent four-dimensional analysis from a special

set of observations. It should become operationally practicable

by the next generation of computers (as long as the requirements

of the, forecast model do not grow to match the available

computer!).

The derivation of the scheme emphasizes that it can be

regarded as an extension of current three-dimensional analysis

methods. It should be possible to carry over the results of past

and continuing efforts to develop these, by using the three-
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dimensional analysis code as part of the four-dimensional scheme.

Experiments with the scheme highlighted deficiencies in the

current operational scheme, in the observational error variances

assumed, in the "balance" given by the nonlinear normal-mode

initialization, and in the systematic errors of the forecast

model.

The preliminary experiments described in this paper indicate

that further work is necessary on improving several aspects of

the scheme, particularly the descent algorithm and the adjoint

forecast of covariances. Forecasts from the analyses did not

verify quite as well as those from the operational scheme, for

the one case studied.

The scheme has the potential to use a more complete time-

coverage of observations. It would be interesting to test this

by analyzing data from special observational efforts such as the

GALE experiment.
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LEGENDS FOR FIGURES

Fig.1 Observational penalties for wind observations, for the

analysis fields valid at times T1 and T2, plotted against

iteration for the experiments listed in Table 1. The

penalty is scaled by 2/Ny, where Ny is the number of data

included, and is thus the mean square deviation of the

fields from the observations, normalized by the estimated

observational error variance, as used in the 3DOI. Values

plotted are for the fields at the beginning of each

iteration. See table 1 for details of each experiment.

Fig.2 Mean square deviation from the background field, for the Ti

analysis fields, plotted against iteration for the

experiments listed in table 1. The deviations are

normalized by the estimate background error variance, as

used in the 3DOI, and averaged for the northern hemisphere.

Values plotted are for the fields at the beginning of each

iteration. See table 1 for details of each experiment.

Fig.3 As fig.2 for the mean square change during the NNMI.

Fig.4 Root mean square forecast verification statistics averaged

for 850, 500, 250 and 100mb, against radiosondes over North

America. Curves are labeled with the experiment letter, as

given in table 1, and the iteration number.

Fig.5 As fig.4 for the mean 250mb height difference of

observations minus forecast.
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Fig.1 Observational penalties for wind observations, for the

analysis fields valid at times T1 and T2, plotted against

irthe experiments listed in Table 1. The

penalty is scaled by 2/Ny, where Ny is the number of data
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Fig.1 Observational penalties for wind observations, for the

analysis fields valid at times Ti and T2, plotted against

iteration for the experiments listed in Table 1. The

penalty is scaled by 2/Ny, where Ny is the number of data

included, and is thus the mean square deviation of the

fields from the observations, normalized by the estimated

observational error variance, as used in the 3D0I. Values

plotted -are for the fields at the beginning of each

iteration. See table 1 for details of each experiment.
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