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ABSTRACT 

The main obstacle facing sound advances in weather 
modification is high natural variability coupled with the 
large expense and long effort required to obtain data. These 
problems become particularly severe when convective preci­
pitation is the object of modification. In Florida, even on 
selected, relatively fair days meeting suitability require­
ments for seeding, cumulus rainfall varies naturally over two 
orders of magnitude. This spread maintains whether we are 
considering single isolated clouds or the six-hour rainfall 
in a target area of several thousand square miles. If there 
is only a small data sample, it is therefore possible for a 
few extreme values to dominate a seeded or control population 
and thence their comparison. 

Over the past decade, the Experimental Meteorology 
Laboratory (EML) has conducted randomized dynamic seeding 
experiments on tropical cumuli, mainly in and near south 
Florida. The experiments have been designed and analyzed 
using numerical simulation, together with both Bayesian and 
classical statistics. The single cloud phase of the experi­
mentation was brought to a definitive conclusion, with the 
results and procedures guiding development of a multiple cu­
mulus seeding experiment in a 4900 mi2 target. In the area 
experiment, randomization has been by days, with rainfall 
comparisons for both "floating" and total targets. Two pre­
ceding reports (Simpson, Eden, Olsen and Pezier, 1973; 
Simpson, Woodley, Cotton and Eden, 1973) summarize the effort 
up to this time. 

A primary goal is to obtain an estimate of a seeding 
factor·F, defined as the average multiplicative amount by 
which the seeding increases the rainfall in the seeded units 
relative to the controls. With several different analysis 
approaches, we found that for the "floating" targets the 
seeding factor may be large enough so that it can be evalu­
ated with a reasonable amount of further experimentation of 
the same design, leading to about 20-30 pairs of cases in 
total. We specified how the number of cases required depends 
inversely on the seeding factor. Results indicated that in 
our total target area experiment, or in any case where a 
seeding factor of less than about 2 is anticipated, a prohi­
bitively large sample of cases (perhaps 50-100 pairs) appears 
to be required. In addition, randomization by days has a 
further obvious weakness when evaluation is by radar, the 
calibration of which may vary from day to day and from one 
summer to the next. 

To overcome these difficulties, new approaches to ex-
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periment design, simulation or evaluation may be necessary. 
To explore possible improvements, EML has held series of 
meetings with prominent statisticians at intervals over the 
past few years. This report is the result of our first ef­
forts to follow up the two most promising suggested improve­
ments. 

A solution to both the natural variation and the radar 
calibration problem would be provided if we could find two 
target areas within radar range which had nearly identical 
convective regimes that did not interact. Then we would se­
lect one area for seeding and the other for control on the 
same day using a randomized cross-over design. Thus, the 
basic question "what would nature have done without the 
seeding'' is answered by the behavior of rainfall in the con­
trol area. The usefulness of this approach depends on the 
correlation of the natural rainfall in the two targets and 
its validity on the lack of mutual contamination. Part I of 
this report examines the prospects for this type of cumulus 
experimentation in south Florida. 

An alternative approach is to devise a method for pre­
dicting the rainfall in the single target using one or more 
covariates. Clearly, the short-range forecasting of con­
vective rainfall is a formidable task. Recently the Weather 
Service has advanced this problem, combining model pre­
dictions and statistical screening in a method called MOS or 
model output statistics (Klein, 1965; Klein, Lewis and Enger, 
1959). In Part II of this report, we take the first steps in 
adapting this methodology to cumulus modification; we believe 
that the frontier so opened is an extremely promising one. 

We are presenting this material at the current early 
stage for the following two reasons: first, other major 
cumulus modification experiments are presently in their de­
sign stage and we believe that our work should be of con­
siderable benefit in obtaining optimal designs; second, we 
are developing and setting out a procedure for analysis of 
the 1973 Florida area experiment, using the 1970-1971-1972 
data to construct the framework. 
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ON THE DESIGN AND EVALUATION OF 
CUMULUS MODIFICATION EXPERIMENTS 

PART I 

Precipitation Correlations for Two Areas as 
Background for Cross-over Experimentation in Florida 

William L. Woodley and Joyce Donaldson 

1. MOTIVATION 

The Experimental Meteorology Laboratory (EML) has 

conducted a series of multiple cloud seeding experiments over 

a target area in south Florida (Simpson, Woodley, Olsen and 

Eden, 1973). These experiments have been based on the random 

experimental design which involves randomization of days over 

a single target area into seeded and nonseeded days with non-

seeded as the control. An alternate design under consider-

ation was the cross-over target control which requires random 

interchange of target and control areas among seeding days. 

The cross-over approach with a target and control area within 

the day was appealing in that this design minimizes the 

"noise" of natural rain variability inherent in the random 

experimental design (where the seed and nonseed cases are on 

different days). Further, cross-over procedures require less 

time to verify a particular seeding effect than does the ran-

dom experimental design (Schickedanz and Huff, 1971). The 

disadvantages of the cross-over design are the contamination 

problem between target and control and the possibility of 

other effects (e.g. reduced insolation from cirrus canopy; 



altered low level wind field, etc.) on the control area 

because of seeding in the nearby target. 

The rejection by EML of the cross-over design in f~vor 

of the random experimental approach was dictated by practical 

considerations. It was impossible to select two land areas 

within range of the formerly used research radar that were 

free of blind cones produced by obstructions to the radar 

beam (hatched areas, fig. 1). However, it is now possible 

to make estimates of areal rainfall using the WSR-57 radar of 

the National Hurricane Center (Herndon, Woodley, Miller, 

Samet and Senn, 1973), and this radar has no obstructions to 

the energy radiated by its antenna. Because of this develop­

ment, EML is re-examining cross-over procedures. A first 

step is the determination of how well the rainfall is cor~ 

related in the two areas selected for cross-over. Results 

are presented in this paper. 

2. METHOD 

Two land areas within range of the WSR-57 radar that 

might be used for cross-over experimentation were defined 

(fig. 2). A zone only seven miles in width buffers the two 

areas. The iarger area (A) is the EML research area that 

covers approximately 4900 mi 2 and the smaller area (B) covers 

2600 mi 2 . The percentage coverage of echoes or rain was com­

puted for each area for the nine hours of 1600 to 2400 GMT 
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~igure 1. Map of south Florida showing the EML seeding tar­
get in 1970 (smaller area with solid line) and in 197l through 
1973 (larger area with solid and dashed lines). The stippled 
region is the EML meteorological network. The hatched sectors 
represent the blind regions due to obstructions to the S-band 
radar of the Radar Meteorology Laboratory of the University 
o~ Miami. 
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Figure 2. Two areas within range of the WSR-57 radar of thE 
National Hurricane Center that might be used for cross-over 
experimentation in Florida. Area A is the EML seeding 
target shown in figure 1. 
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and the hourly calculations for the two areas were correlated 

after meteorological stratification. Those hours in which 

neither area had an echo were excluded. A total of 110 days 

were used in the study. These days were selected from April 

through August in 1968, 1970, 1971 and 1972, depending on 

whether a run of the EML cumulus model was available for the 

day. 

The stratification of the days was made on the basis 

of the meteorological suitability factor (MSF), S-Ne• that 

is used by EML to determine the suitability of a day for 

seeding experimentation (Simpson and Woodley, 1971). The S 

is the maximum seedability (difference in kilometers between 

seeded cloud top height and unseeded cloud top height) pre-

dieted by the EML cumulus model using the 1200 GMT Miami 

radiosonde and a hierarchy of horizontal cloud sizes, and Ne 

is the number of hours between 1300 and 1600 GMT with S-band 

radar echoes in the target. The maximum value of Ne is 3.0. 

When the MSF is zero or negative, the day is usually dry 

(S = 0 and N = 0) or wet (Sis small; N · : 3.0 and S-N < 0), e e e-
respectively. EML scientists believe that seeding conditions 

optimize with an increase in the MSF; a value of 1.00 to 1.50 

is the minimum value of S-Ne a day can have and still be ac­

ceptable for experimentation. 
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3. RESULTS 

The mean percentage coverage of echoes with time for 

the two areas is presented in figure 3 as a function of S-N 
e 

The smaller region has the greater percentage of its area 

covered by echoes early in the afternoon, but the situation 

is reversed later. Surprisingly, the mean coverage of echoes 

changes little as a function of S-N , averaging 10 to 15 per­
e 

cent. 

The correlation of the percentage coverage of echoes 

with time in the two areas as a function of S-N is pre­
e 

sented in figure 4. With the exception of a brief period in 

early afternoon, the correlation of the precipitation cover-

ages for the two areas decreases with an increase in S-N . 
e 

The correlations are greatest on disturbed days ·(generally 

corresponding to S - N < 0.00) and least on "fair" days 
e 

(corresponding to S- N > 1.50). Ironically, the days best 
e -

suited for seeding experimentation are those days on which 

the two-area correlations are minimal. Still a modest 

positive correlation between the two areas is better than 

none at all. With zero correlation, cross-over is reduced 

to a target-control experiment within the day. This is still 

preferable to the random experimental design because two 

experiments are obtained for each day of operations using 

a within-day target-control instead of the one day obtained 

with the random experimental design. 

6 
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Figure 4. ~he correlation with time of the percentage 
coverage of echoes in areas A and B as a function of 3-Ne. 
The number of days (m) in each category and the average 
correlation for the nine hour period are also shown. 
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In this study we also examined the correlations of the 

precipitation coverages in the EML target (area A) on sue-

cessive days. This was done so that the intraday precipi-

tation correlations for areas A and B (discussed above) could 

be compared with the interday correlations for area A. The 

pairings for the correlations were formed only for those 

successive days when S- Ne~ 1.50, the EML suitability cri­

terion for an experimental day. For example, suppose days A 

through G were under consideration and that S- Ne ~ 1.50 on 

days BCD and FG. The pairs for correlation for this data set 

are BC, CD, and FG. 

After pairing of the days, correlations were calcu­

lated for each hour from 1545 to 2345 GMT and for the average 

precipitation coverage in this nine hour period. As before, 

hours when both com~onents of a pair were zero were not used. 

Forty days were used to form the pairs. Results of the cor-

relations by hour are shown in figure 5; the number of pairs 

used to calculate the correlation coefficient are indicated 

in parentheses above each plotted point. The correlations 

are small and inconsistent, suggesting that one cannot have 

any confidence that the precipitation coverage at any time on 

one day will bear any resemblance to that on the next, even 

if both days satisfy the criterion S - N > 1.50. e-

The situation does not change for the average coverage 

for the nine daylight hours. The correlation for this period 
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Figure 5. Interday correlations with time of the precipita­
tion coverage in area A. The pairing of days for the pur­
poses of correlation was made on the basis of S-N . The 
number of paired days used to calculate the correlation co­
efficient are indicated in parentheses above each plotted 
point. 
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was a disappointing 0.09. This correlation might have been 

somewhat higher if we had included the hours when both com-

ponents of a pair had zero precipitation or if we had been 

able to stratify the pairs further on the basis of the S - Ne. 

The S - Ne criterion is a modest predictor of the rain 

coverage to be expected in the target. As an example, the 

correlation between the S - N for values exceeding 1.50 and 
e 

the mean target rain coverage is -0. 41. This suggests that 

the greater the S - N , the lesser the mean target rain e 

coverage for the day. This is exactly what was intended in 

the definition of S - N but the strength of the relation­
e 

ship is weaker than was expected. 

4. CONCLUSIONS 

On days that meet the EML suitability criterion for 

an experimental day the percentage coverage of precipitation 

is better correlated for two areas on the same day than it is 

for a single area on paired days. This indicates that the 

cross-over design is superior to the random experimental 

design in Florida provided that contamination problems are 

of little consequence. Although the magnitude of this pro-

blem in Florida is not well known, we suspect that it would 

be very large and possibly disastrous. A common example of 

contamination is illustrated in figure 6. Frequently, over-

hanging anvils wipe out convection over major portions of the 
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1700~ AUGUST 5, 1973 

1952Z 16 JULY 1973 

Figure 6. Two photographs illustrating the effect that anvils 
derived from cumulonimbos can have on subsequent convection. 

The upper photograph was taken from Central Site in the 
dense meteorological network that was operated in the summer 
of 1973. The lack of convection under the anvil is obvious. 
New cloud growth has begun in the clear region beyond the 
upper cloud. 

The lower photograph was taken from the RFF C-130 flying at 
19,000 feet p. alt. There is virtually no cumulus growth 
below the thick cloud anvil ~(left center foreground·and 
background) . 
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EML target area. Surf~ce temperatures (measured by infrared 

thermometer) are often more than 5°C cooler under these an­

vils than they are with sunny conditions in the same location 

at the same time of day. Furthermore, our observations sug­

gest that varieties of "dynamic" contamination are probably 

also operative. On some occasions, cumulus development ap­

pears enhanced, while on other occasions it is inhibited by 

the near neighborhood of huge merged systems. Because of the 

large unknown factor of cumulus interaction, we have for the 

time postponed serious further consideration of the cross­

over design in Florida. 

The EML suitability criterion for a day of experi­

mentation needs improvement. The S - Ne factor does select 

days th~t are grossly similar meteorologically, but it is a 

relatively poor predictor of the rainfall to be expected in 

the EML target. The search for a more sensitive selector of 

experimental days is continuing, and progress is reported in 

Part II. 
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PART II 

0~ the Use of Predictors and Covariates 

Joanne Simpson, Anthony R. Olsen and Jane C. Eden 

1. MOTIVATION 

With the drawbacks of the cross-over design demon-

strated in Part I, as well as the difficulty and expense 

of its execution in Florida, a remaining realistic hope of 

sharpening the multiple cumulus experiments lies in finding 

means to predict the unmodified rainfall. We believe, and 

shall show, that this does not involve solving the whole 

short-range precipitation forecast problem, but in isolating 

some aspects of it. The sources of guidance for this work 

were twofold: firstly, the Weather Service progress in use 

of Model Output Statistics (Klein et al, 1959; Klein, 1965) 

and secondly, the successful application by G. F. Cotton 

of covariate regression to the EML single cloud experiments 

(see Appendix- Statistical Analysis- to Woodley et al., -- --
1970). 

With the single clouas, Cotton (loc. cit.) found that 

the rainfall fo? the ten-minute period prior to the seeding 

run (initial wetness) was an extremely successful predictor 

for the subsequent rainfall for the control clouds. With the 

transformed (fourth root) rainfall data, the linear regres-

sion using initial wetness as a covariate reduced the vari­

ance by 32 percent and was significant at 0.5 percent. The 

14 



differences of the seeded cloud rainfall observations from 

the control regression were significant at the 0.5 percent 

level. A similar linear regression for the seeded clouds 

was equally successful. An analysis of covariance was car­

ried out which demonstrated that a fit of common slope and 

separate means was appropriate to the two populations, with 

the difference in means significant at 5 percent. A second 

predictor, namely degree of disturbance, or radar echo 

coverage at 2 p.m. local time, was also investigated; this 

predictor was found to contribute only a negligible further 

reduction in variance. 

2. SEARCH FOR PREDICTORS IN THE AREA EXPERIMENT 

Bere we seek predictors for total target rainfall 

only. The floating target seeding factor appears nearer re­

solution and would present a more formidable problem in for­

mulating predictors. Desirable criteria for predictors are 

that they should be readily available from routinely made ob­

servations, executed if possible prior to the time of the 

first seeding run. With the present pathetically small data 

sample (7 seed and ll control cases from 1970, 1971, and 1972 

combined) it does not make sense to utilize more than one or 

two predictors simultaneously. Later, with a larger data 

sample we hope to introduce other predictors by means of 

screening by stepwise regression. 

15 



We began with the hope, in view of the successful use 

of numerical simulation in these experiments, that one useful 

predictor could be found from the EML numerical cumulus mod­

elling effort. After analyzing about six possible predic­

tors, we have come up with three worthy of serious evaluation 

at the present time. These are: initial wetness of the 

area, model-predicted precipitation and degree of disturbance 

in the region. 

3. DEFINITION AND EVALUATION OF THREE PREDICTORS 

In the work to follow, we use transformed fourth-root 

rainfall amounts to eliminate extremes and to minimize heter­

oscedasticity. The predictand is the total target trans­

formed rainfall for the six hours subsequent to the first 

seeding run on the 11 control and 7 seeded days of 1970, 1971 

and 1972. 

The predictors considered here are defined as follows: 

1) Initial wetness W: transformed rainfall in the 

total target for the one-hour period ending at the 

first seeding run. 

2) Model-predicted precipitation M: the EML one­

dimensional cumulus tower model (Simpson and 

Wiggert, 1969; 1971) predicts, for given sounding 

and cloud base conditions, the precipitation pro­

duction in cloud towers as a function of tower 

16 



radius. For the present study, the regular 1200 

GMT Miami radiosonde observation was used, with a 

915 m cloud base, which is the average cloud base. 

For each case, precipitation production was aver­

aged for four tower radii, of 750, 1000, 1250 

and 1500 m, the normal observed range of seedable 

tower sizes. 

3) Degree of disturbance C: the radar echo coverage 

in nautical miles squared, measured within 100 n 

mi radius of Miami at 1800 GMT (2 p.m. local day­

light time) . 

The general rationale for the above choices and def­

initions is that they express several of our physical hy­

pothesep regarding controls on convective rainfall in terms 

of readily made, easily accessible observations. Speci­

fically, predictors l) and 3) are the same as those inves­

tigated by Cotton with the single clouds. Brierl has ad-­

vised from long experience that for precipitation prediction, 

the best predictors generally involve precipitation at other 

places and/or times. 

The model predictor was chosen for the explicit reason 

that with the single clouds the model-derived precipitation 

correlated at 0.9 with the measured precipitation from the 

l Personal Communication 
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cloud. Here we use the Miami 1200 GMT radiosonde for the 

model input rather than those closer in space and time to the 

experimental clouds, because the latter were not available in 

all ar.ea cases and furthermore, predictors will not be prac-

tically useful unless they can be derived from regularly made 

observations. 

The 1970-1971-1972 data for predictand and predictors 

are presented in tables 1 and 2, for control and seeded 

clouds, respectively. 

Table 1. EML hrea Data - Total Target - 1970, 1971 and 1972 
Control Cases 

Rl/4 w M c 
4 1/4 

X 10 2 103 . 2 Date (10 acre-feet) g/g n. ml 

1 
l. 6237 0.8259 0. 98 4.145 June 30 

July 7 l. 6565 0.5318 0.76 0.550 
July 17 RC l. 4700 0.3720 1.17 0.775 

1971 
0.44 July 1 1.1211 0.4450 0.711 

July 12 l. 6571 0.2300 0.93 0.365 
July 15 1.1710 0.5630 0.19 0.974 
July 16 RC l. 6266 0.4307 0.56 0.162 

1972 
July 21 RC 0.6846 0.6623 o. 71 0.147 
Aug. 4 RC Or7121 0.0000 0.89 0.000 
Aug. 9 RC 1.3201 0.3246 0.60 0.084 
Aug. 18 RC l. 2831 0.5563 0.91 0.126 

Average 1.3025 0.4492 0.74 0.731 

RC stands for "radar control". i.e. , non-random control. 
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The rather unusual units employed with the data are 

used to keep all numbers involved in the same size range for 

convenience in programming. 

Table 2. EML Area Data - Total Target - 1970, 1971 and 1972 
Seeded Cases 

Rl/4 w M c 

(10 4 acre-feet) 1 14 g/g X 10 2 103 n. mi. 
2 

Date 

1970 

June 29 l. 3406 0.6751 l. 02 l. 000 

July 2 1.1802 0.5185 0.76 0. 710 

July 8 1.8573 0.6766 0.96 1.275 

July 18 l. 7034 0.5070 0.84 0.042 

1971 

June 16 0.7071 0 0 0.061 

July 13 l. 3150 0.1800 0.83 0.588 

July 14 1.4878 0.2856 0.88 0.365 

Average 1.3702 0.4061 0.75 0.577 
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4. DEVELOPMENT OF PREDICTOR REGRESSIONS 

As previously mentioned, the small data sample sizes 

severely limit the number of predictors that can be con­

sidered. This limitation alsti applies to the evaluation of 

the regression relationships. Hence, only a preliminary a­

nalysis is given. In this section a description is given of 

all possible regressions of the three predictors on trans­

formed total target rainfall, with control and seeded cases 

treated separately. 

First, linear regressions were obtained using each 

predictor alone on seeded and control populations separately. 

Results are shown in tables 3 and 4. A plot of the data a­

gainst initial wetness is shown in figure 7, with the least­

squares best fit linear regressions. On the radar control 

day of 21 July, 1972, the onset of synoptic-scale suppression 

caused the virtual disappearance of rain from the target 

after about halfway through the six-hour measurement period. 

When this case is omitted, the correlation between target 

rainfall and initial wetness is 0.51 for the control clouds. 

The regression reduces the variance by 0.26. For the single 

cloud control population, Cotton found that the correlation 

of total rain with initial wetness was 0.57 and that the re­

gression reduced the variance by 0.32. The larger correla­

tions, reductions in variance and F - values achieved by the 

predictors with the seeded cloud data can at present only be 

20 



Table 3. Predictor Regressions for Total Target 
1970-72 Transformed Rainfall on Control Days. 

Regression 
Cor- coefficients 

relation Reduction Computed for 1 
Predictors Used with R' in variance F-va1ue Intercept w M c 

Initial Wetness W 
(all cases) 0.214 0.05 0.43 1.148 0.344 

Initial Wetness W 
(omitting 7-21-72) 0.513 0.26 2.85 l. 06 0. 712 

Model Pred. Precip. M 
(all cases) 0.22 0.05 0.45 1.096 - 0.279 

1\) 

f-' Deg. of Disturb. C 
(all cases) 0.36 0.13 l. 30 1.224 - - 0.107 

W and C 
(omitting 7-21-72) 0.516 0.267 l. 27 1.039 0.800 - -0.022 

W and M 
(omitting 7-21-72) 0.598 0.367 l. 94 0.796 0.766 0.324 

M and C 
(all cases) 0.386 0.149 0.70 l. 084 - 0.198 0.098 

w, M and C 
(omitting 7-21-72) 0.631 0.398 l. 32 0.649 l. 094 0.417 -0.079 



[\) 
[\) 

Table 4. Predictor Regressions for Total Target 
1970-72 Transformed Rainfall on Seeded Days. 

Cor- Regression 
rel:ation coefficients 

1 Reduction Computed for 
Predictors Used with R' in variance F-value Intercept w M c 

Initial Wetness W 0.70 0.48 4. 71* 0.959 1. 012 

Model Pred. 
Precip. M 0.82 0.66 9.91** 0.700 0.890 

Deg. of Disturb. c 0.42 0.18 1.10 1.172 0.344 

W and M 0.82 0.68 4.17 0.707 0.244 0.746 

W and C 0.70 0.49 1. 94 0.966 1.127 -0.093 

M and C 0.82 0.67 4.09 0.697 0.955 -0.084 

W, M and C 0.83 0.70 2.31 0.707 0.415 0.783 -0.168 

* Significant at 10% level, F1 5 . 90 = 4.06 
**Significant at 5% level, Fl,S,:95 = 6.61 
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Figure 7. Plot of fourth-root transformed 1970-1971-1972 
total target rainfall against initial wetness as a predictor. 
Lines are least squares fit to seed and control cases 
separately. 
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attributed to chance. 

With the much larger sample of single cloud data, 

namely 26 seed and 26 control cases, Cotton (loc. cit.) found 

regressions which had very much larger reductions in variance 

and far greater significance with the F test. Table 5 pre­

sents a summary of his results for comparison. Comparison 

of table 5 with tables 3 and 4 forcefully brings home the 

handicap of a small data sample and emphasizes the urgency 

of obtaining more cases in the area experiment. It also sug­

gests that even more control cases alone could be of great 

value, provided that bias or allegation of bias could be a­

voided. Table 5 further confirms our earlier deduction 

(Simpson, Woodley, Miller and Cotton, 1971) that on naturally 

rainy or disturbed days, seeded rainfall is diminished re­

lative to fair days. 

To determine if multiple linear regression relation­

ships would be useful in predicting naturally occurring rain­

fall, regressions using the predictors in combination were 

constructed for the control cases with the results presented 

in table 3. For completeness, the same procedures were car­

ried out for the seeded cases and the results given in 

table 4. In terms of both the variance reduction and the F 

test, the most su~cessful combination of two predictors (see 

table 3) combines initial wetness with model predicted pre­

cipitation. This is the type of predictor combination we 

were seeking, in that it takes into account a model generated 
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Table 5. Single Cloud Regressions with Single Covariate 

A. 26 Control Clouds 

I. Initial Wetness 

Correlations with Total Rain = 0.57 

Regression: R114 = 1.924 +' 0.73 w 

Reduction in variance = 0.324 

F = 11.55; F = 9.48; F = 13.88 
1,25,.995 1,25,.999 

II. Degree of Disturbance 

Correlation with Total Rain= 0.006 

Regression: R1/ 4 = 2.886 + o.oo4c 

Reduction in variance = 4 x lo-5 

F = 0.0009; F1 , 25 ,. 75 = 1.39 

B. 25 Seeded Clouds* 

I. Initial Wetness 

Correlation with Total Rain = 0.41 

Regression: R11 4 = 2.788 + 0.6llW 

Reduction in variance= 0.17 

F = 4.63; F 
1,24,.975 = 5 ·72 ; Fl,24,.95 

II. Degree of Disturbance 

Correlation with Total Rain= -0.307 

Regression: Rl/4 = 4.16- 0.216C 

Reduction in variance = 0,094 

= 4.26 

F = 2.40; F = 2.93; F 4 7 
= 1.39 

1,24,.90 1,2 ,. 5 

* one of the 26 random seeded clouds lacked a measurement 
of initial wetness. 
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parameter and a measured precipitation variable, in this case 

related to time-wise persistence. 

5. COVARIATE REGRESSION ANALYSIS 

One method of using the predictor regression relation­

ships established in section 4 for testing for a seeding ef­

fect is covariate regression coupled with the t-test. The 

basic procedure consists of using the control sample to es­

tablish a predictor regression for naturally occurring rain­

fall. This regression relationship is then used to predict 

the naturally occurring rainfall on seeded days. The dif­

ference between the predicted and observed transformed rain­

fall on seeded days is computed and the t-test is used to 

test if the difference is equal to zero. 

Table 6 presents the analysis when using the best com­

bination of two predictors for the regression relationship. 

The seed cases are seen to have an average departure from 

this regression for the controls that is not even significant 

at the 25 percent level. 

Although a three-predictor regression is not really 

justified with this small data sample, we have nevertheless 

tried it in table 7. As expected, no improvement is obtained. 

The results of tables 6 and 7 show there is no significant 

difference between the seeded and control populations in the 
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total target rainfall. Next we show the analysis of vari-

ance tables associated with the covariance analysis of the 

data, a more direct way of incorporating the control sample 

in the testing procedure for a possible seeding effect. 

Table 6. Covariate Regression for 1970-72 Total.Target 
Rainfall Using Initial Wetness and Model Pred1cted 

Precipitation as Predictors.* 

Date 

1970 

June 29 
July 2 
July 8 
July 18 

1971 

June 16 
July 13 
July 14 

d = .0184 
sd = .2341 
t' = d/(sd/ 7) = .2076 

t6,.10 = 1.44 
t6,.25 = 0.718 

R" R" 
obs. pred. d 

1.3406 l. 6436 -.3030 
1.1802 l. 4 394 -.2592 
l. 8573 l. 6245 .2328 
1.7034 l. 4565 .2469 

0.7071 0.7960 -.0889 
l. 3150 l. 2028 .1122 
l. 4878 1.3000 .1878 

.1 
*Regression equation: R" = 0.796 + .766W + .324M 
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Table 7. Covariate Regression for 1970-72 Total Target 
Transformed Rainfall Using Initial Wetness, Model Predicted 

Precipitation and Degree of Disturbance as Predictors* 

Date 

1970 

June 29 
July 2 
July 8 
July 18 

1971 

June 16 
July 13 
July 14 

d = .0074 
Sd = .2446 
t = d/(sd/ 7) = .080 
t6,.lo=l.44 
t6,.25 = 0.718 

' R" 
obs. 

l. 3406 
1.1802 
1.8573 
l. 7034 

0. 7071 
1.3150 
l. 4878 

R• 
pred. 

l. 7338 
l. 4770 
l. 6880 
l. 5507 

0.6442 
1.1456 
l. 2996 

d 

-.3932 
-.2968 

.1685 

.1527 

.0629 

.1694 

.1882 

~ 

*Regression equation: R• = .649 + 1.094 W + .417 M -.079 C 
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6. ANALYSIS OF COVARIANCE 

Instead of using the control data to establish a re­

gression between the predictors and the transformed rainfall 

and then applying the regression equation to predict the un­

modified rainfall on seeded days, it is possible to perform 

an analysis of covariance utilizing both the seed and con­

trol cases to determine the appropriate regressions. The 

analysis is the usual covariance analysis for two treatments 

in a one-way classification, with the exception that more 

than one covariate is used. For this reason the analysis is 

presented in terms of the residuals after fitting various re­

gressions. 

Table 9 presents the analysis when the covariates, 

i.e., concomitant variables, are initial wetness and model 

predicted precipitation. Under the usual assumptions of the 

analysis of covariance, i.e., the same slope for both seed 

and control regressions, the test for the difference between 

adjusted means is not significant at even the ten percent 

level. This effectively tests for an additive seeding ef­

fect, since it is designed to test for additive shifts in the 

adjusted mean. In view of the postulated multiplicative 

seeding effect, a test was made jointly for a difference in 

slopes between the control and seeded regressions. Again, 

the result was not significant at even the ten percent level. 
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Hence, with the present data sample no difference in the seed 

and control regressions can be detected. 

Table .9. Tests of Significance of Difference Between Re­
gressions of Control and Seed Days With Initial Wetness and 

Model Predicted Precipitation as Covariates. 

Residual After Fit of 

Common Regressions 

Separate !VIeans, Common 
Slopes 

Difference Between Ad-
justed Means 

Common Regressions 

Separate Regressions 

Difference Between 
Regressions 

F = 3.14 1,13, .90 

ss 

.86515 

.86408 

.00107 

.86515 

.81852 

.04663 

d.f. 

14 

13 

1 

14 

11 

3 

MS F value 

.06647 

.00107 .016 

.0744 

.0155 .209 

F = 2.56 3,11, .go 
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Table 10. Tests of Significance of Difference Between Re­
gressions of Control and Seeded Days With Initial Wetness, 
Model Predicted Precipitation and Degree of Disturbance as 

Covariates. 

Residual After Fit of ss d.f. MS F .. value 

Common Regressions .83643 13 

Separate Means, Common 
Slopes .83622 12 .06969 

Difference Between Ad-
justed Means .00021 1 .00021 . 00 3 

Common Regressions .83643 13 

Separate Regressions .76542 9 .08505 

Difference Between 
Regressions . 07101 4 . 01775 .209 

F 1,13,. 90 = 3.14 F4,9,.90 = 2.69 

Table 10 presents the same ·types of analyses as 

table 9, except that now three covariates are used - initial 

wetness, model predicted precipitation and degree of dis-

turbance. Clearly, the addition of the third covariate did 

not affect the results of the previous covariance analysis. 

In both cases the sparse data samples really preclude making 

any definitive interpretation of the testing procedures. 

However, if further data continue to result in reasonable 

regression fits, as in section 5, then this analysis should 

demonstrate if differences exist between control and seed 

regressions. 
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7. ANALYSES USING MULTIVARIATE DATA MATRICES 

One of the unfortunate aspects of using two or more 

predictors or covariates in a regression analysis is the in-

ability to plot, conveniently, the data points in three or 

more dimensions. Gabriel (1972) has suggested the use of bi-

plots based on the canonical decomposition of a particular 

form of a data matrix. The biplot is a graphical display of 

a two dimensional approximation to a matrix. The approxi-

mation is obtained by least squares, using the two singular 

value components associated with the two largest character-

istic roots of the matrix of sums of squares and products. 

In the process of obtaining the biplot, an inspection 

of the data matrix and its Moore-Penrose inverse leads to a 

procedure for the possible detection of data outliers either 

in the original variables or in the variables adjusted by the 

regression on all remaining variables in the data matrix. 

This procedure has recently been proposed by Gabriel and 

Haber (1973). Furthermore, it is possible to perform both 

parametric and non-parametric test procedures for the possi-

ble effect of a treatment, in this case a seeding effect. 

Let Y denote the 18 x 4 matrix of deviations from 

the variable means including both the control and seeded 

data. The columns of Y correspond to the variables R
114 , 

W, M and C respectively with the matrix given as 
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.2950 . 3934 .2339 3. 474 

.3278 .0993 .0139 -.121 

.1413 -.0605 .4239 .104 
-.2076 .0125 -.3061 .040 

.3284 -.2025 .1839 -.306 
-.1577 .1305 -.5561 .303 

. 2979 -.0018 -.1861 -.509 
y = -.6441 .2298 -.0361 -.524 

-.6166 -.4325 .1439 -.671 
.0086 -.1079 -.1661 -.587 

-.0456 .1238 .1639 -.545 
.Oll9 .2426 .2739 .329 

-.1485 .0860 .0139 . 039 
.5286 .2441 .2139 .604 
.3747 .0745 .0939 -.629 

-.6216 -.4325 -.7461 -.610 
-.0137 -.2525 . 0839 -.083 

.1591 -.1469 .1339 -.306 

An inspection of the individual columns of y for possible 

outliers, large deviations from the variable mean, suggests 

that the first observation on the variable degree of dis-

turbance is much larger than the remaining deviations. This 

is also visually detected in the biplot of Y presented 

later. The inspection of Y in this manner is a subjective 

way of detecting univariate outliers. 

Although this procedure detects univariate outliers, 

it does not check for departures from a multivariate pattern, 

in particular linear multivariate patterns. Gabriel and 

Haber (1973) have developed a methodology based on the com-

putation of the Moore-Penrose inverse of Y that is useful 

in exploring departures from such linear multivariate pat-

terns. In this case tlie Moore-Penrose inverse of Y is 
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given by y+ = (Y'Y)-1Y• and the ith element of the jth 

row of y+ is proportional to the deviation from the value 

predicted for the ith observation by the regression of 

variable j on all the variables. Thus, an inspection of 

the rows of y+ will lead to the subjective detection of 

outliers from the linear multivariate pattern that may not 

be detectable from a similar inspection of Y. 

After performing the indicated matrix manipulations, 

the transpose of the Moore-Penrose inverse for the example 

is 

-.0538 -.1300 .0119 .2516 
.1966 .1226 -.0958 -.0416 

-.0231 -.2034 .3325 . 0117 
-.0500 . 0920 -.2069 .0124 

.2245 -.3996 .0828 .0016 

.0258 .2578 -.4578 .0170 
(Y+) I = .2733 .0472 -.2465 -.0540 

-.4725 .6955 .1600 -.0861 
-.3395 -.4969 .3685 .0379 

.0987 -.0573 -.1283 -.0324 
-.1003 .3401 .1591 -.0836 
-.1461 .3433 .2107 -.0251 
-.1280 .1839 .0505 -. 0114 

.2172 .1616 -.0087 -.0090 

.2219 .1688 -.0277 -.0899 
-. 0671 -.4342 -.4152 .0619 

.0301 -.4440 .1010 .0449 

.1108 
' 

-.2518 .0868 -.0054 

An inspection of the first row of y+ indicates that the 

eighth observation may be an outlier in the linear regres­

sion on the remaining variables. Similarly, the second row 

gives the same indication for the eighth observation. 

Neither of these points were detected as univariate outliers. 



On the other hand the first deviation of the fourth row of 

Y+ shows up as both a univariate and multivariate outlier. 

The first multivariate outlier corresponds to July 21, 1972, 

and an explanation for its deviation in terms of the total 

rainfall and initial wetness was given in section 4. 

So far in this section no use has been made of the 

first 11 observations corresponding to control days and the 

last seven corresponding to seed days. Since the first var­

iable is the total (fourth root) rainfall, the first column 

of Y can be used to test for a seeding effect. Under the 

assumptions of approximate normality, independence of ob­

servations, and equal variances for seed and control pop­

ulations, the usual t-test for difference between two means 

is computed and gives a computed t-value equal to 0.377. 

Since only the total rainfall is expected to be af­

fected by the seeding treatment, the treatment means may be 

computed from the first row of y+ and will provide a com­

parison of total rainfall adjusted for its regression on the 

remaining variables. Since the remaining variables are not 

affected by the treatment, the adjustment should enhance the 

sensitivity of the comparison. Performing the t-test cal­

culation on the first row of y+ gives a computed t-value of 

0.548, an increase over the previous t-value indicating an 

increased sensitivity for the test. As explained in more 

detail by Gabriel and Haber (1973), the Moore-Penrose ad-
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justment is similar to that in an analysis of covariance ex-

cept that the inversion involves "total" regressions, where-

as the analysis of covariance uses ''within'' regressions. 

The basic usefulness of the biplot is the ability to 

have a two dimensional plot of a matrix Y. For the present 

example the rows of Y would have to be plotted in four 

dimensions, with the biplot enabling a two-dimensional ap-

proximation to be plotted. By basing the procedure on the 

canonical decomposition, which is related to a principal com-

ponent analysis, the "best" two-dimensional approximation to 

Y can be written as. GH' where 

H = 

and 
' are the two largest characteristic roots and 

q1 , q
2 

the corresponding characteristic vectors of Y'Y. 

The biplot for Y is contained in figure 8 where 

Arabic numerals are the plots of the rows of G and the 

vectors with Roman numerals are plots of the rows of H. 

Note that the first row of G when plotted shows a possible 

outlier that agrees with the visual inspection of Y. The 

clustering of points indicates similar variation of the 

variables within the clusters and differing variation be-

tween clusters. This characteristic can be used visually 
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to see if the seed and control deviations form distinct clus­

ters. In this example, no indication is shown that the con­

trol deviation (l - ll) and the seeded deviations (12 - 18) 

form distinct clusters. A more detailed description of the 

properties of biplots is given by Gabriel (1972). 



8. THE USE OF BAYES EQUATION INCORPORATING PREDICTORS 

In earlier publications (Simpson and Pezier, 1971; 

Simpson, 1972; Simpson, Eden, Olsen and Pezier, 1973; 

Simpson, Woodley, Olsen and Eden, 1973) we have used Bayesian 

statistics in an errort to obtain a probability distribution 

ror the seeding ractor F in our dynamic cumulus seeding 

experiments. F is derined as the multiplicative ractor by 

which the seeding increases the rainrall in the target in 

question. For example, F was found to be about 3 ror the 

single clouds. Ir F were 0.5, on the other hand, this 

would mean that the seeded rainrall averaged halr or the 

control rainrall. In the most meaningrul portion or the 

earlier work, we rormulated Bayes equation as follows: 

(l) p(F/D) = p(F) 
p(D/F) 

p(D) 

where p(F/D) is the probability density distribution or 

F arter considering the data; p(F) is an assumed prior 

probability distribution or F; p(D/F) is the probability 

or the data given F and p(D) is the probability or the 

data, a normalizing factor only. 

Up to now our Bayesian work has been based on the 

assumption that the rainrall rrom both seeded and unseeded 

targets obeys a gamma distribution with the shape parameter 

or the distribution known and invariant under seeding. This 
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assumption was well veriried with the single cloud data 

(Simpson, 1972; Simpson, Eden, Olsen and Pezier, 1973), but 

the sample or area cases up through 1972 was not large 

enough to be conrident or the application or the assumption 

to rloating and total target rainralls, particularly with re­

gard to the magnitude and invariance or the shape parameter. 

Figure 9 illustrates a probability density ror the 

total target seeding ractor, based on the existing control 

and seeded populations to determine the scale parameters ror 

the respective gamma distributions. Note that the expected 

value or F is 1.9, with signiricant probability density 

throughout the range 0.5 to about 4. Simpson, Woodley, Olsen 

and Eden (1973) showed that this curve, while insensitive to 

widely dirrering choices or prior probability on F, is sen­

sitive to extreme values in the small population samples, via 

the scale parameters or the distributions. The gamma pop­

ulation assumption enabled an estimate or the number or cases 

required to resolve seeding ractors, as a runction or F it­

selr. With F in the range 1.5 to 2 (large ror most seeding 

situations) it was round (Simpson, et. al., 1973, loc. cit.) 

that 50-100 pairs or cases might be required ror a good re­

solution or F without some innovation in experiment design 

or evaluation procedure. 

The Bayesian approach proposed here dirrers rrom the 

past analyses by taking advantage or predictor regression 
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relationships. This is an initial attempt to overcome 

partially the natural variability problem. 

The basis for the approach is the existence of a 

linear regression of predictors that will predict the un­

seeded, or naturally occurring, rainfall. It is assumed 

here that the naturally occurring rainfall, if it could be 

measured, is distributed about the regression-predicted 

value in a Gaussian distribution with a specified variance. 

The regression coefficients and the specified variance are 

obtained from the existing control data set with the variance 

obtained from the mean square error of the deviations about 

the regression. The Gaussian assumption requires further 

explanation. The assumption is based upon past experience 

with the usefulness of the fourth root transform in obtaining 

approximate normality for rainfall and the expectation that 

the deviations from the predicted unmodified rainfall will be 

mainly due to synoptic trends, variations in surface heating 

owing to anvil overhangs and other factors, cloud micro­

physical variations and measurement errors. It seems reason­

able that the net sum of these effects should be a random 

variable that approaches a Gaussian distribution. 

We again assume a multiplicative seeding factor F. 

Here we work with transformed (fourth root) rainfall data, 

so we define a transformed seeding factor F' to be evalu­

ated by Bayes equation, namely 
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(2) p(F'JD) = p(F') 
p(DJF') 

p(D) 

where F' ~ F114 (see Simpson, Eden, Olsen and Pezier, 1973, 

for careful analysis of this transform). 

We calculate p(DJF') as follows, by first calcu­

lating from the regression the anticipated unseeded rainfall. 

Then if the transformed seeding factor is F' 
' 

the measured 

seeded rainfall should be distributed in a Gaussian distri­

bution about the value F' times the unseeded predicted 

value, with the same standard deviation as that found for the 

distribution about the regression for the control cases. 

This assumption is logical in view of the fact that seeding 

factors (for raw or untransformed data) are at most 2 - 3, 

while natural variations range over two orders of magnitude. 

With these assumptions the probability of seeing each 

seeded datum, given the range of F' considered, is readily 

calculated. Then the numerator of the right side of (2) is 

obtained by multiplication and the result is normalized. The 

procedure is further clarified by the Basic-language program 

entitled PREDBAYES which is described in detail by J. C. Eden 

(1974). 

In this approach we are not making any assumptions 

about the seeded and control rainfall distributions, nor need 
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they even obey the same distribution. This appears to be an 

advantage over our earlier Bayesian analysis, provided of 

course that the alternative assumptions made here prove 

justifiable. 

As a first example, we take a uniform prior on F', 

for F in the range roughly 0.5 to 10 as before. Results 

for the posterior probabilities of F' and F are shown in 

figures 10 and 11. 

Comparing figure 11 with figure 9, we find a promising 

result and a dilemma. The promising result is that the 

standard deviation of the probability density of F is re­

duced by more than a factor of three by the predictor ap­

proach, a highly desirable gain for weather modification e­

valuation. The dilemma, however, is that the expected value 

of F is reduced from 1.9 to 1.08, which if valid, might 

make the difference between a practical, useful modification 

effort and one which is not! 

Therefore it is now particularly important to conduct 

sensitivity tests. We first investigate the effect of dif­

ferent prior probability assignments. 

Figures 12 and 13 show the posterior !Probability dis­

tribution for F when the prior probability distributions 

are p(F) ~ 1/F and the modified uniform prior 
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.1 < F < l 
p (F) = 

l < F < 10 

Both of the priors are attempts to present a non-informative 

or diffuse prior. In both cases the posterior expected value 

is slightly decreased and the posterior standard deviation 

remains approximately the same when compared to the results 

of figure 11. However, the change in the functional form of 

the modified uniform prior at F = l, in conjunction with 

the probability of the data given F being concentrated at 

1, results in a slight bimodal feature in the posterior dis-

tribution. An awareness of this possibility should be in-

eluded in an assessment of the validity of the modified uni-

form to describe one's prior beliefs. 

As a further indication of the sensitivity of the pos­

terior distribution to the choice of priors, figures 14 to 20 

show the shifts in the posterior that occur with the same in-

verse gamma priors used by Simpson, Eden, Olsen and Pezier 

(1973). 

It is clear from these figures that a great deal of 

care must be taken in the selection of the prior for the en-

coding of the prior information. This sensitivity will, how-

ever, diminish as the number of sample cases increases and 

dominates the contribution of the prior. 

A basic assumption in the present formulation is that 
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Figure 14. Posterior distribution for seeding factor F 
using predictors and inverse gamma prior with 

K1 = 2.25 and K2 = 6.75 
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Figure 15. Posterior distribution for seeding factor F 
using predictors and inverse gamma prior with 

K1 = 1 and K2 = 3. 
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Figure 16. Posterior distribution for seeding factor F 
using predictors and inverse gamma prior with 

K1 = 1 and K2 = 1 
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Figure 17. Posterior distribution for seeding factor F 
using predictors and inverse gamma prior with 

K1 = 1 and K2 = 0.5. 
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Figure 18. Posterior distribution for seeding factor F 
using predictors and inverse gamma prior with 

K1 = 10 and K
2 

= 20. 
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Figure 19. Posterior distribution for seeding factor F 
using predictors and inverse gamma prior with 

K
1 

= 10 and K2 = 5. 
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Figure 20. Posterior distribution for seeding factor F 
using predictors and inverse gamma prior with 

K1 = 0.5 and K2 = 0.5. 
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the standard deviation entering the calculations for the 

normal distribution is constant for all levels of the seeding 

factor and is given by the deviations about the regression 

for the control rainfall. If the transformed seeded 

for a given seeding factor F is predicted as 

then an alternative model would give the variation as 

Var(F114 R l/4 ) = F11 2var(R 114 ) 
p p 

rainfall 

~ l/4 
p ' 

with Var(R l/4 ) again obtained from the regression 
p 

mean 

square error. Figure 21 compares the posterior distributions 

resulting from the two different assumptions, but using the 

same prior. The posterior is shifted to the right with a 

slight increase in variability as a result of the change in 

the assumption concerning the variance. A detailed assess-

ment of this model assumption is clearly indicated. 

From the preceding analyses of the sensitivity of the 

posterior to various priors and modifications in the model 

assumptions further clarification and verification of the 

model is indicated as being necessary. While carrying out 

this program, consideration should also be given to a possi-

ble modification in the parameterization of the multi-

plicative seeding factor F. One of the unpleasant features 

of F is that a positive or negative seeding effect is re-

fleeted through F being greater than or less than one. 

By defining a new parameter 6, whose relationship to F 
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Figure 21. Comparison of posterior distributions for 
seeding factor F when the variance of the data 
distribution given F is assumed to be constant 

or assumed to be a function of F. 
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is 
e 

F = e • a positive or negative effect is reflected in .e 

being positive or negative with no effect indicated when e 

equals zero. 

The use of e in a Bayesian analysis is easily ac­
e 

complished by replacing F by e and then placing a prior 

on e instead of F. The only problem that may arise is 

in the ability of the experimenter to encode his prior be-

liefs in a probability distribution for e. As an example 

of the posterior distributions arising from this new para-

meterization, figures 22 and 23 present the results from two 

different choices of priors. The prior on 8 in figure 22 

is equivalent to a uniform prior on F from .1 to 10. The 

uniform prior on 8 in figure 23 is equivalent to the prior 

on F being proportional to 1/F. Although the figures 12 

to 23 present the same information under different para-

meterizations, one presentation may be more meaningful than 

the other for different experimenters. 
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Figure 22. Posterior distribution for seeding factors 
under same assumptions used in analyses for F. 
Priors on a is equivalent to a uniform prior on 

F from .1 to 10. 
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Figure 23. Posterior distribution for seeding factor 8 
under same assumptions used in analyses for F. 
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1/F for F. 
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9. SUMMARY 

In Part II several different types of analyses were 

presented which incorporated the use of predictors directly 

into the analysis of area seeding experiments. After finding 

what appear to be useful predictors, an analysis was com­

pleted using covariate regressions and analysis of covari­

ance, which further indicated that the predictors could be 

useful in a classical statistical analysis of an area ex­

periment. This methodology is promising, but indicates that 

larger sample sizes will be required before a definite con­

clusion could be reached on whether seeding has an effect 

over a large area. 

Previously, the area experiment has been analyzed 

using the philosophically different Bayesian approach, 

but no predictors were included in the analysis. Since the 

predictors were shown to reduce the natural variability of 

the rainfall data, in section 8, an attempt was made to 

modify the previous Bayesian framework to include the use of 

predictors. The basic procedure involved using the control 

data sample to establish a prediction equation for the 

naturally occurring rainfall and then using this prediction 

equation to partly specify the distribution of the seeded 

data sample given the seeding factor. Preliminary results 

indicate that the posterior distribution on F has smaller 

variability than the previous Bayesian analyses but that the 
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size of the seeding factor is also reduced. Hence, although 

the approach is promising, no firm conclusions can yet be 

made. When the additional data from the 1973 experiments 

are available, the methodology developed here will be used 

to complete the analysis. Hopefully, more definitive con~ 

elusions can then be drawn. 
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