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SUMMARY 

As part of the United States contribution to the Global Atmo­
spheric Research Project (GARF), a large-scale meteorological 
experiment, known as the Barbados Oceanographic and Meteorologi-
cal Experiment (BOMEX), was conducted near the island of Barbados 
in the Caribbean from May through July of 1969. The primary goal 
of BOMEX was to provide data for studying the sea-air interaction 
that drives atmospheric circulation and global weather systems. To 
accomplish this goal, thousands of hours of data tape and other 
records were collected. Twelve ships and 29 planes were utilized. 
More than 1, 500 personnel from government agencies, private in­
dustry, and universities participated in the project. The processing 
and coordination of BOMEX data were the responsibility of the Barbados 
Oceanographic Meteorological Analysis Project (BOMAP), a project 
established within the Research Laboratories of the Environmental 
Science Service Administration. 

The reduction of the BOMEX data to a form useful for storage , 
scientific computation and interpretation presented many statistical 
problems. The object of the subject contract was to provide a meth­
odology for estimating the terms of the budget equations and for 
assessing the precision of the estimates. The budget equations were 
equations for the flux of energy from the ocean to the atmosphere into 
and out of the BOMEX box (an imaginary box approximately 500 kilo­
meters square and 500 millibars of pressure differential high in an 
ocean area near Barbados). 
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I. INTRODUCTION 

The Barbados Oceanographic and Meteorological Experiment 
(Project BOMEX) was the first of a series of large-scale research 
projects planned by many nations throughout the world under the 
Global Atmospheric Research Project (GARP). The primary goal of 
the BOMEX project was to provide data for studying the sea-air inter­
action that drives atmospheric circulation and global weather systems. 
The project was conducted from May through July of 1969 and produced 
substantial quantities of data that were recorded manually, on magnetic 
tapes, and on charts. The reduction of the raw data to a form useful 
for scientific investigation and for storage in scientific archives is the 
responsibility of the Barbados Oceanographic and Meteorological Anal­
ysis Project (BOMAP), a project established within the Research Lab­
oratories of the Environmental Science Services Administration. 

1. DATA REDUCTION AND ANALYSIS 

In the reduction of the data it has been important to consider 
not only the meteorological theory underlying the BOMEX experiment 
but also the statistical properties of the data and the mechanisms 
and formats used in assembling the raw data. The data-reduction 
process presents problems with respect to filtering, averaging, and 
looking at the data on the proper scale. Alternative techniques, 
methods, and instruments were employed to estimate the same 
quantity, necessitating a comparison of the strengths and limitations 
of the various alternatives. The quantity of data varies from one 
source to another and from one time period to another. The data 
contain both systematic errors for which adjustment~ must be made 
and random errors whose magnitude must be estimated. A high 
degree of autocorrelation exists in the data and this must be taken 
into account. The magnitude of error deviations and the conditions 
under which they are important require understanding and definition. 
Processing of the data requires the preparation of computation 
formulas for estimating the meteorological parameters in the most 
efficient manner. A knowledge of the accuracy with which the 
meteorological parameters are estimated will help in the design 
of future experiments. 
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2. ROLE OF BOOZ, ALLEN APPLIED RESEARCH INC. 

Participation of Booz, Allen Applied Research Inc. (BAARINC) 
under the subject contract was initiated in October of 1969 following 
completion of the data- collection program. BAARINC was assigned 
the responsibility for developing a statistical methodology that would 
relate partially reduced BOMEX data to the end results required for 
budget computations in an optimum manner. This methodology re­
quires the development of the rationale for estimation procedures 
and an understanding of the nature of error in the resulting estimate. 

A substantial amount of data reduction is required to develop 
values of meteorological characters such as wind velocities, temper­
atures, and relative humidities at regular points along the path of a 
rawinsonde, dropsonde, or airplane path. BAARINC had the respon­
sibility for developing a statistical plan for further processing of the 
data so as to arrive at estimates of the terms of the budget equation 
and to assess the precision of these estimates. 

This final report covers the period from October 1969 through 
June 1970. An interim report covering the six-month period from 
October through March 1970 constitutes Appendix B of this report. 
The principal investigator for Booz, Allen Applied Research Inc. 
was Dr. Theodore W. Horner. Emphasis during the contract was 
placed on the design of a statistical plan, rather than the execution 
of such a plan. Such emphasis was partly due. to the unavailability 
of data in a useful form throughout the study period. Samples of 
some data were available in preliminary form, but the extent of data 
available for inspection was strictly limited. The major portion of 
the data were unavailable because the analog data tapes had to be 
digitized, transformed to engineering units, edited, and reproduced 
in a form suitable for study. 

Because of the unavailability of the data and the frontier nature 
of the BOMEX experiment, it was necessary to begin the development 
of statistical methodology on a trial and error basis. The method­
ology evolved as additional data became available and as the mathe­
matics of the meteorological budget equations solidified. 

Virtually none of this methodology had been developed in a re­
corded form before or during the BOMEX experiment, although 
Dr. Ben Davidson, the former scientific director, was probably well 
aware of such methodology. The untimely death of Dr. Davidson in 
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December preceding the BOMEX experiment created a substantial 
gap in analysis, reduction, and interpretation procedures. This gap 
has had to be filled by others. 

After the end of the first six months of the subject contract, a 
substantial shift was made in the methodology under development. 
This shift occurred because of the recognition of the importance of 
the face average of a working box in the estimation process. The 
new concept introduces a much simpler and tighter methodology than 
that considered during the first six months. Since the latter does 
have value and is indicative of an alternative approach to the esti­
mation of an interior average of a working box, it has been sum­
marized as the interim report. 

3. ESTIMATION OF BUDGET PARAMETERS 

A central objective of the BOMEX ·e:l>.-periment was to provide 
data useful for studying the flux of energy from the ocean to the 
atmosphere. This task is to be accomplished by keeping budgets 
on the passage into and out of the BOMEX box on the following prop­
erties: 

Mass 
Momentum-zonal 
Momentum-meridional 
Enthalpy 
Mechanical energy 
Total energy 
Latent heat budget. 

The BOMEX box is located in an ocean area near the island of 
Barbados in the Caribbean. It is roughly 500 kilometers square and 
500 millibars of pressure differential high. Extensive meteorological 
observations were collected around and within the box by means of 
ships, airplanes, satellites, and buoys. 

4. ORGANIZATION OF THIS REPORT 

Chapter II is a description of the end results required in the 
form of estimates of terms of the budget equations. Typical terms 
of the budget equations are analyzed with respect to calculative 
routines and the nature of the input data required to support these 
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routines. The concepts of working boxes and interior and perimeter 
averages of working boxes are introduced. 

The estimation of perimeter averages is discussed in Chapter III, 
first using rawinsonde data alone and then improving the estimates 
through the use of aircraft data. 

Either the rawinsonde or the aircraft data may be subject to 
instrument bias; that is, the failure of the two systems to estimate 
the same quantity at the same space-time point. In Chapter IV, 
methods are described for investigating the nature of this bias, if 
any. In this chapter also, possible bias due to nonlinearity is dis­
cussed. The airplane data are useful for investigating this type of 
bias and for providing possible corrections to rawinsonde estimates 
of perimeter averages. 

The estimation of interior averages is discussed in Chapter V 
and the methods of assessing the precision of estimates of the terms 
of the budget equations in Chapter VI. Chapter VII describes a plan 
for implementing the methodology described in the previous chapters 
and includes study conclusions and recommendations for future action. 

The report contains two appendices. Appendix A covers a topic 
that is not directly related to the statistical plan, since it applies to 
a data problem that precedes the takeoff point for the study effort. 
This topic is that of developing a correction for rawinsonde humidity 
data due to heating of the hygristor sensing element. Appendix B is 
the interim report covering the first six months of the study effort. 
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II. ESTIMATION OF TERMS OF THE BUDGET EQUATIONS 

BOMEX data are to be manipulated to estimate terms of the 
budget equations and to assess the precision of the estimates. Both 
point and confidence interval estimates are required. The budget 
equations are described in BOMEX Bulletin No. 6.'~ 

As a basis for developing the required estimates, the BOMEX 
box will be partitioned into horizontal slices with a thickness of a 
25 millibar pressure differential. These slices will be referred to 
as working boxes. Since the top of the BOMEX box is at 500-mb 
differential, there will be 20 such working boxes. 

Two kinds of averages are required for each working box: 

Perimeter averages. This is an average of the values 
associated with all points around the perimeter of the 
working box. 

Interior averages. This is an average of values asso­
ciated with all points constituting the working box. 

For each type of average there are a number of characters (normal 
wind velocity, temperature, specific humidity) for which an average 
must be obtained. The character may be a product of two or more 
factors such as the product of specific humidity and the wind compo­
nent normal to the side of the working box. 

The ideal information for estimating the terms of the budget 
equations would be graphs of the true averages (perimeter and in­
terior for each of the relevant characters) versus time, there being 
separate graphs for each working box. In place of the ideal infor­
mation, the best possible graphs that can be developed from the 
BOMEX data will be employed. These approximation graphs are 

':' Environmental Science Services Administration, BOMEX 
Bulletin No. 6, Prepared by the BOMP Office, March 1970. 
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subject to various kinds of errors. The evaluation of these errors 
will afford the basis for evaluating the validity of the estimates of the 
terms of the BOMEX equations. 

A perimeter graph will be defined as the graph of a perimeter 
average versus time. There will be one such graph for each working 
box or 20 such graphs for each character. Similarly, an interior 
graph is a graph of an interior average versus time. The time axis 
for these graphs will cover the entire period for which BOMEX data 
are available. Since the problems associated with constructing each 
kind of graph are different, the proposed methodology for each will 
be discussed separately. Rawinsonde, aircraft, and dropsonde data 
are all to be employed, in so far as possible, in the construction of 
an interior graph. Only rawinsonde and aircraft data are to be 
employed in the construction of the perimeter graphs. 

Most of the computational features associated with using 
perimeter and interior graphs in estimating terms of the budget 
equations can be illustrated by examination of the following four 
typical terms of the budget equations. 

1. FIRST TYPICAL TERM OF THE BUDGET EQUATIONS 

The mass budget equation as given by Figure 12 of BOMEX 
Bulletin No. 6 is: 

·" P"' 
-~:~ 

c !aT dp':' WT 
[V ]- = 

A n g g 

where 

(2. 1) 

represents an average around the BOMEX box for the 
character inside the brackets 

C = the circumference of the BOMEX box 

A = the area of the BOMEX box 
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p':' = the difference in pressure at a given height and the 
pressure at sea level. p':' is p

0 
- p where p is the 

pressure of the atmosphere at the height in question 
and p

0 
is the pressure at sea level 

p ,~ = 
T 

[V ] = 
n 

the value of p':' at the top of the box 

the average wind velocity around the perimeter of the 
box normal to the sides of the BOMEX box at the pres­
sure differential height in question 

g = the gravitational acceleration 

= dp':' / dt = the vertical velocity in the p':' system at the 
top of the box 

The BOMEX data are to be manipulated so as to yield an esti­
mate of the right-hand side of equation (2. 1). Estimates of the 
right-hand side will be required at equally spaced times and as 
averages throughout specified time periods. The resulting esti­
mates will be of meteorological interest in their own right and will 
also constitute input into other budget equations. 

The basis for the estimation of the left-hand side is to approxi­
mate the integration over the pressure interval from sea level to the 
top of the BOMEX box by a summation over working boxes. 

20 

25 c "" 
A g L....J 

i=l 

( 2. 2) 

The constant 25 in equation (2. 2) is the pressure differential in milli­
bars from the bottom to the top of a working box. 

As input to the above equation, the perimeter graphs asso­
ciated with the 20 working boxes are required. The character is the 
average velocity normal to the perimeter of the working i-th box; 
namely, VN·· Values of the averages from the graphs are required 

1 
at specified times. In addition, the averages may be further 
averaged over specified time periods. The latter is defined by 
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division of the area under average normal velocity curve by the length 
of the time period. Decisions are required as to the specified times 
and the time periods of interest. 

2. SECOND TYPICAL TERM OF THE BUDGET EQUATIONS 

A term of Figure 14 of BOMEX Bulletin No. 6 is: 

p >:< 

T 
0 f -dp'~ - H-ot 0 g (2. 3) 

where H is the average heat (enthalpy) in a working box located at a 
pressure level of p':'. The above term can be approximated as: 

where 

(2 5 I g) 

(t2 - tl) 

Hi
2 

= average heat for ith working box at time t 2 

Hi
1 

= average heat for ith working box at time t 1 

(2. 4) 

The H values required as input to (2. 4) are taken from enthalpy in­
terior graphs. 

3. TIDRD TYPICAL TERM OF THE BUDGET EQUATIONS 

A second term from Figure 14 of BOMEX Bulletin No. 6 is: 

dp':' 
[H V ] 

n g 
(2. 5) 

In thj._s term, [H V ] is the perimeter average at a pressure ,, n 
height of p of the product of enthalpy (heat) and the normal wind 
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velocity. This term can be treated in a manner similar to the treat­
ment of the term on the left-hand side of the mass budget equation. 
In the present case the applicable character is [H V ] and the basis 

n 
for the input required in (2. 5) are the perimeter graphs of the average 
product of H and V for each of the working boxes. 

n 

In employing the term under consideration in the equation of 
Figure 14 of BOMEX Bulletin No. 6, it is the average value of the 
term throughout a time interval (t 1 , t 2 ) that is of interest. This 
means that the average of [H V ] throughout the time interval in ques-

n 
tion will be employed as input to (2. 5). The time interval (t1 , t 2 ) 

must be the same as that used to compute 

- dp'~ 
Hg-

4. FOURTH TYPICAL TERM OF THE BUDGET EQUATIONS 

A third term from Figure 14 of BOMEX Bulletin No. 6 is 

where 

(2. 6) 

(2. 7) 

a. = the average specific volume at a pressure height of p'~ 

w" = the average vertical velocity 

a." w':'" = the covariance of a. and W'~ on the p;:, surface 

If the assumption is made that the covariance is zero, the term can 
be approximated as 
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(2. 8) 

The parameter 0: is estimated from the relationship 

a. = RT/p (2. 9) 

where 

R = gas constant 

T = temperature in degrees Kelvin 

Thus interior graphs for 0. and w will be required for each working 
box. 
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III. DEVELOPMENT OF PERIMETER GRAPHS 

The rawinsonde data for the development of the perimeter 
graphs are much more extensive than the aircraft data. The section 
that follows describes the procedure used for the construction of 
perimeter graphs based on rawinsonde data alone. The modification 
of this procedure to make use of aircraft data is also discussed. 

1. EMPLOYMENT OF RAWINSONDE DATA 

To provide a rationale for the proposed procedure, it is useful 
to first describe the structure of the available rawinsonde data and 
what should be done if each rawinsonde provided perfect information 
for the space-time continuum through which it passed. Second, the 
foregoing procedure will be modified to take into account the fact that 
the rawinsonde only estimates properties of the space-time continuum 
through which it passes. 

(1) Perfect Rawinsonde Information 

Rawinsondes were sent aloft at the corners and center of 
the BOMEX box at frequent intervals throughout the day and 
night. As one looks at a particular corner of the BOMEX box, 
there is a face of the box on one's left and a face on one's right. 
Each rawinsonde provided left face data and right face data. A 
particular rawinsonde cuts through all working boxes. Consider 
now a particular face, corner, and time interval. For the case 
in question, one can postulate a plot of a true value for the char­
acter versus the differential pressure p*. The area under the 
plot divided by the pressure differential through the working 
box defines an average for the character in question. This 
average will be referred to as the rawinsonde right (or left) 
corner average. 

It is postulated that the rawinsonde corner averages are 
known exactly and the question is now addressed as to how such 
information should be used to construct perimeter graphs. The 
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proposed procedure is to make use of spike graphs. There will 
be one such spike graph for each combination of working box, 
left or right orientation, and character. For a given character 
there are thus 160 = (20 x 4 x 2) such graphs. A spike graph will 
relate the corner average to time as the abscissa. The height 
(ordinate) of the spike is associated with the corner average 
for the character. A spike will be located at the time (abscissa) 
that corresponds to the half-point time as the rawinsonde passes 
through the working box. The time of passage relative to the 
time between spikes is sufficiently small so that it can effec­
tively be regarded as instantaneous. The assumption of perfect 
information is embodied in the assumption that the height (value) 
of each spike is known without error. 

Each spike graph can be converted into a continuous graph 
by joining the tops of successive spikes. The eight continuous 
graphs provide the input data required for development of the 
perimeter graph for the working box, A perimeter average is 
formed by averaging the values taken from each of the eight 
continuous graphs for the same point in time. When a perim­
eter average, further averaged through a time interval, is de­
sired, it can be obtained by averaging appropriate areas under 
the eight continuous curves. 

The estimation of the perimeter average by the foregoing 
process is subject to error even if the corner averages are 
known exactly. To clarify the nature of this error, it is useful 
to introduce the concept of the interval average. 

(2) Interval Averages 

The rawinsonde corner (left or right) average is a special 
case of an interval average. In general if the value of a char­
acter is plotted over an interval, an interval average is the 
area under the plot divided by the length of the interval. In the 
case of the rawinsonde, the. interval is a pressure interval 
passing through the working box. In the case of the airplane, 
the interval is the horizontal path of the airplane along the face 
of the working box. Theoretically, one can visualize a 
rawinsonde interval as existing at every point on a horizontal 
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line drawn along the face of a working box. Conceptually, there 
is a plot of the rawinsonde interval average versus horizontal 
distance along the working box face. Actual rawinsonde data 
are found at only two points along this plot; namely, at the ends. 

(3) Estimation Errors 

Even with perfect rawinsonde information, the estimate 
of a perimeter average at a specified point of time is subject to 
error. There are two sources of error: 

Failure of the rawinsonde interval average to vary 
linearly over the face of the working box 

Failure of the interval averages to vary linearly 
with time for the time intervals between corner 
spikes. 

Airplane data should prove useful in an examination of the 
validity of the first assumption. It is unlikely that the second 
assumption will hold exactly. It is our opinion that the loss in 
the precision of the estimate of a perimeter average resulting 
from any nonlinearily over the short time intervals involved 
should be small relative to other' sources of variation. 

At those space-time continuums where rawinsonde data 
are available, the interval average is not known exactly and 
must be estimated. Having chosen the best possible unbiased 
estimator for each spike in the spike graph, the conversion of 
the spike graph to a continuous graph can be improved by first 
smoothing the spike estimates. 

This discussion of the estimation of a perimeter average 
through the use of rawinsonde data alone will be completed by 
discussion of estimators of spikes. The effects of errors in 
these estimates, along with other sources of errors, on the 
estimate of a perimeter average will be discussed in a separate 
chapter. 
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(4) Estimation of the Rawinsonde Corner Average 

The optimum method of estimation of a rawinsonde corner 
average for a working box should take into account the structure 
and properties of the available data on which an estimate must 
be based. It is important also to be able to assess the precision 
of the resulting estimate. 

The data available for estimating a corner average are 
values for the character in question at discrete points through­
out the pressure interval of the- working box. The dis crete 
points are associated with five-second increments. Although 
the points are not equally spaced with respect to pressure 
differential, the discrepancies in spacing throughout a 25-mb 
interval are probably not important from the standpoint of esti­
mation. At each data point throughout the corner interval, 
values are available for a set of characters· such as tempera­
ture, specific humidity, and normal wind velocity. 

It should be emphasized that the values of characters at 
specific points throughout the pressure interval that should be 
employed in estimating the corner average are the best values 
t]lat can be made available. For example, it is known that 
relative humidities as recorded by the rawinsonde hygristor 
are incorrect because of heating of the hygristor sensing 
element due to solar radiation and the tubes and batteries of 
the unit in which the hygristor is located. Also there is a time 
lag that affects the observed relative humidity. In so far as 
possible, appropriate adjustments should be made to the 
observed values of characters to obtain new characters that 
will best reflect the meteorological quantity of interest. It is 
the new characters that should be employed in the estimation 
of interval averages. 

The multitude of adjustments that must be made on old 
values to produce new values will tend to produce correlations 
among the error part of the "signal." The errors for the 
several characters are probably also correlated in some un­
known manner. It is not likely that these correlations will be 
estimable or that their nature will be understood. Rather, it 
should be expected that such correlations will in fact be present, 
and that they may distort subsequent estimates and conclusions. 
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With respect to a particular character, three methods of 
estimation of the interval average are immediately obvious: 

Take an arithmetical average of the values at the 
discrete points 

Take a weighted average of the values of the discrete 
points, using as weights pressure differentials be­
tween points 

Fit a quadratic curve by least squares and use an 
estimate based on an appropriate function of the 
parameters of the fitting function. 

Because spacing within the 25-mb pressure interval is 
almost uniform, there should be little difference between the 
first two methods. The second method should have slightly 
better precision. However, this additional precision is pur­
chased at .the expense of additional complexity. The principal 
objection to the first method is that it does not permit an esti­
mate of the standard error of the estimate of the interval 
average. The usual way of computing the error variance as 
the ratio of the sample variance among the sample observations 
to the number of sample observations is not applicable because 
the sample variance among the observations includes the vari­
ation in the true signal throughout the interval and hence is too 
large. 

In the third method, least squares procedures are 
employed to fit a quadratic model to the data. This method 
permits a calculation of the standard error of the estimate of 
the interval average. The calculated standard error should be 
largely free of upward bias due to systematic variation. The 
latter is that variation among the observations that is attribut­
able to variation in the true value of the character along the 
pressure interval. The calculated standard error will have 
some small amount of upward bias due to the failure of the 
quadratic model to account completely for all systematic bias. 
On the other hand, the calculated standard error will have a 
downward bias due to the correlations in the errors of the 
observations. In general, if all of the observations in the 
pressure interval are too high or too low, this kind of error 
will not be reflected in the calculated standard error. 
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If there are n observations in the pressure interval, the 
standard error will be associated with n-3 degrees of freedom. 
The correction for the mean is associated with one lost degree 
of freedom of the three. The other two degrees of freedom are 
due to linear and quadratic variation of the character along the 
pressure interval. Thus, the result of removing most of the 
systematic effect, if any, is equivalent to losing two observa­
tions out of n. 

In developing the standard error of the estimate of the 
interval average, we propose that an estimate applicable to a 
large class of such averages be developed by averaging (in the 
appropriate manner) the standard errors associated with many 
estimates. This will effectively increase the degrees of free­
dom to infinity. 

Some of the mathematical details of the third method are 
sketched in the next two subsections. 

(5) Quadratic Model 

The following model is employed for the observations: 

(3. 1) 

where B 0 , B 1 , and B 2 are constants andy. is the observation 
1 

along the pressure interval located at a coded distance xi 
from the center of the pressure interval. The term e. is an 

1 
error deviation; that is, . the difference between the value of the 
observation and the model. The e. are assumed to have zero 

1 
means and homogeneous variance. The normalized variable x. 

1 is defined as 

where 

p~ = (1/2) (p; + p~) 

t.p'~ = (1/2) (p~- p~) 
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and p~ and p~' are the upper and lower boundaries of the pres­

sure interval. 

Estimates of the constants B 0 , B 1 , and B 2 are determined 
by the usual least squares procedures. These are described in 
many textbooks. An excellent reference is Anderson and 
Bancroft''. The estimate of the interval average is 

B'o + (113) B-2 ( 3. 4) 

where the A's (read hat) placed over a symbol indicate an esti­
mate of the quantity underneath. 

The variance of the estimate is 

a A A 2 
crA + (213) Cov (B 0 , B 2 ) + (119) cr

6 
B 0 B 2 

( 3. 5) 

The variances and covariances of the estimates of the B param­
eters are derived by the usual procedures. Each can be ex­
pressed as a product of the variance from regression and a 
function of the pressure spacings of the points. 

(6) Special Case of Points Equally Spaced 

When the points of an interval can be regarded as effec­
tively equally spaced, the formulas for estimating the properties 
of the interval are simplified. Thus, suppose that the first and 
last points of n points are located at distances of 1 In from the 
respective interval edges, and adjacent points are located at a 
distance from each other of 2ln. The points would then be 
spaced along an interval running from -1 to 1 as ( 1 In)- 1, 
(3ln)-l, ... 1-(3ln), 1-(1ln). The variable x in the equation 

would take at these points the value given by the equation 

x = [ (2i - 1) In] - 1 (3. 6) 

Anderson, R. L., and T. A. Bancroft, Statistical Theory in 
Research, McGraw-Hill, 1952. 
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The average of x 2 over the n points is 

g = (1/n) L x2 = 1/3- 1/n2 ( 3, 7) 

which is essentially 1/3 for n ~ 5. 

In developing the properties of the interval, it is conven­
ient to define two new variables, which sum to zero and which 
are uncorrelated, as 

( 3. 8) 
= 2 Xz X - g, 

In terms of the new variables, the equation for y is 

(3. 9) 

where 

(3. 10) 

In terms of the new model, the average value of y over all 
points is 

~ = Y = 1/n L Yi = B 0 + g B 2 = B 0 + (1/3 - 1/n2
) B2 (3. 11) 

Thus, the average of the observations over the interval is an 
estimate of the interval average, but it has a small bias. 

Since x1 and x
2 

are uncorrelated and have zero means, 
the least squares equations for B 1 and B 2 are 

(3. 12) 
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It follows that the least squares estimates of B1 and B 2 are 

A L: yx, 
B, = 

L: x,a 

(3. 13) 

A L: YXa 
Ba = 

L: xa 
2 

The variances of the estimate are 

a cra/n a = 
'1.1' 

a 
era /'f, x~ era /[n/3- 1/n] era /ng· er = = = 

13-1 

( 3. 14) 

2 
erA = er2 I 'f. X~ 

Ba 

The covariances of these estimates are zero. 

An unbiased estimate of the interval average can be com­
puted as 

(3.15) 

The variance of this estimate is 

(3. 16) 

To estimate any of the above variances, an estimate of cr~ 
is required. An estimate with n-3 degrees of freedom is 

cr2 = Z/ (n-3) (3. 17) 
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where 

z =L: (y. - y)2- (}( 
yxl )2 (L: YX2 r 

(3. 18) 
l 

L: x12 L: 
X 2 

i 
2 

i i 

An improved estimate of cr~ can be obtained by pooling the devi­
ation sum of squares, the Z, over a number of intervals 
(j=1, 2, ... p) which are regarded as having somewhat similar 
error properties; for example, intervals for the same working 
box. A pooled estimate with L:<n. - 3) degrees of freedom is 

i J 

L: z. 
2 j J 

(Jp = (3. 19) 
L: (n. - 3) 

J 
j 

If each interval has the same number of points such that n. = n, 
then J 

(J 2 = 
p 

L: z. 
j J 

p (n- 3) 

(7) Estimation of Derived Characters 

(3. 20) 

Computations performed on the raw.insonde data give rise 
to observed po.int quantities such as specific humidity, tempera­
ture, and normal w.ind velocity at specific points along the ra­
w.insonde path. These specific quantities are further employed 
to calculate derived point quantities such as the product of a 
normal wind velocity and specific humidity. Interval averages 
are also required for derived quantities. 

The recommended procedure for forming interval averages 
of the derived quantities is to form the derived quantity at the 
available points along the interval. The derived quantity then 
becomes simply a new character that is operated on in the same 

-20-



manner as the observed characters. The interval averages 
obtained in this way are subject to an unknown bias. However, 
this bias will probably be small. 

To show the nature of the bias, suppose characters y. 
and z. are observed at points i= 1, 2, ... n. Error models for 

1 these characters are 

y = g(x) + e. 
i 1 

and (3. 21) 

z.=h(x)+m. 
1 1 

where g(x) and h(x) are the true value of the characters at point 
x on the pressure interval. The value of x proceeds from -1 at 
the bottom of the interval to zero at the middle ahd to 1 at ·the 
upper point of the interval. The terms e. and m. are error 
deviations that take up the slack between \he obs~rved and the 
true values. Ideally, we would like to estimate the average 
product of the true values over the interval; that is g(x) h(x). 
The proposed estimate in fact estimates 

g(x) h(x) + Cov [g(x), m] + Cov [h(x), e] + Cov (e, m) 
(3. 22) 

As long as y and z are different characters, it seems reasonable 
to assume that there is no correlation between the true value of 
one character and the error deviation of the second. Likewise 
there should be little correlation between the two errors. To 
the extent that the foregoing correlations are nonzero, the co­
variances in the above· equation will be nonzero and the proposed 
estimate of the interval average will be biased. 

In the special case where y and z are the same character, 
the estimate of the average value of y 2 over the interval will be 
subject to at least a bias of Cov (e, e) = (CJ

2 );that is, the estimate 
will be biased upward by the error variance. In this case, the 
error variance must be estimated and subtracted from the 
interval average obtained by averaging the squares of the values. 
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2. EMPLOYMENT OF AIRCRAFT DATA 

Aircraft data available for the estimation of perimeter averages 
is sparse compared to the rawinsonde data. Thus, aircraft data 
generally exists for only three working boxes whereas there are 20 
such boxes. Even for the three working boxes, aircraft data are 
available for only a fraction of the time intervals for which rawinsonde 
data are available. Most of the information for the construction of 
perimeter graphs must be derived from the rawinsonde data. 

The aircraft data can, however, be usefully employed in the 
following ways: 

To form an independent estimate of a perimeter average 
for comparison with a corresponding rawinsonde estimate 

To obtain an improved estimate of a perimeter average 
by proper combination of rawinsonde and aircraft data 
covering approximately the ,same time interval 

To develop corrections for rawinsonde perimeter averages. 

The corrections will take into account nonlinear variation along the 
perimeter of the working box. The airplane data will provide the 
basis for such corrections. 

(1) Types of Corrections 

The corrections that can potentially be applied to rawinsonde 
data can be classified according to the amount of extrapolation 
required in making the correction. Four levels of extrapolation 
are diagrammed in Figure 1. This figure applies to any selected 
side of the BOMEX box. The rows of the figure are associated 
with working boxes and the columns with time intervals. 

The four corrections are listed below. 

Correction Description 

Aircraft and rawinsonde data available for the 
same time interval and working face. 
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FIGURE 1 
Levels of Extrapolation 
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DATA ARE AVAILABLE IN CELL 
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ARE ASSUMED TO BE AVAILABLE 
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Correction Description 

Aircraft and rawinsonde data available for the 
same time interval and for working boxes on 
the same face. However, extrapolation must 
be made to a different working box on the same 
face for the same time interval. 

Aircraft data and rawinsonde data are avail­
able on the same working face at selected time 
intervals. Extrapolation is to a time interval 
not covered by the aircraft data. 

Aircraft and rawinsonde data are available for 
some working boxes on a specified face and 
for selected time periods. Extrapolation is to 
other working boxes on the same face and for 
other time intervals for which aircraft data 
are not available. 

It is anticipated that the quality and structure of the data 
should be such that there will be little difficulty in making C1 

corrections. The likelihood that corrections CW and CT can 
be made, as of the writing of this report, appears excellent. 
On the other hand, difficulty is anticipated in forming CWT 
corrections. Since it will be important for working box perim­
eter averages to be consistent from one working box to another 
and from one time period to another, it may not be worthwhile 
to attempt to apply C v CW' and CT corrections and not the 
CW . An answer to the question as to whether valid corrections 
can be formulated must await an appropriate analysis of the data 
along the lines indicated in subsequent chapters. 

During the subject contract, considerable effort has been 
expended on methods of developing suitable corrections and 
employing such corrections. In our judgment it is very import­
ant to investigate the correction question. On the other hand, 
there is a large uncertainty as to whether corrections can be 
used to improve rawinsonde estimates of perimeter averages in 
a manner consistent for all working boxes and time intervals. 
Consequently our approach has been to develop a method for 
estimating perimeter averages that relies only on rawinsonde 
data. A secondary objective is to improve such estimates 
using aircraft and dropsonde data. 
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Methods for making corrections and comparisons between 
rawinsonde and aircraft data must take into account the nature 
of each type of data. The characteristics of the rawinsonde data 
have already been described. The nature of the aircraft data is 
described in the following subsection. 

(2) Nature of the Aircraft Data 

On various days and nights throughout the BOMEX experi­
ment, aircraft flew at specified elevations along certain sides of 
the BOMEX box. A complicated pattern was followed--the air­
plane rising to an assigned elevation, flying along a side of the 
box at that elevation, moving to a different elevation, flying 
along the side at that elevation, and so forth. Generally, about 
one and one-half hours were required to fly a side. Several 
airplanes were used and they did not all have the same equipment. 
In many cases while one airplane flew at an assigned elevation on 
a given face, another airplane flew at the same elevation on the 
opposite face. The raw data collected by the airplanes were 
subject to various biases. Some of the information required for 
correction of biases was obtained from data on calibration 
squares flown at the corners of the box. 

The starting point for the present analysis is a set of air­
plane data that reflects the results of all relevant adjustments. 
The data consist of sets of values of characters. Each set is 
associated with a different side interval. A side interval is the 
horizontal flight of an airplane along a face of the BOMEX box. 
Each side interval will be associated with a particular working 
box and period of time. Side intervals can thus be classified 
according to time, working box, and face. The set of data 
available for each side interval consists of values at a sequence 
of points along the interval. The distance between any two 
points is roughly associated with about five minutes of flight 
time. At each point there will be values for several characters. 

(3) Face Averages 

Since each side interval is identified with a particular face 
of a particular working box, it is useful to introduce the concept 
of the face average. The latter is an average of a character 
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across a face of a working box. A working box perimeter 
average can be expressed as an average of the four face aver­
ages of the working box. 

Although the ultimate object is to relate aircraft and 
rawinsonde perimeter averages, the object is best accom­
plished by relating estimates of rawinsonde and aircraft face 
averages. Thus it is easier and cleaner to synthesize a 
rawinsonde face average that covers essentially the same time 
frame as an airplace face average than it is to synthesize an 
airplane perimeter average that covers the same time frame 
as a rawinsonde perimeter average. Comparisons of aircraft 
and rawinsonde face averages, that relate to the same time 
frame, will determine whether there is a need to make correc­
tions to the rawinsonde face averages and the nature o:f such 
corrections. Techniques for comparing rawinsonde and air­
craft face averages and of developing corrections are discussed 
in a separate chapter. 

The rawinsonde and aircraft data can be employed to 
develop the best face average graphs; that is, graphs of the 
face average versus time. Each graph will cover the entire 
BOMEX experiment for which relevant data are available. For 
each character there will be 80 such graphs (4 face·s x 20 work­
ing boxes equals 80). The face average graphs should consti­
tute the basis for the perimeter graphs. 

An airplane interval average cap. be regarded as an esti­
mator of the corresponding face average. The estimator suffers 
from the fact that variation of the character through the pressure 
interval is disregarded. The rawinsonde corner left and right 
corner averages can be averaged to form a second estimator of 
the face average. This latter estimator ignores horizontal 
variation along the face that is nonlinear. Comparison of the 
properties of the two types of estimators should permit a judg­
ment as to the manner in which each estimator is deficient and 
consequently provide a basis for an improved estimator that 
properly combines rawinsonde and aircraft data. 

The aircraft estimate of the face average is associated 
with a time duration of about 90 minutes. The rawinsonde 
corner averages will rarely occur in such a manner that there 
is a proper time correspondence between the rawinsonde face 
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estimate and the aircraft face estimate. This problem can be 
surmounted by using a graph of the smoothed left corner aver­
age and the smoothed right corner average. The start and end 
times of the airplane flight can provide the times that are used 
to enter the graphs of the left and right corner averages. 

(4) Estimation of Aircraft Side Averages 

An aircraft side average is the average associated with an 
aircraft side. interval. The techniques previously described for 
the estimation of a rawinsonde corner average are applicable to 
the estimation of an aircraft side average. The method of esti­
mation through a quadratic model is recommended. 
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IV. METHODS OF DEVELOPING CORRECTIONS 
TO ESTIMATES .OF.RAWINSONDE 

FACE AVERAGES 

Each aircraft interval is associated with a particular face of a 
particular working box, and each interval is identified with a time 
interval of approximately one and one-half hours duration. For each 
such face-time interval, aircraft data provide information as to vari­
ation of the character-in-question horizontally along the face. On the 
other hand, the rawinsonde data can be manipulated to provide infor­
mation as to vertical variation across the same face. The two kinds 
of data can be combined to provide a fuller picture of variation across 
the face. 

1. HORIZONTAL VARIATION ACROSS A FACE 

To provide a basis for the rationale for the proposed full statis­
tical model for characterizing variation over the face, we will discuss 
a model for variation horizontally across the face through the center. 
The model is 

( 4. 1) 

where Y is the value of the character and the C's are constants. In 
the.above equation, the variable x takes the value of 0 at the center 
and -1 and 1 at the ends of the horizontal line through the center. The 
model given in (4. 1) should be distinguished from the statistical model 

y = y + e 

where 

y = an observation 

Y = a function of coordinates and 

e = an error deviation 
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The average value of Y across the horizontal line, which we will 
term the quadratic estimate, is 

1 
= (1/2) j Y dx = C 0 + (1/3) C 2 

-1 
(4. 2) 

In equation (4. 2), the value of Y at the ends of the horizontal line are 
C 0 - C 1 + C2 and C0 + C 1 + C2 • The average value of Y along a 

straigl:lt line je>ining the two end points is C 0 + C 2 • This average 
value will be termed the linear estimate and will be denoted as Y 2 , 

thus 

(4. 3) 

The linear estimate can be regarded as an approximation to the quad­
ratic estimate. The relationship between the two estimates is 

(4. 4) 

The left and right rawinsonde corner points estimate C 0 - C 1 + C 2 

and C 0 + C 1 + C2 respectively. The rawinsonde estimates (or the 
aircraft estimates) may be subject to unknown biases. Although efforts 
will have been made at this stage to have removed such biases, it will 
be necessary to make provisions for the existence of any biases that 
may remain in the model. Letting Y RL and Y RR denote the left and 
right rawinsonde corner points and A's represent biases, 

Thus 

C 0 - C1 + C2 = YRL + AL 

Co + C l + C2 = y RR + AR 
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The rawinsonde estimate of the average value of Y across the hori­
zontal line is 

Thus the relationship between the quadratic estimator and the 
rawinsonde estimator is 

( 4. 7) 

( 4. 8) 

Thus, two types of bias may be present in the rawinsonde esti­
mator: 

Instrument bias. This bias occurs if the rawinsonde and 
the aircraft estimate different quantities at the same space 
time point, namely an end of the horizontal line 

Nonlinear bias. This is the failure of the character to 
vary in a linear manner along the horizontal line. 

In studying the effects of the two types of bias, we are not only con­
cerned with whether statistical evidence exists for such a bias in 
terms of significance tests, but whether the bias has practical 
impoE_tance. The magnitudes of the ratios (1/2) Y3 ) (<lL + <lR) and 
(2/3 Y,) C 2 throw light on the practical importance. Hopefully these 
ratios will be found to be sufficiently small so that Y3 can be regarded 
as a reasonable approximation to Y 1 • 

(1) Instrument Bias 

The two types of bias can be studied separately. To study 
the instrument bias, we consider the statistic (see (4. 4)) 

( 4. 9) 

which can be estimated entirely from aircraft data. This sta­
tistic is to be compared to Y 3 , which can be estimated entirely 
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2. 

from rawinsonde data. The estimate of the difference Y2 - Y3 

is an estimate of (1/2) (liL + liR). Techniques for determining 
the properties of (1/2) ( liL + liR) will be described in section 4 
of this chapter. 

(2) Nonlinear Bias 

The nonlinear bias can be studied by estimating C2 for 
each aircraft interval using aircraft data. The estimates are 
then to be examined for systematic changes with height and 
other relevant variables using analysis of variance, regression, 
and other statistical techniques. Ideally, it is desirable to de­
velop a model that would predict C2 as a function of variables 
whose values are readily known. This prediction equation 
would then form the basis for making corrections to the rawin­
sonde estimates. 

MODEL FOR VARIATION OVER A FACE 

Variation over the face of a working box may be nonlinear not 
only in a horizontal direction, but in a vertical direction. In this 
section we formally develop a model that makes full use of the avail­
able information on the horizontal and vertical variation over a face. 
In the next section we show that the analysis of the full model leads 
to essentially the same end result as the analysis based on the hori­
zontal line through the center of the face. 

The full model, however, is useful if an estimate of the vari­
ance over the face is desired. This variance is defined as 

2 

crF
2 

= (1/4) j
1
-
1f:1

Y
2

dx 1 dx2 -1(1/4)1:
1J

1
-
1 

Ydx1 dx2 l 
(4. 10) 

A sufficient model for characterizing the vertical variation is 
probably the quadratic model 

(4. 11) 
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where Y is the value of the character at a vertical distance x from the 
center. In the preceding model, the variable xis assumed to have the 
value of zero at the center and -1 and 1 at the lower and upper edges 
of the face. 

Estimates of the values of the B's will be available for the left 
and right edges of the face from the rawinsonde data. No data are 
available as to variation in the vertical direction of the face at other 
intermediate horizontal points along the face. It appears reasonable, 
however, to approximate the vertical variation associated with any 
point along the horizontal center line of the face by linear interpola­
tion on constants reflecting vertical variation at the edges of the face. 

Thus suppose x 1 represents the horizontal distance across the 
face with x1 taking the value of 0 at the center and -1 and 1 at the 
left and right edges. The coefficients of vertical variation at hori­
zontal distance x1 can be approximated as 

B 0 = (1/2) [BLO (1 - x1 ) + BRO (1 + x1 )] ( 4. 12) 

( 4. 13) 

(4. 14) 

where L and R identify constants of the model for quadratic variations 
at the left and right edges of the face. For the special cases of the 
left edge, the center, and the right edge, the above constants of 
vertical variation reduce as shown below. 

Case X Bo B B 
1 1 2 

Left edge -1 BLO BL1 BL2 

Center 0 (1/2)(BLO +BRO) (1/2)(BL1 +BR1) (1/2)(BL2 +BR2) 

Right edge 1 BRO BR1 BR2, 
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To develop an equation that combines horizontal and vertical 
variation over a face, equation (4. 12) is rewritten as 

(4. 15) 

We now identify C 0 as (1/2) (BLO + BRO) and C1 as (1/2) (BRO- BL
0

). 

By incorporating a term for quadratic variation in the horizontal di­
rection and letting x 3 denote* vertical distance, the full model for 
variation over the face can be written 

+ (x3 /2) [BL
1 

(1- x 1 ) +BR
1 

(1 +x1 )] 

+ (x3
2 /2) [BL

2 
(1 - x1 ) + BR2 (1 + x 1 )] 

The vertical average as a function of x 1 is 

(4. 16) 

3. APPLICATION OF THE FULL MODEL FOR VARIATION OVER 
A FACE 

The average value of the character over the face is 

Using equation (4. 16) this average reduces to 

[
BL2 +

2 
BR2 J 

Y1 = C 0 + (1/3) C 2 + (1/3) 

( 4. 1 7) 

( 4. 18) 

The x 2 symbol will be reserved for horizontal variation per­
pendicular to the x 1 axis. 
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A model for variation over the face based on a model for the 
average information contained only in the rawinsonde data is 

Y = (1/2) (BLO (1- x 1 ) +BRO (1 +x1 )] 

+ (x3 /2) [BL
1 

(1 - x 1 ) + BR
1 

(1 + x 1 )] 

+ (x3
2 /2) [BL

2 
(1 - x 1 ) + BR

2 
(1 + x2 )] 

The average for this model over the face is 

( 4. 19) 

(4. 20) 

This average is also the same as the average of the corner 
averages. The left and right corner averages are 

(4. 21) 

where the bars over Y RL and Y RR distinguish the corner averages 
from the values at (x1 = - 1, x 3 = 0) and· (x1 = 1, x 3 = 0). Values at 
these latter points were denoted in (4. 5) as YRL and YRR· Under the 
full model, the rawinsonde estimate is the average of the averages; 
that is, 

[
BL2 +

2
BR2J 

Y3 = (1/2) CYRL and YRR) = (1/2) (BLO + BRO) + (1/3) 

(4. 22) 

The above equation for Y3 , which is based on the full model, replaces 
(4. 7) that applied only to the model for variation along the horizontal 
center line of the face. 
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The rawinsonde and the aircraft data have two points in common 
as follows: 

Point 

Center of 
left edge 

Center of 
right edge 

X 
1 

-1 

1 

X 
3 

0 

0 

Full Model Rawinsonde Model 

At these two points, the aircraft and the rawinsonde may be esti­
mating somewhat different quantities because of bias in one or both 
of two types of data. The values given by the two models at the two 
points relate in the following manner 

C 0 - C 1 + C2 = BLO + D.L 

C 0 +C 1 +C2 =BR0 +D.R 

where the D.'s represent bias terms. Thus 

and 

(4. 23) 

( 4. 24) 

C 0 + (1/3) C2 = (1/2) (BLO + BRO) +(1/2) (D.L + D.R)- (2/3) C2 . 

(4. 25) 

Equation (4. 18) can now be rewritten as 

By referring to (4. 20) for the representation of Y 3, it follows that the 
average for the full model relates to the model for the average for the 
rawinsonde model in the following way 

This is the same result as (4. 8) of section 1 of this chapter. 
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4. EXAMINATION OF INSTRUMENT BIAS 

= As defined by equation (4. 3) and estimated from airplane data, 
Y2 , an_d, as defined by equation (4. 7) and estimated from rawinsonde 
data, Y 3 presumably estimate the same quantity. It should be E_ossi­
ble t~ calculate a large number of pairs of estimated values of Y2 

and Y 3 • To relate the two estimates and to determine the nature of 
any difference between them, the following model can be employed 

where 

yi = 

z. = 
1 

u. = 
1 

V. = 
1 

e. = 
1 

h = 
i 

= 
u. = y3i 1 

V. = y2i 1 
(4. 26) 

y. = u. +e. 
1 1 1 

z. = v. +h. 
1 1 1 

the value of the rawinsonde estimate for the i-th pair 

the value of the aircraft estimate for the i-th pair 

the quantity estimated by the rawinsonde estimate 

the quantity estimated by the aircraft estimate 

a random error in the rawinsonde estimate distributed 
with mean zero and variance aR2 

a random error in the aircraft estimate distributed with 
mean zero and variance a A 2 

The pairs are to be examined so as to find out the following: 

Are the u. and v. the same, and, if not, do they differ 
1 1 

in any systematic way? 

Are the error variances of e. and h. the same, and, if not, 
1 1 

what are their relative magnitudes? 
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The first question relates to the bias ( 1 / 2) (t.L + t.R ) , whereas 
the second question examines the relative precision of the two types 
of estimates and the proper method of combination. 

t 

(1) Relationship Between the ui and the vi 

To gain insight into the first question, u. is plotted versus 
1 

z. The resulting plot, apart from sampling fluctuations, will 
be a straight line passing through the origin with a 45 degree 
slope if u. tends to be the same as v.. It is a simple matter to 

1 1 

test if the foregoing assumptions are valid. Ordinary least 
squares regression techniques cannot be employed, however, 
since an important assumption will not hold; namely, that only 
one of the variables be subject to error. Wald-Bartlett'' t pro­
cedures can be employed for testing the hypotheses that the 
line has a 45 degree slope and passes through the origin. 

It is to be hoped that the data will support the following 
equality between u. and v.; that is, u. = v.. It is perhaps more 

1 1 1 1 
likely that the observed relationship will take the form 

u. = A+ B v. (4. 27) 
1 1 

where A is an intercept constant and B is a slope constant. 
Thus, the relationship may be linear in form but with A other 
than zero and B other than 1. If the data supports a relation­
ship more complicated than (4. 27), it is unlikely that correc­
tions for rawinsonde data can be formulated. If the data sup­
ports (4. 27), then estimates of A and B should be available 
which will permit either y or z to be adjusted so that they will 
at least estimate the same quantity. 

Wald, A., "The Fitting of Straight Lines If Both Variables Are. 
Subject to Error," Ann. Math. Stat., 11:284ff, 1940. 

Bartlett, M. S. , "Fitting a Straight Line When Both Variables 
are Subject to Error," Biometrics, 5:207-212, 1949. 
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(2) Comparison of Error Variances Resulting from 
Covariance Analysis 

With respect to the second question, the sample variances 
and covariances can be computed for the two types of estimates 
y and z. These will provide estimates of the true variances 
and covariances. The latter will have the following structure. 

CJ 2 = CJ 
2 + CJR 

2 

y u ( 4. 28) 
a = CJ 

2 + CJ a CJ 
z v A 

Cov (y, z) = Cov (u, v) 

Now if u. is the same quantity as v., the following relationship 
1 1 

will hold: 

Hence 

a 2 = a a = Cov (u, v) 
u v 

aa=aa+aa 
y u R 

CJa =aa +a a 
z u A 

Cov (y, z) = CJ a 
u 

(4. 29) 

( 4. 30) 

The preceding three equations can be solved for CJR a, CJ A a, and 
CJ a . 
u 

The component CJ a represents that portion of the variation 
u 

in the observations that is attributable to variation among the 
true values that are being estimated. If a a is found to be small 

u 
relative to CJ a 

be considerlct: 

or a a then the following interpretations should 
z 
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A nonlinear relationship between the y and z 

Small variation among the true values relative to 
the noise in the estimates of those true values 

Consistency of the true values among the examined 
cases. 

The final possibility can be further examined by computing the 
ratio (CJ ) / y. The foregoing constitutes a coefficient of varia-

u 
tion. A small coefficient of variation indicates that the varia-
tion among the true values from case to case is small relative 
to the mean value among the cases. 

The preceding types of analyses should be applied to 
various groups of pairs so as to verify the consistency of the 
relationship of u. to v. from one group to another. For example, 

l l 
does the same relationship hold from one working box to 
another? At this point in time, we might anticipate that either 
A or B of (4. 27) would vary in a systematic manner with height. 

(3) Varianc'e Comparisons 

The analysis of the foregoing section provides an estimate 
of the variance of y and an estimate of the variance of z. These 
two variances were denoted as a R2 and a A2 respectively. By 

methods to be described in a subsequent chapter, it is possible 
to estimate the variances of y and z by an independent method.' 
The second method is based on estimated variances of data 
points from the quadratic model over intervals. If members 
of the pair of variance estimates of y (or z) are similar in mag­
nitude, then this will increase our. confidence that a rawinsonde 
interpolated estimate estimates the same quantity as the air­
plane estimate. If the variances are substantially different, 
then it is probably the case that 

u. = v. + '1· 
l l l 

where '1. is a random variable with unknown properties. 
l 
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(4) Combining of Estimates 

Both y and z contain information on C0 + C2 • If the two 
estimates are found to be unbiased relative to each other, it 
makes sense to combine the two estimates for those face-periods 
where both types of data are present. The combining should be 
accomplished by weighting each estimate inversely according to 
the error variance. The combined estimate for C 0 + C2 will be 
represented as x 1 • The equation for x 1 is 

w y +w z 
y z 

w +w 
(4. 32) 

y z 

where w = 1 I rJ 
2 and w = 1 I r; 2 

y R z A 

The estimate of the face average is then 

(4. 33) 
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V. DEVELOPMENT OF INTERIOR GRAPHS 

A methodology for the development of interior graphs is 
described in this chapter. An interior graph is a graph of the 
interior average of the character-in-question over the x 1 , x2 , x 3 

coordinates of the working box. The data foundation for prepa­
ration of the interior graphs must rely principally on the rawin-. 
sonde data since aircraft and dropsonde data are sparse in com­
parison. The latter two types of data, at best, will permit refine­
ments of the interior graphs prepared from rawinsonde data. The 
principal refinement will be that of taking into account curvilinear 
variation of the character throughout the working box. 

The methodology for using rawinsonde data alone in the prepa­
ration of interior graphs will be described first. This will be 
followed by a discussion of a model for the variation throughout 
the interior of the working box. Refinements that employ aircraft 
data and refinements that employ dropsonde data will then be dis­
cussed in turn. 

1. EMPLOYMENT OF RAWINSONDE DATA 

In obtaining an interior average it is convenient to first 
average in the vertical direction and then to average horizontally. 
The vertical average should be obtained as an average of the quad­
ratic curve over the vertical interval x 3 = -1 to 1. The quadratic 
curve is: 

and the vertical average is 

1 

Y = (1/2) j Ydx3 
-1 

= B 0 + (1/3) Ba 
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Estimates of the vertical average for various combinations of 
the x 1 and x 2 coordinates are available from the dropsonde and 
rawinsonde data. In particular for the rawinsonde data, estimates 
of the vertical average are available for the x 1 , x2 corner combina­
tions below. 

X X 
_!_ ~ 

1 1 
1 -1 

-1 1 
-1 -1 

The vertical averages at the corners of the working box were 
referred to in Chapter III as rawinsonde corner averages. Each 
average can be graphed versus time and hence corner graphs pre­
pared. The corner graphs are spike graphs, and all of the dis­
cussion of section 1 of Chapter III is applicable to such graphs and 
need not be repeated here. For each character there are four such 
graphs for each working box, rather than eight, as was the case in 
the estimation of perimeter. averages, since a distinction between the 
right and left corner averages is unnecessary in the estimation of 
interior averages. 

The corner graphs are to be transformed into continuous graphs 
by joining spikes or smoothing as appropriate. An interior graph is 
prepared by reading values associated with the same time instant 
from the four corner graphs and averaging the values read. In actual 
operation, it will be the computer equivalent of the foregoing process 
that will be employed. 

The method of preparing interior graphs described above 
employs all of the information contained in the rawinsonde data. 
This information is described by the following statistical model for 
variation of the vertical average over the x1 , x2 , plane. This 
model is 

( 5, 1) 

where the D's are constants. The model provides for a constant that 
characterizes the general level, a linear effect over x 1 , a linear 
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effect over x2 , and a linear by linear effect. An average of the Y 
values over the x1 , x 2 plane is 

1 1 

~ = (1/4) J j Y dx1 dx2 = Do 
-1 -1 

( 5. 2) 

The model is deftcient in that it does not take into account possible 
effects of curvilinear variation of Y over the x1 , x

2 
plane. Drop sonde 

and aircraft data provide hope of correcting this deficiency by 
supplying a correction to the interior average estimated from rawin­
sonde data alone. Although it is important to research the basis for 
corrections, it is debatable, as of the time of preparation of this 
report, as to whether useful corrections can be formulated in view 
of the characteristics of the data. Characteristics, with respect to 
the usefulness of corrections, will only be known at a subsequent 
stage of data reduction. 

2. MODEL FOR VARIATION OVER THE x 1 , x2 PLANE 

A more general model than (5.1) for variation of Y over the 
x 1 , x2 plane is the two-dimensional quadratic model 

( 5. 3) 

where the G's are constants and x's are the coordinates of points in 
the x 1 , x2 plane. The coordinates have the value of zero at the center 
of the BOMEX box and -1 and -1 on the edges of the box. The two­
dimensional quadratic model is at best only an approximation for the 
true model for the variation of Y over the x1 , x 2 plane. However, 
the BOMEX data do not appear to be sufficient to support a model 
more complex than (5. 3). In our judgment, this latter model will 
extract essentially all of the relevant information contained in the 
dropsonde and aircraft data for improving the rawinsonde estimate 
of the interior mean. 
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Using the two dimensional quadratic model, the interior mean 
of the working box is 

1 1 
-f = (1/4) j f- ·y- dx1 dx2 = G 0 + (1/3) (G11 + G2a) . 

-1 -1 
( 5. 4) 

(1) Four Corner Average 

The interior mean as given by (5. 4) can be contrasted to 
a mean calculated as the average of the four corner values. 
Such a contrast is useful in developing the informational con­
tent of the dropsonde data. The four corner values as developed 
from (5. 3) are as follows. 

X X 
-..1. _.&. 

1 1 G 0 + G 1 +Ga + G11 + G12 + Gaa 

1 -1 Go + Gl - G, + G11 - G1:a + G::.a 

-1 1 Go - G1 +Ga + G11 - G1:a + G:aa 

1 1 Go - Gl - G, + G11 + G12 + G:aa 

The average of the four corner values is 

Ya = G 0 + G 11 + G22 ( 5. 5) 

Thus the interior average relates to the four· corner average 
through the equation 

(5. 6) 

The rawinsonde data will provide an estimate of Y 2• 

This estimate is an average of the four rawinsonde corner 
averages. =The dropsonde data would also provide some infor­
mation on Y 2 , except it is known that the dropsonde data are 
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subject to a bias. There appears to be little hope at this time 
of estimating the magnitude of this bias. The dropsonde data 
should, however, prove useful in estimating (2/3) (G11 + G2 ~. 

(2) Perimeter Average 

The perimeter average based on (5. 3) can be contrasted 
to the interior mean to provide ·insight into possible use of air­
craft data in estimating the interior mean. Using (5. 3), the 
four face averages are derived as follows. 

Go - Ga + Gaa + G 11 /3 

Go +Ga + Gaa + G 11 /3 

Go - Gl +Gll + G 22 /3 

Go + G1 + G11 + G22 /3 

The perimeter average of the working box is thus 

Using (5. 4) it follows that the interior mean relates to the 
perimeter average by the equation 

Y1 = Y 6 - (1/3) (Gll + G22 ). 

The aircraft data should provide estimates of both Y 6 and 
(1/3) (G11 + G 2 a). . 
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In passing it should be noted that usually it will be the 
case that either aircraft data or dropsonde data will be present 
for a working box-time interval, but not both. When both are 
present, each can be employed to estimate G 11 + G22. The 
two estimates can be combined inversely according to their 
error variances. In those cases where neither estimate is 
present, an extrapolation must be made from those cases where 
one or the other or both are present. This extrapolation must 
be such that consistency is maintained with respect to adjoining 
boxes and time intervals. 

3. EMPLOYMENT OF AIRCRAFT DATA 

The aircraft data will also provide information on a quantity 
estimated by the rawinsonde corner average through 

= Y6 = Y 6 + (1/3) (G11 + G22 ) (5. 10) 

which is G 0 + G
11 

+ G22 , which is the same quantity, apart from bias, 

as ~2 in (5. 5). The pair of estimates ~2 and ~6 should be available 
for a number of cases, which are classified in various ways. The 

= 
relationships between Y2 and Y6 can be studied in the manner set out 
in section 4 of Chapter IV. If bias is not found, then the rawinsonde 

= 
estimate of Y2 and the aircraft estimate of Y8 can be combined by 
weighing the estimates inversely according to their error variances. 

In the absence of bias and when rawinsonde, dropsonde, and 
aircraft data are all present for a working box-time interval, per­
haps the best way to combine all of the data is to first obtain the best 
combined estimate of G11 + G22 using dropsonde and aircraft data. 

We will represent this combined estimate as~ One-third 
of the combined estimate is then added to the estimate of the aircraft 

4 
perimeter average to obtain a Y7 • Thus 

(5. 11) 
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~ 
The estimate ;y 7 is then combined with the rawinsonde corner estimate 
~ . ~ 

Y 2 by weighing inversely according to variances to form a Y8 • The 
best combined estimate of the interior mean is then 

~ ~ -- -Y 9 = Y8 - (2/3) (G11 + G22 ) ( 5. 12) 

The estimate Y s is an estimate of the perimeter average. This 
was discussed in Chapter III. The aircraft estimate of G 11 + G2 ?. is 
an average of the four quadratic coefficients that are associated with 
the four aircraft intervals along the perimeter of the working box. 

4. EMPLOYMENT OF DROPSONDE DATA 

Dropsoride obs.ervations potentially can provide information on 
curvilinear variation of the character-in-question over the x 1 , x2 , 

x3 coordinates of the working box. The usefuln'ess of the dropsonde 
observations for this purpose is limited by the nature of the drop­
sonde data. The discussion of the use of dropsonde data follows the 
sequence: 

Nature of the dropsonde observations 
Transformation or coordinates 
Diagonal face averages. 

(1) Nature of the Dropsonde Observations 

Dropsondes were dropped along the diagonals of the 
BOMEX box. In a particular airplane run eight dropsondes 
were dropped, four along each diagonal. The four dropsondes 
on each diagonal were distributed two on one side of the center 
and two on the other. The first and last dropsonde along the 
diagonal were each about two-thirds of the distance from the 
center to their respective corners. A typical pattern for an 
airplane flight is as follows. 
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Diagonal 

First 

Second 

Time 

0204 Start 

0303 Er\.d 

0419 Start 

0512 End f 

Elapsed Time 

59 minutes 

76 minutes 

53 minutes 

3 hours + 8 minutes 

Thus, completion of each diagonal required approximately an 
hour. Completion of both diagonals required approximately 
three hours. This time is sufficiently small, relative to the 
times over which major changes in interior box averages occur, 
that little loss of information should accrue if effects due to 
time changes during completion of the two diagonals are dis­
regarded. Estimates of the effect on the interior box average 
due to curvilinearity should be assigned an instantaneous time 
that is in the middle of the airplane flight. 

As a dropsonde passes through a working box, it provides 
a picture of the variation of the character-in-question throughout 
a vertical interval of the working box. A quadratic function can 
be fitted to the data of the vertical interval and an estimate of 
the mean for the vertical interval obtained in the form 

Y = B 0 + (1/3) B2 

For each aircraft flight there will be eight such values for each 
working box. It is known that the eight values were subject to 
a constant, but unknown bias, that varied randomly. from one 
aircraft flight to another. Thus, the only useful information in 
the eight vertical means has to do with the failure of these eight 
rneans to vary in a linear manner over the x 1 , x 2 plane. 

(2) Transformation of Coordinates 

In working with dropsonde data, it is convenient to employ 
a different coordinate system in which the axes of the new system 
correspond to the diagonals of the x 1 , x2 plane. In the new 
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system the origin remains at the center of the BOMEX box. 
The new coordinates, which will be denoted as xi_ and x21 , will 
range from - v'2to v'2 at the ends of the diagonals. The new co­
ordinates relate to the old coordinates of ( 5. 3) by the equations 

and (5. 13) 

In terms of the new coordinates, the two-dimensional quadratic 
model is 

This model, as would be expected, has the same structure as 
(5. 3). The new constants relate to the old constants through the 
equations 

1 (1 I 2) (Gll + Gaa + Gla) Gll = 
1 

Gaa = (1 I 2) (G11 + Gaa - G12) (5. 15) 

1 

G1a = Gaa - G11 

Thus, it is evident that 

1 1 
G11 + Gaa G11 + Gaa = (5. 16) 

The coefficients G1
1
1 and G2d are coefficients of quadratic 

variation along each of the diagonals of the working box. Thus, 
data along one diagonal can be employed to estimateG11 and 
data along the other diagonal can be employed to estimate G22. 
The estimate of (213) (G11 + G22 ) is obtained as the estimate of 

(213) (G 1 ~ +G2 ~). The latter estimate is simply (213) (8'1 ~ +8'2 ~). 

To obtain the estimates of G1 \ and G2 ~, the four dropsonde 
averages along the diagonal can be employed. A simple quadratic 
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model is fitted to these four points. The estimate of the quad­
ratic coefficient in this latter model constitutes the required 
estimate of G11 or G2 2 , as the case may be. 

(3) Examination of Instrumentation Bias in the Dropsonde 
Observations 

Instrumentation bias is expected in the dropsonde obser­
vations. It is unlikely that very much can be done to adjust the 
dropsonde observations for the effect of this bias. Even so it 
is important to study the nature and magnitude of this bias. 
This can be done in a manner similar to that employed in the 
examination of instrumentation bias in the estimation of perim­
eter face averages. A diagonal face average will, however, 
replace the perimeter face average. 

A diagonal face can be visualized as that face formed by a 
vertical plane cutting a working box through diagonal corners. 
The vertical average along this face can be expressed in the 
form 

- rt "a Y = C0 + C1 x + ~ (x ) (5. 1 7) 

where the C's are constants and xf.l now varies from zero at 
the center to -1 and 1 at the ends of the diagonal face. The 
average over the face is 

(5. 18) 

This average relates to an average based on rawinsonde diagonal 
corner averages by the equation 

(5. 19) 

where the terms in this latter equation have the same definitions 
as the terms in sections 2 and 3 of Chapter IV. However, here 
the corners diagonally opposite each other are employed instead 
of the corners of a perimeter face. In estimating Y 3 it is 
important to choose properly the times at which the corner 
rawinsonde are read. 
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A dropsonde estimate free of curvature bias is 

(5. 20) 

which estimates the same quantit;y, apart from instrumentation 
bias as the rawinsonde estimate Ys. The relationships between 
Y2 and Y4 can be studied along the lines indicated in section 4 
of Chapter IV. 

-'I' he x'' value in this subsection was permitted to vary 
from -1 to 1 so as to parallel the discussion of section 1 of 
Chapter IV. In subsection 2 of this chapter, an x' varied along 

the diagonal from - v'2 to v'2. The relationship between x' and 
x" is 

X 1 = v'2 X 11 

It follows that 

C2 (x
11

)
2 = B

1 
(x

1
)

2 = B
1 

2 (x
11

)
2 

where the B
1

. is either the B 1
1
1 or the B 2

1

2 and the x' is either 
the x 1 or the x~ of section 2 of this chapter. Thus 

E' = (1/2) C., (5. 21) 

The computation of (2/3) (Ell + B22 ) required as input to (5. 6) 
is most easily accomplished by computing 

(2/3) (Bu + B22 ) = (1/3) [C 2 for one diagonal+ C2 for 
the other diagonal] (5. 22) 
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VI. COMPUTATION OF STANDARD ERRORS 
AND CONFIDENCE LIMITS 

It is important not only to estimate the terms of the budget 
, equations, but also to assess the precision of the estimates in terms 
of standard errors and confidence limits. The details of any assess­
ment procedure are intimately related to the precise way in which the 
terms of the budget equations are estimated. Since detailed specifi­
cations will not be formulated until sometime after submission of this 
report, it is the object of this chapter to indicate principles for assess­
ment. 

Confidence intervals will first be discussed. This will be fol­
lowed by a section on linear functions, 'which constitute the basic 
principle on which variance derivations are based. A more compre­
hensive discussion of linear functions will be found in Anderson and 
Bancroft, which has been previously cited. The application of linear 
functions in the present context is illustrated by three examples, two 
of which are in the section on linear functions. These two examples 
demonstrate the computation of the variance of the estimate of the 
budget term given by (2. 2) when the estimate is based entirely on 
rawinsonde data. The third example, which is in a separate section, 
derives the variance of an estimator of the interior mean of a working 
box that combines aircraft, dropsonde, and rawinsonde data, speci­
fically the estimate given by (4. 33). 

L CONSTRUCTION OF CONFIDENCE INTERVALS 

The precision of an estimate of a term of the budget equation is 
best indicated in terms of confidence limits. Upper and lower 1 - o: 
confidence limits can be constructed from the equation below. 

Lower limit 

A 

B- T SA 
o: B 

Upper limit 

A 
B + T SA 

o: B 

(6. 1) 
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13' is an estimate of the term of the budget equation in question and SA 
A B 

is the estimated standard error of B. The r:arameter TCl is defined 
as that value which is exceeded, with probability 1 - Cl , by the abso­
lute value of a normal deviate. Symbolically, 

(6. 2) 

where {fJ indicates probability and Tis a normal deviate. 

The confidence limits are interpreted as providing the end points 
of an interval that will cover the true value of the budget term being 
estimated unless a rare event has occurred. The probability of this 
rare event is 1 - (l. The confidence limits have been formulated in 
terms of the normal deviate, instead of Student's t, since it is anti­
cipated that s:B' will generally be estimated with sufficient degrees of 

freedom so that those degrees of freedom can be regarded as infinite. 
Most statisticians regard thirty degrees of freedom sufficient for this 
purpose. We will insure that the degrees of freedom in the present 
context will be larger than thirty by pooling homogeneous error sums 
of squares in the manner of (3. 19). The T values associated with 
different Cl values are set out below. Cl 

T (l 

1. 000 0.68 
1. 645 0. 10 
1. 960 0.05 
2.576 0.01 

The standard error s:I3'can be computed as the square root of the esti­
mated variance of 1t Subsequent discussion will focus on estimating 
variances. 

2. LINEAR FUNCTIONS 

The estimates of the terms of the budget equations are express­
ible as linear functions of interval averages and curvature estimates; 
that is, 
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y =I: 
i 

a. z. 
1 1 

(i = 1' 2 . . . p) (6. 3) 

where y represents the linear function (budget term estimate), pis 
the number of terms in the linear function, the ai are constants and 
the z. are random variables. The latter will either be an interval 
aver~ge or a curvature estimate for an interval. The variance of 
the linear function is 

where 

(J 
2 

z. 
1 

and 

Cov (z., z') 
1 1 

a. a. Cov (z., z.,) 
1 1 1 1 

i i I 

i'#i 

= (z - z) 2 

= (z. - z.) (z. 
1 1 1 

I z.) 
1 

(6. 4) 

(6. 5) 

(6. 6) 

Some special cases of the linear function should help to clarify the 
properties of ( 6. 4). 
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Case Variance 

y=az 0 a=aa 0 a 
y z 

2 

Comment 

The variance of the product of 
a constant and a random vari­
able is equal to the product of 
the square of the constant and 
the variance of the random 
variable. 

The variance of the sum or 
difference of two uncorrelated 
random variables is the sum 
of the variances. 

The variance of the linear function is estimated by substituting 
estimates of the variances and covariances of the random variables. 

(1) Variance of an Estimate of a Budget Term 

As an example of application of (6. 4), consider the vari­
ance of the budget term given by (2. 2). The variance is 

(6. 7) 

are the variances of the interior averages 

6 6 h b Hi
2 

and Hil. In this application, two assumptions ave een 

made: 

Estimates of interior averages are uncorrelated 
from one working box to another 

Estimates of interior averages are uncorrelated 
from one time instant to another. 
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The first assumption appears reasonable if the assumption is 
made that each working box average is an unbiased estimate of 
the true working box average. The error deviation of the esti­
mate from the true value will then be a function of the error 
deviations of character values from quadratic models. The 
second assumption should be vali.d if the time instants are suffi­
ciently far apart so that the estimates are derived from data on 
different rawinsondes. 

(2) Variance of an Estimate of an Interior Mean 

The working box interior average :Hi may be estimated as 
the average of four corner averages. Thus 

Hi = (1/4) 2: yj 

j 

where y. is the estimate of the j-th (i = 1, 2, 3, 4) corner 
J A 

interval average. The variance of H is 
i 

(J0 2 

H. 
1 

= (1/16) 2: 

(6. 8) 

(6. 9) 

No covariances were included in the right-hand side of the above 
formula because the corner interval averages should be uncor­
related from one corner to another with respect to their error 
components. The error components should be uncorrelated be­
cause they are associated with different rawinsondes. 

To estimate a corner average for the precise instant of 
time required may require a linear interpolation between two 
corner averages at the two successive times that inclose the 
time instant in question. Thus an estimate of y _may be calcu-
lated as J 

-56-



yi = a, yj1 + a,. yj2 ( 6. 1 0) 

where 

t' - t, 
a, = 1 - t, - t, (6. 11) 

and 

t' - t, 
a, = t, - t, (6. 12) 

and where yj
1 

and Yj
2 

are estimated averages, calculated from 

data on different rawinsondes, at times t 1 and t 2 respectively. 
Generally t 2 - t 1 will be of the order of 90 minutes. An estimate 
of the corner average is required at t'. The variance of y is 

2 = (6. 13) 

where a 2 and a 2 are variances of the averages used to 
Y·1 Y·z 

calculat~ y.. No cJovariance term was included in the above 
J 

formula because y.
1 

and y.
2 

are calculated from data on dif-

ferent rawinsonde~ and hehce should be uncorrelated. 

The formula for the variance of y. can be simplified for 
practical use. First, the variances of yj

1 
and Yj

2 
should be 

similar, and hence it is reasonable to replace the individual 
variance by a pooled variance. This enables a 2 to be written 
u ~ 

(6. 14) 

Second, there will be innumerable cases where y. estimates will 

be required. Across these innumerable cases, t~ can lie at any 
point between t 1 and t 2 • Thus it appears reasonable to replace 

a1.2 + a,/ by an average value 
at random between t 1 and t 2 . 

developed as t' is allowed to vary 
The average value is 

(6. 15) 
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This average value appears reasonable in view of the values of 

a 1 
2 + a2 

2 calculated for the special values oft' listed below. 

t' 

1 

1/2 

1 

The recommended formula for the variance of y. is 
J 

cr 2 = (2/3) cr. 2 (6. 16\ 
yj J 

where cr .2 is the variance of the average associated with the j-th 
J 

corner. If the further assumption is made that the cr .2 are 
J 

homogeneous, that is cr. 2 = cr2 , the variance of the working box 

interior average reducJs to 

(1/16) (4) (2/3) cr 2 = (1/6) cr2 (6. 17) 

where cr2
, as employed here, denotes the variance of 'fro +(1 I 3) 13'2 • 

In the case of equally spaced points, cr2 is 

where cr 2 is given by (3. 20). 
p 

(6. 18) 

3. VARIANCE OF A COMBINED ESTIMATOR OF AN INTERIOR 
MEAN 

An estimator was developed, along with its rationale, in sec­
tion 3 of Chapter V, which employed rawinsonde, dropsond~; and 
aircraft data. 

-58-



The estimator requires the input information listed below: 

zl = an estimate of the rawinsonde corner average 

z2 = an estimate of the aircraft perimeter average 

Zs = an estimate of G11 + G22 based on the aircraft data 

z4 = an estimate of G11 + G22 based on dropsonde data 

-Gj_ 2 = estimated variance of z 1 

~ 2 = estimated variance of z2 

'6?, 2 = estimated variance of z 3 

~ 2 = estimated variance of z4 

It will be assumed that all of the z's apply to the same instant of time. 
Each z may be calculated as a function of more basic quantities. Thus, 

21 may be calculated as the average of four corner interval averages. 
Each of the latter may be a linear interpolation estimate based on 
interval averages whose times bracket the time instant in question. 
The variance of z 1 is also a function of more basic variances. The 
z's will be assumed to be uncorrelated. This appears to be reason­
able because dat.a from different sources are associated with the dif­
ferent z's with the exception of z 2 and z 3 • However, z2 and z 3 should 
also be uncorrelated if the method of Chapter III, section 1. 6 is 
employed as a basis for the estimation process. 

In symbolically expressing the combined estimator, it is con­
venient to define the z's below. 

zs = Wllzs +Wl2z4 Wu + W12 = 1 

Zs = z2 + z 6 /3 (6. 19) 

z7 = w21 zl + W22 Zs W21 + w22 = 1 

Ze = z7 - (2/3) z 6 
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The combined estimator is z8 • It is formed by first calculating z 6 

by combining the dropsonde and aircraft estimates of G11 + G2 2 • 
The method of combination is to weight inversely according to the 
variances; that is, 

1/cr3
2 cr4 

2 

W11 = = 
1/cr 3 + 1/cr4 2 cra2+cr42 

(6. 20) 

W12 = 
1/cr4

2 
= 

cra2 
= 1- w 11 

1/cra 2 + 1/cr4 2 cra2 +cr42 
(6. 21) 

Using (6. 4), the variance of z 6 is derived as 

2 cra2 cr4 2 
crs = 

cra
2 + cr4 2 

(6. 22) 

One third of z 6 is then added tb'.Jg~ airplane perimeter average to 
obtain a z 6 , which estimates the same quantity as the rawinsonde 
average z 1 • The variance of z 6 is 

(6. 23) 

The z 7 statistic is formed by weighting z6 and z 1 inversely according 
to their error variances. The weights are 

1/crl2 crs2 
w21 = = 

1/cr 1
2 + 1/cr 6

2 2 2 
crl +crs 

(J 22 +(1/9) (cr
3
2 

cr 4
2

) 
(J 3 2 + (J 2 4 = 2 (6. 24) 

crl2 +cr 2
2 +(1/9) 

cra (J42 

cra 
2 + cr4 

2 

1 I as 2 
crl 

2 

w22 = = = 1 - W21 
1/cr 1

2 + 1/cr 6
2 

crl 
2 + (J 6 2 

Finally, the combined estimate is formed by subtracting (2/3) z 6 from 
z7. 
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If z8 is expanded in terms of its basic components, we have 

or 

(6. 25) 

Again using (6. 4), the variance of z8 is derived as 

(6. 26) 

If a z 1 , z 2 , z 3 , or z4 is missing, then the cr2 associated with 
that z becomes infinite and the weight associated with the component 
becomes zero. This forces the other weight of the pair to 1. The 
value of cr8 

2 is estimated by substituting in estimates of cr 1
2

, cr2 
2

, 

3 d 2 cr 3 , an cr4 • 
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VII. EXECUTION OF THE STATISTICAL PLAN 

The estimation of the various terms of the budget equations will 
require considerable computation and manipulation of data files. In 
this chapter a procedure is sketched for performing the required work 
in an orderly manner. The procedure will provide the basis for the 
development of a computer program for accomplishing the calculations. 
This chapter also contains conclusions concerning the statistical 
aspects of budget term estimation and recommendations for insuring 
that such estimation is accomplished in an optimum manner. 

1. TASKS PRELIMINARY TO ESTIMATION OF BUDGET TERMS 

Estimation of the terms of the budget equations is based on the 
statistics of intervals (average, curvature, variances, ... ). By and 
large, the budget estimates are linear functions of estimates of 
interval statistics. 

A number of tasks must be accomplished and a number of deci­
sions must be made before the main computational process for esti­
mation of budget terms can be initiated. These preliminary tasks 
are as follows. 

(1) Computational Analysis of Budget Terms 

Each term of the budget equation should be assigned a 
code number for subsequent reference and each term should be 
analyzed from a computational point of view; that is, a specific 
computational formula should be formulated that will replace the 
theoretical formula for the budget term. 

The computational formulas will generally take one of the 
two forms below. 

Form A (time interval quantity) 

20 

B = 2: C. (y.t' - Y.t) 
1 1 1 

i=l 
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where 

where 

B = the budget term 

C. = a constant associated with the ith box working box 
1 

= an interior average at time t. t' is a time subse­
quent to t. 

Form B 

20 

B = 2: 

B 

c. 
1 

i=l 

= the budget term 

= a constant associated with the ith working 
box 

Yi, t to t' = an average value of a perimeter average 
throughout the time interval t to t'. 

The budget terms are classified into time instant quantities and 
time interval quantities. A time instant quantity is one that 
requires estimates at specific instants of time. Generally, 
there are two instants in time and it is the difference between 
values at the two time instants that is of interest. ~ time 
interval quantity is the average value of a budget term through­
out a specified time interval. 

Specific numerical values need to be defined for the C. 
constants. Computational formulas in terms of interval stahs­
tics must be further specified for the y. averages. Associated 
with each budget term will be one or mbre characters whose 
values will enter into computation of the term. These charac­
ters must be listed, since they form the basis for a list of 
characters on which interval statistics must be computed. The 
computational analysis of the budget terms will provide a signa­
ture for the budget term in terms of a combination of codes: 
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Code for the budget term 
Codes for forms of budget terms 
Codes for characters 
Codes for constants 
Code for position in order of computation. 

(2) Develop Interval Statistic Reference System 

Budget term estimates will be formed by combining the 
statistics of intervals. Procedures must be developed for 
selection of the appropriate statistics in application of compu­
tational formulas. The first step in providing a selection 
procedure is the development of an interval statistic reference 
system in the form of codes. The system should have two 
aspects: 

Identification of the interval 
Identification of the statistic within the interval. 

Factors to be considered with respect to interval identification 
are listed in Table 1. The statistics within each interval can 
be further classified according to character. Thus a charac­
ter code is required. This code should be further supplemented 
by a code differentiating between observed characters and de­
rived characters. Each statistic that is associated with a 
character must be identified. Table 2 is a listing of the sta­
tistics that are required for each character. This list should 
be reviewed and updated as research continues in Project EO MAP. 

(3) Calculate and Interpret Interval Statistics 

Lists of the characters must be prepared, both observed 
and derived, for which interval statistics are required. These 
interval statistics must then be calculated, identified, assembled 
in an orderly arrangement, and made readily accessible through 
a medium such as a tape or cards. The assembled and readily 
accessible set of interval statistics will constitute the set of 
building blocks on which budget terms estimates will be based. 
Ideally the tape should be ordered according to 
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Table 1 
Factors for Interval Identification 

Type of data 

-Rawinsonde 

-Aircraft 

-Dropsonde 

Particular application 

-Which rawinsonde of the rawinsondes 

-Which aircraft flight along which face 

-Which dropsonde of the drop sondes 

Working box 

Position 

Rawinsonde Aircraft Dropsonde 

Corner Face Diagonal 

Left or right Location within diagonal 

Midpoint time of interval 
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Table 2 
Statistics Required for Each Character for Each Interval 

Estimates 

Interval average 

( 

Other 

n 

2: X 2 
1 

i 

2: X 2 
2 

i 

Start and end points of interval 

Variances 

Variance of the interval average 

A 2 cr 
i3'o 

'2- 2 

i3' 1 

A 2 cr 
i3'2 

Variance from regression 

~~ 

Covariances 

Matrix of sums of squares and 
cross products 

Inverse matrix 

Only required if the points are not equally spaced. 
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Character 
Working box within character 
Type of .data (rawinsonde, dropsonde, aircraft) 
Position within type of data and working box 
Time within position 
Statistics within times and position. 

The building block tape should first be exercised by having 
the computer print out spike graphs for visual inspection and 
interpretations. There should be a separate spike graph for 
each combination of interval statistic, position, and working 
box. These graphs should bring to light any difficulties with 
the interval statistics. Subsequent data reduction should only 
be continued after any observed difficulties have been resolved. 
The standard errors of the more important interval statistics 
should be employed in the interpretation of the spike graphs. 

(4) Development of Corrections 

The spike graphs, particularly those of curvature statis­
tics, should be useful in the development of corrections to 
rawinsonde interior and perimeter averages. Methods of 
formulating corrections were described in Chapter IV of this 
report. Ideally, these methods will provide a new set of cor­
rection graphs, which will be similar in form to the spike graphs. 

(5) Choice of Time Instants and Time Intervals 

Decisions are required for the time instants at which, and 
the time intervals for which, budget terms should be computed. 
Such decisions should be possible after examination of the spike 
graphs. The estimated standard errors of the interval statis­
tics will influence greatly such decisions. 

2. DESIGN OF COMPUTER PROGRAM FOR ESTIMATION OF 
BUDGET TERMS 

A computer program for estimating terms of the budget equation 
will first be described based on rawinsonde data alone. 
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(1) Rawinsonde Data Alone 

It will be assumed that rawinsonde interval averages are 
arranged according to character (i), working box within charac­
ter (j), position within working box (k), and according to time 
within position. For data employed in the calculation of perim­
eter averages, there will be eight positions associated with left 
and right orientations in each of four corners. For data em­
ployed in the calculation of interior averages, there will be four 
positions associated with the four corners. The computations 
are to be completed by varying j within i and then moving to the 
next value of i. 

Within each ij combination, the following steps are to be 
completed. 

Step 1 

For each position, develop a new set of interval averages. 
The new averages are the best estimates of interval averages at 
specified instants of time or the best estimates of averages of 
interval averages over specified periods of time. If the former, 
then the computer must locate two interval averages whose mid­
point times bracket the time instant in question. The new 
interval average can then be formed by linear interpolation or 
through application of some appropriate weighting procedure. 
To compute the average of the interval averages, the computer 
locates those interval averages within the time period in 
question and forms an appropriate average of them. The new 
averages will be represented by Yipjk where p references the 
new averages according to time order. 

Step 2 

Average the new interval averages across positions; that 
is, form 

Y = (1/g) ~ 
ipj LJ 

k 
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where g is 4 for interior characters and 8 for perimeter char­
acters. 

Step 3 

. M:Ultiply 5\pj by. an a~propria_te _constant so that a _mean­
mgful dtVergence (or mterwr) statlstlc (z) for the workmg box 
is formed. Thus a z. . is 

lPJ 

z .. = c y .. 
lPJ lPJ 

where c is a constant. 

Step 4 

Calculate 

if it is the difference between the z's at specified times that is 
required. 

Step 5 

Accumulate the zipj' or the wip'pj' as the case may be, 
A 

across the working boxes to form budget estimates (B) for the 

ith character and pth time slot (or p, p' time interval). Thus, 

A 2: B. = z. 
lp lpj 

j 

A L wip'pj 
B = 

ip'p 
j 
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(2) Use of Aircraft and Dropsonde Data 

If aircraft and dropsonde data are found to be useful in 
improving the foregoing procedure, the only modification re­
quired is a modification of step 2 by adding a correction factor 

to (1 I g) L: Y. .k 
lpl 

3. CONCLUSIONS 

The following conclusions were drawn with respect to the sta­
tistical treatment of BOMEX data during the contract period. 

(1) The structure of the BOMEX data is such that estimates 
of budget terms are possible. 

(2) Standard errors and confidence limits can be constructed 
for estimates of the budget terms. 

(3) Estimates of budget terms can be made using only rawin­
sonde data. 

(4) Dropsonde and aircraft data can improve the rawinsonde 
estimates of the budget terms by adjusting for the effects 
of curvilinearity. 

(5) The key concepts of the estimation process are 

Working boxes 
Interior averages of working boxes 
Perimeter averages of working boxes 
Face averages of working boxes 
Interval averages. 

(6) Techniques are available for examination of bias due to 
instrument error and nonlinearity. 
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(7) A major step in budget computations is the preparation 
of a building block tape. This tape will contain coded 
descriptions of intervals and statistics associated with 
each interval. 

(8) The building block has a logical order with respect to 
characters, working boxes, data types, positions, and 
times. 

(9) A computer program can be designed which will perform 
the calculations required for budget estimates in a logi­
cal order using the building block tape as input data. 

4. RECOMMENDATIONS 

To enhance the statistical benefits of the BOMEX data the fol­
lowing recommendations are made. 

(1) Execution of preliminary tasks described in section 1 of 
this chapter should be initiated. 

(2) Programming to implement the foregoing concepts should 
be initiated as rapidly as possible, particularly with 
respect to the following: 

Calculation and identification of interval statistics 

Design of the building block tape 

Computer preparation. of spike graphs using the 
building block tape 

Preparation of a program for estimating terms of 
the budget equations using the building block tape. 

(3) A standard error study should be initiated. Preliminary 
estimates of the order of magnitude of standard errors 

-71-



are now possible with the available data using the tech­
niques described in this report. 

( 4) At an appropriate time a study should be conducted as to 
the inferences to future BOMEX type experiments that 
can be drawn as conclusions from the statistical analysis 
of the BOMEX data. 
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APPENDIX A 

A METHOD FOR ESTIMATING THE TEMPERATURE OF THE 
HYGRISTOR SENSING ELEMENT 

Procedures have been formulated to estimate the relative hu­
midity in the immediate neighborhood of the sensing elements of a 
rawinsonde hygristor. Unfortunately the sensing element does not 
correspond to the relative humidity of the surrounding atmosphere 
because of the higher temperature of the air immediately adjacent to 
the sensing element. The higher temperature results from the inter­
play of long-wave radiation in the duct between the hygristor and the 
duct walls. The long-wave radiation is due to the heating of the 
radiosonde. The latter is heated from batteries and tubes and inci­
dent solar radiation. The incident solar radiation is highly dependent 
upon the thickness and density of intervening clouds that prevent solar 
radiation from reaching the radiosonde. The actual temperature of the 
atmosphere is available from a thermistor also attached to the radio­
sonde. This temperature is considered to be good after appropriate 
corrections for lag are made. The hygristor relative humidities will 
possess errors due to heating even after application of lag corrections. 
The end problem is to estimate the specific humidity of the atmosphere. 

The approach described here is based on comparing the proper­
ties of a distribution of observations derived from airplane data with 
properties of a similar distribution based on rawinsonde data. Dif­
ferences in the properties permit an estimate of a correction to be 
applied to the rawinsonde thermistor temperature so that the corrected 
temperature will be a good estimate of the temperature of the hygristor 
sensor element. 

The basis of the proposed procedure hinges heavily on the equa­
tion that relates vapor pressure, relative humidity and temperature. 
The next section describes this relationship. The following section 
develops the mathematical basis of the proposed correction and the 
final section covers various comments about the method. 

1. VAPOR PRESSURE 

A basic assumption in the derivation that follows is that the 
moisture vapor pressure in the immediate vicinity of the hygristor 
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sensing element of a rawinsonde is unaffected by any excess of tem­
perature of the air in the immediate vicinity over and above that ·of 
the surrounding atmosphere. This means that the relative humidity 
recorded by the hygristor is given by the formula 

where 

{ [ 
at I (b +t ) J } 

R = e/ (6. 11) (10 H H ) x 100 (A. 1) 

R = relative humidity recorded by the hygristor 

e 

a 

b 

= vapor pressure of air in immediate vicinity of the 
hygristor sensing element 

= the temperature of the air in the immediate vicinity of 
the hygristor sensing element expressed in· degrees 
centigrade 

= 7. 5 

= 237. 3 

If the hygristor recorded a relative humidity of 100, this would imply 
that the temperature in the immediate vicinity of the hygristor sensing 
element was the temperature resulting from the solution of the follow­
ing equation: 

100 = {e/[(6.11) (10at/(b+ t)>]} x 100 (A. 2) 

This latter temperature is the dew point temperature. This will be 
denoted as tD. The solution of the above equation is: 

t = b(loge-log6.11) (A. 3) 
D a - (log e - log 6. 11) 

Because vapor pressure is not affected by the temperature of the 
air in the immediate vicinity of the hygristor sensing element, the 
hygristor temperature can be related to the dew point temperature. 
The relationship is 

(A. 4) 
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2. PROPOSED THERMISTOR TEMPERATURE CORRECTION 

The temperature of the hygristor can be related to the thermistor 
temperature, which is regarded as an excellent estimate of the tem­
perature of the atmosphere surrounding the rawinsonde, by the equa­
tion 

tH = tT + C 

where 
I 

tT = Thermistor temperature 

c = Correction 

Thus 

which for practical purposes can be approximated as (tT + C) I (b + t!I'), 
since we anticipate that C will be of the order of two degrees, whereas 
b + tT will be from 240 to 270 degrees. Using this approximation, a 

solution for C is 

C a I b + t = atD (b + tD) - log 
T 

[ 
at I (b + t )] 

(RI100) (10) T T (A. 5) 

If a population of space-time points is defined such that Cis es­
sentially a constant for all points in the population, for each such 
space-time point, there is a triplet of observations: 

Thermistor temperature 
Hygristor relative humidity 
Dew point temperature. 

Various means can be defined with reference to the population in 
question. The most useful means are: 
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= E [a/ (b + tT)J 

= E [atD/(b + tD)J 

(A. 6) 

(A. 7) 

= E {log [(RH) (10atT/(b +tT\]} (A. 8) 

It follows that 

(A. 9) 

3. COMMENTS 

(1) The correction can be estimated provided estimates of 
M

1
, M

2
, and M

3 
are available. Rawinsonde data will provide esti-

mates of M
1 

and M
3 

based on a random sample of observations from 

a defined population. Airplane data will provide an estimate of M
2 

based on a second random sample from presumably the same popula­
tion of space-time points. 

(2) The correction process will be successful if homogeneous 
populations of space-time points can be defined. A population is ho­
mogeneous if the same correction essentially applies to all points. 

(3) The procedure to be followed in obtaining rawinsonde hu-
midity data for archiving or budget computations is as follows: 

Assign the rawinsonde point to an appropriate homo­
geneous population and hence choose the appropriate 
thermistor 

Estimate hygristor temperature as the sum of the 
thermistor temperature and the correction 

Calculate the vapor pressure by equation (A. 1) 

Calculate the dew point by equation (A. 2). 

(4) It is a simple matter to modify the proposed procedure to 
make it unnecessary to approximate a (t +C) I (b +t +C) by a (t +C)/ (b +t). 
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(5) Estimates of the standard error of the estimates of C and 
confidence limits for C can be easily developed by standard methods. 

(6) The only property of the rawinsonde and airplane distribu-
tions that appears to have any relevance for the estimation of the tem­
perature corrections are means. Variances, however, are useful for 
the construction of confidence limits. 

(7) In the formation of homogeneous populations, the first step 
appears to be that of classifying the observations according to pressure 
interval, and second to classify according to location. Efforts should 
be made to develop a third classification according to a relative 
humidity-thermistor temperature index. The index is a discriminant 
function index that classifies observations into two subpopulations. 

(8) Since separate corrections are anticipated for each of three 
heights, it should be possible to interpolate and extrapolate to other 
heights. A relationship between the correction and atmospheric density 
is anticipated. 

(9) Detailed procedures need to be developed: 

For performing the necessary tests on the data that 
will tend to support or reject the above procedures 

For forming the homogeneous populations 

For making the corrections as a matter of routine 

For computing standard errors and confidence 
limits on the corrections. 
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SUMMARY 

As part of the United States contribution to the Global Atmo­
spheric Research Project (GARP), a large-scale meteorological ex­
periment, known as the Barbados Oceanographic and Meteorological 
Experiment (BOMEX), was conducted near the island of Barbados in 
the Caribbean from May through July of 1969. The primary goal of 
BOMEX was to provide data for studying the sea-air interaction that 
drives atmospheric circulation and global weather systems. To ac­
complish this goal, thousands of hours of data tape and other records 
were collected. Twelve ships and 29 planes were utilized. More 
than 1, 500 personnel from government agencies, private industry, 
and universities participated in the proje,ct. The processing and co­
ordination of BOMEX data were the responsibility of the Barbados 
Oceanographic Meteorological Analysis Project (BOMAP), a project 
established within the Research Laboratories of the Environmental 
Science Service Administration. 

The reduction of the BOMEX data to a form useful for archiving 
and for scientific computations and interpretation presents many 
statistical problems, The objective of the subject contract was to 
formulate a relevant statistical methodology. This methodology has 
been formulated in the following areas: 

Estimation of meteorological parameters 
Solution of nonlinear equations 
Formulation of calibration equations. 

In each of the above areas a number of informal memorandums were 
prepared. These memorandums were discussed with the BOMAP 
staff and served as vehicles for emerging concepts as to appropriate 
statistical treatment of the data. 

This report is an interim report summarizing the work under 
the subject contract for the first six months (October 1969 through 
March 1970). The work completed during the first six months has 
indicated the importance of very careful visual inspection and editing 
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of the data. The editing will require many adjustments and correc­
tions. However, the data have a structure that will permit the appli­
cation of statistical methodology and the combining of rawinsonde 
aircraft and dropsonde data in a meaningful way. It is now clear that 
the data contain usable information. However, it will not be possible 
to simply process most of the data. Rather, processing must proceed 
by a sequence of iterative cycles involving computations and summary 
display, interpretation, and the planning of new computations. 
Consequently, it is very important to leave options in processing 
the data; that is, any one method of analysis must not be formulated 
prior to examination of data and computation results. 

·' 
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I. INTRODUCTION 

The Barbados Oceanographic and Meteorological Experiment 
(Project BOMEX) was the first of a series of large-scale research 
projects planned by many nations throughout the world under the 
Global Atmospheric Research Project (GARP). The primary goal of 
the BOMEX project was to provide data for studying the sea-air inter­
action that drives atmospheric circulation and global weather systems. 
The project was conducted from May through July of 1969 and produced 
substantial quantities of data that were recorded manually, on magnetic 
tapes, and on charts. The reduction of the raw data to a form useful 
for scientific investigation and for storage in scientific archives is the 
responsibility of the Barbados Oceanographic and Meteorological Anal­
ysis Project (BOMAP), a project established within the Research Lab­
oratories of the Environmental Science Services Administration. 

1. DATA REDUCTION AND ANALYSIS 

In the reduction of the data it has been important to consider 
not only the meteorological theory underlying the BOMEX experiment 
but also the statistical properties of the data and the mechanisms and 
formats used in assembling the raw data. The data-reduction process 
presents problems with respect to filtering, averaging, and looking at 
the data on the proper scale. Alternative techniques, methods, and 
instruments were employed to estimate the same quantity, necessi­
tating a comparison of the strengths and limitations of the various 
alternatives. The quantity of data varies from one source to another 
and from one time period to another. The data contain both systematic 
errors for which adjustments must be made and random errors whose 
magnitudes must be estimated. A high degree of autocorrelation 
exists in the data and this must be taken into account. The magnitude 
of error deviations and the conditions under which they are important 
require understanding and definition. Processing of the data requires 
the preparation of computation formulas for estimating the meteoro­
logical parameters in the most efficient manner. A knowledge of the 
accuracy with which the meteorological parameters are estimated will 
help in the design of future experiments. 
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2. THE ROLE OF BOOZ, ALLEN APPLIED RESEARCH INC. 

Participation by Booz, Allen Applied Research Inc. (BAARINC) 
under the subject contract was initiated in October of 1969 following 
completion of the data-collection program. BAARINC was to develop 
a statistical methodology that would relate the BOMEX data to the end 
results required for budget computations in an optimum manner. 
This methodology requires the development of the rationale for esti­
mation procedures and an understanding of the nature of ·the error in 
the resulting estimates. 

This interim report covers the six-month period from October 
through March 1970. During the contract, samples of some data were 
available in preliminary form, but the extent of data available for in­
spection was strictly limited. The major portion of the data was un­
available because the analog tapes had to be digitized, transformed to 
engineering units, edited, and reproduced in a form suitable for study. 

Because of the unavailability of the data and the frontier nature 
of the BOMEX experiment, it was necessary to begin the development 
of statistical methodology on a trial and error basis. The methodology 
evolved as additional data became available and as the mathematics 
of the meteorological budget equations were solidified. 

Virtually none of this methodology had been developed in a 
recorded form before or during the BOMEX experiment, although 
Dr. Ben Davidson, the former scientific director, was probably well 
aware of such methodology. The untimely death of Dr. Davidson in 
December preceding the BOMEX experiment created a substantial 
gap in analysis, reduction, and interpretation procedures. This 
gap has had to be filled by others. 

3. STUDY APPROACH AND PROJECT STATUS 

The approach to the subject study during the period covered 
by this interim report has been dictated by two primary considerations: 

Theoretical aspects of the budget equations have been 
in a state of flux and are only now being formulated in a 
way that is useful in defining the end results of the 
statistical analysis. 

Only a limited amount of data were available for inspection. 

•, 
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The second point has prevented a detailed understanding of 
assumptions that can be made with reference to the data. These 
assumptions are necessary for formulating valid statistical analyses. 
For this reason we have avoided crystallizing the statistical method­
ology during the interim period. Rather, we have concentrated upon 
understanding the ·structure and the limitations of the data and the way 
in which these data can be employed in budget computations. 

Informal memorandums (Table B-1) have been prepared reflect­
ing various aspects or links in the overall analysis program. Some of 
the ·highlights of the more important memorandums are summarized 
in Chapters II and III of this report. Conclusions based on the work 
during the interim period are included in Chapter III. 

The informal memorandums have been discussed with members 
of the BOMAP staff as a basis for an evolving methodology. This 
methodology has now evolved to the point where the main features of 
the analysis program are understood and accepted by members of the 
BOMAP staff. These features, which can now be brought together 
in a more definitive plan, will be described in futur;e informal 
memorandums and in the final report on this contract. 



Date 

10/23/69 

11/03/69 

12/01/69 

12/05/69 

01/09/70 

01/29/70 

02/05/70 

02/16/70 

02/20/70 

02/23/70 

03/06/70 
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Table B-1 
List of Research Memorandums 

Title 

Estimation of Error Variance for Rawinsondes (I) 

Estimation of Error Variance for Rawinsondes (II) 

Confidence Limits for Divergence Using Aircraft 
Data 

Solution of Nonlinear Equations 

Estimation of Volume Parameters of the BOMEX 
Box 

Analysis of Bias Corrections for Calibration Boxes 

Employment of Dropsonde Observations 

Dropsonde Observations and the Linear x Linear 
Term 

Estimation of Scalar Pararneters 

Simplification of the Calibration Equations 

Estimation of Scalar Parameters II 

.. i 
' 
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II. ESTIMATION OF BUDGET PARAMETERS 

A central objective of the BOMEX experiment was to provide 
data useful for studying the flux of energy from the ocean to the at­
mosphere. This task is to be accomplished by keeping budgets on the 
passage into and out of the BOMEX box':' on the following properties: 

Mass 
Momentum- zonal 
Momentum- meridional 
Enthalpy 
Mechanical energy 
Total energy. 

The meteorological parameters employed in budget calculations 
divide, from the standpoint of estimation, into two types: 

Scalar parameters 
Divergence parameters. 

Primary emphasis during the subject contract was placed on the 
development of procedures for the estimation of scalar parameters. 
Ideally, such estimation makes use of information at points inside 
the BOMEX box, although estimation is still possible using only 
points on the sides of the box. Moreover, the procedures are 
applicable, though to a lesser extent, to the estimation of some 
divergence parameters. Divergence parameters that make use of the 
divergence theorem are most efficiently estimated, since they 
require information only at points on the surface of the box. 

'' The BOMEX box is located in an ocean area near the island of 
Barbados in the Caribbean. It is roughly 500 kilometers square 
and 500 millibars of pressure differential high. Extensive 
meteorological observations were collected around and within 
the box by means of ships, airplanes, satellites, and buoys. 
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Scalar quantities, such as temperature and relative humidity, 
have a conceptual numerical value at every point in and around the 
BOMEX box. The scalar may also change with time. 

Interest centers in an average of the scalar over a working box 
located at a height of p':' where p'" is the millibar difference between 
atmospheric pressure at surface level and at a height z above the 
surface. A working box is a horizontal layer of the Bomex box 
covering a selected pressure differential. The working box will be 
assumed to be sufficiently thin so that it can be treated as if it were 
a plane. It should be wide enough, however, to obtain a sufficient 
quantity of observations so that meteorological quantities associated 
with the working box can be estimated with reasonable precision. 
Subsequent calculations required for budget computations and 
archiving will require combining the summary statistics over several 
adjacent working boxes to cover a 25-millibar· pressure differential 
or the entire BOMEX box. 

In order to indicate the general nature of the estimation proce­
dure, we will first define a coordinate system. This definition will 
permit formal mathematical definition o~ the properties of the working 
box that are to be estimated. The primary properties are the mean 
and the variance of the scalar. A number of scalars, such as tem­
perature, relative humidity, divergence, and kinetic energy, are 
of interest. 

Observations are available from the BOMEX experiment for 
estimating the properties of the working box. If the observations 
had been distributed at random throughout the working box, then a 
simple sample mean and variance would constitute unbiased estimates 
of the true mean and variance of the working box. The observations, 
for excellent reasons, are not random; thus, a method of estimation 
is required that takes into account the structure of the observations. 
The observations were taken primarily at the corners of the BOMEX 
box, along the sides, and along diagonals in the interior of the 
working box. Observations from all three sources are present for 
only part of the working boxes. 

A data structure has meaning only with reference to a function 
that characterizes the variation of the scalar over the working box; 
that is, a set of observations may have a very good structure with 

.I 
I 
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respect to one function, but that same structure may be poor with 
respect to a second function. The functional forms of scalars are 
unknown, although they can be approximated in various ways. The 
proposed method of estimation is to relate the structure of the data 
to a mutually-agreed-upon approximation function. 

A Taylor's expansion is one device for obtaining a useful 
approximation function. The approximation lends itself to the 
application of standard statistical methodology. Thus, using a 
Taylor's approximation, each observation can be expressed as a 
linear function of the parameters of the Taylor's expansion. The 
least square procedures required to estimate the parameters in such 
linear function are well known. A number of computer packages are 
available for accomplishing such estimations. For this reason, the 
computational procedures for estimating the parameters of the linear 
Taylor's expansion have not been emphasized in this report. 

In the sections that follow, we have illustrated the general 
procedure of employing approximation models by using a Taylor's 
approximation through the quadratic terms. Although the quality 
of the data may not permit the estimation of the quadratic terms of 
the approximation, the subsequent derivations should have value in 
indicating the informational loss that accrues from using a simpler 
approximation model. 

1. COORDINATE SYSTEM 

A rectangular coordinate system will be defined with axes 
parallel to the sides of the BOMEX box. It is convenient to refer 
to the two axes as east-west (plus direction toward the east) and 
north-south (plus direction toward the north), although these axes 
do not point exactly in the indicated directions because of a slight 
counterclockwise rotation of the BOMEX box. The east-west axis 
will be referred to as the x

1 
axis, and the north-south as the x

2 
axis. The center of the BOMEX box is located at (Xlc' x2c). 

The values of x 1 and x
2 

at the center and for particular observations 
are obtained from functlons of the longitude and latitude of the observa­
tions. 
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It will be convenient to define new coordinates x
1 

and x
2 

as 

shown below: 

x1- x1 c 

(B. 1) 

where L is the length of a side of the BOMEX box measured in the 
same units as x

1 
and x

2
• 

2. DEFINITION OF QUANTITIES TO BE ESTIMATED 

A meteorological quantity, such as the average temperature 
of a working box, should be distinguished from the corresponding 
observed-point quantity, such as the temperature at a particular 
point in the working box. A derived-point quantity is the function of 
one or more observed point quantities. A derived-point quantity will 
be represented by F(u, v) where u and v are scalar functions of x

1 
and x

2
• A volume quantity is defined as a function of a derived-point 

quantity over all points of the volume under consideration. 

The volume quantity of most interest is the mean taken over 
a working box. This mean can be represented as 

1 1 

F (u, v) = (1/4) f
1 
j

1 
F (u, v) dx1 dx

2 
(B. 2) 

In some instances the variance of the derived-point quantity over the 
working box is important. This variance is 

1 1 

vF=(1/4)j J [F(u, 
-1 -1 

- 2 d v) - F (u, v)] dx
1 

x2 (B. 3) 
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Forms for the function F(u, v) that are of particular interest are 
listed in Table B-2. 

Form 

F = u 

F 
2 

= u 

F = uv 

F 
ou + =--o x

1 

2 2 
F = u + v 

Table B-2 
Typical Forms for F(u, v) 

ov 
o x 2 

Comments 

where u is a scalar 

where u and v are two scalars 

where u is the velocity in the x
1 

direction and v is the velocity in 
the x

2 
direction at x

1
, x

2
; that is, 

the divergence at x
1

, x
2 

where u is the velocity in the x
1 

direction and v 
2 

is the velocity in 

the x
2 

direction. F is twice the 

kinetic energy at x
1

, x2. 

3. APPROXIMATION FUNCTIONS 

Scalar properties u and v are functions of x
1 

and x
2

. Generally, 

the forms of these functions are not known. However, the functions 
can be approximated as a Taylor's expansion around x

1 
= x 2 = 0. 

The accuracy and validity of the approximation improves as more 
terms are included in the Taylor's expansion. The foregoing 
statement is valid with respect to the true but unknown Taylor's 
expansion. The statement does not necessarily hold for the approxi­
mation to the Taylor's expansion that must be employed in practice. 
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The latter is derived from estimates, which are derived from data, 
for the true coefficients of the Taylor's expansion. The properties 
of the estimates depend upon the structure and quantity of the available 
data. An approximation to the Taylor's expansion with n

1 
terms 

may not be as good as an approximation to the true function u as 
another approximation with n

2 
terms even though n

2 
is smaller than 

nl. 

An approximation u for u using Taylor's expansion through the 
a 

quadratic terms can be written as 

B 2 + B 2 
ua = 0 + Blxl + B2x2 + Bllxl + B12xlx2 22x2 (B. 4) 

where B
0 

is the value of u for x
1 

= x
2 

= 0. A Taylor's expansion 

for v can be written in a similar manner. Primes will be placed 
on the B's to differentiate them from those for u. 

4. APPROXIMATION FUNCTIONS AND MEAN OF THE WORKING 
BOX 

The functions u and v can be written as 

u = u + e 
a u 

and v = v + e 
a v 

(B. 5) 

where e and e are error deviations that are a function of x 1 and 
u v 

x
2

. The approximation function F(u, v) can be written as 

or 

F(u, v) = F(u + e , v + e ) 
a u v 

F(u,v) = F(u ,v ) + eF 
a a 

where eF is an error deviation, again a function of x
1 

and x
2

. 

(B. 6) 
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The mean of F(u, v) over the working box can be written as 

F(u,v) = F(u ,v ) + eF 
a .a 

(B. 7) 

Since the mean of the working box F(u, v) will be estimated by 
the mean of the approximation function F(u , v ), the accuracy of the 

a a 
estimate will be affected by two sources of error: 

Approximation error (eF) 

Sampling error associated with the estimate of the mean 
of the approximation function over the working box. 

As more terms are employed in the Taylor approximation function, 
the approximation error tends to be reduced. The sampling error 
of the quadratic and higher-order terms of the approximation function 
tends, however, to be much larger than the linear terms of the 
expansion. Thus, a greater quantity and quality of data are required 
to estimate the nonlinear terms with useful precision. 

5. APPROXIMATION FUNCTION AND VARIANCE OF THE 
WORKING BOX 

For brevity F(u, v) and F(u , v ) will be represented as F and 
a a 

F . Since F - F can be written as 
a 

F - F = F + e - F - e = (F - F ) - (e - e ) (B. 8) 
aF aF a a F F 

the variance ofF over the working box can be written as 

VF = VF a+ Cov(F a' eF) + VeF (B. 9) 

where VF and V are the variances ofF and e and Cov(F eF) 
a eF a a a, 

is the covariance ofF a and eF. 
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To the extent that u and v are good approximations of u and 
a a 

v, the terms Cov (F , eF) and V will be small relative to V F , 
a ~ a 

and VF should constitute a good approximation to VF. Unfortunately, 

it is anficipated that the BOMEX data will contain little information 
as to the magnitudes of e and e , and hence little information as to u v . 
the magnitude of the approximation error. 

6. ESTIMATION OF VOLUME QUANTITIES 

The definition of the mean and variance of the scalar over the 
working box were in terms of integrals of the approximation function, 
a function linear in its parameters. The integration of the approxi­
mation function can be accomplished term by term, so the mean of 
the working box can also be expressed as a function linear in the 
parameters of the approximation function. The coefficients of the 
parameters are the result of the term-by-term integrations. 

All of the integrations are similar, since they are integrations of 
r s x
1 
x

2 
over the x

1
, x

2 
plane. The various terms are distinguished by 

the values assigned to r and s. The integration of the general term 
r s . . b 1 x
1 
x

2 
1s g1ven e ow: 

1 1 

G(r, s) = (1/4)! f x~ x~ dx1 ctx2 = [1/(r+1)] [1/(s +1)] 8 
-1 -1 r 

where 
0 = !1 for r even 
r /O for r odd 

0 = !1 for s even 
s /O for s odd 

8 (B.10) 
s 

It is evident from (B. 10) that terms with either r or s odd vanish. 
Once F or (F - F )2 is written out,' the use of (B. 10) enables one 

a a a 
to immediately write out the volume quantity. Specific examples of 
the use of (B. 10) for the functions given in Table B-2 are developed 
in the subsections that follow. Corresponding results for approxima­
tion functions employing only linear terms are immediately derived 
by dropping off the quadratic terms. 
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7. FORM F = u 

The first form in Table B-2 was F = u. The approximation func-
tion (B.4) will be used in place of u. Integration is performed term by 
term. The values of r and s for the several terms of F are set out 
below. 

Term ofF r s r s G(r, s) - - - -

B 0 0 1 1 1 
0 

Blxl 1 0 0 1 0 

B2x2 0 1 1 0 0 

2 
Ell xl 2 0 1 1 1/3 

Bl2xlx2 1 1 0 0 0 

2 
B22x2 0 2 0 1 1/3 

The value of F is 

The estimate of F is 

(B. 11) 

The estimated variance of the estimate is 

A A A 
+ (2/9) [cov (V 

11
, V 

22
)]. (B. 12) 
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In the above formula, A (read hat) placed over a symbol indicates an 
estimate of the quantity represented by the symbol. The subscripts 
of the V 1s reference the quantity to which the variance relates. 

A 

Thus, V 
11 

is the estimated variance of the estimate of B
11

. The 

A A 
quantity cov (V 

0
, V 

22
) is the estimated covariance of the estimates 

A A 

of V 
0 

and V 
22

. The estimates of the coefficients, the variances, 

and the covariances are obtained by least squares procedures. 

8. FORM F=uv 

The solution for F is facilitated through the use of Table B-3. 
Table entries are associated with the 6 x 6 = 36 products that can be 
formed by taking each term of u with each term of v. A typical 
term in u is the triple product involving a B coefficient, a power i 
of x

1 
and a power of x

2
; that is, the typical term is 

., ., 
Similarly, the typical term in v is B'x~x~: The typical product 

term is 

The values of r and s in the product term are 

r = i + i' 
and 

s=j+j'. 

Table B-3 catalogs combinations of r and s that are associated with 
2 

the 36 product terms. For example, consider the term B
11 

x1 in 
u and B

12 
x

1 
x

2 
in v. In this case 

i = 2, j = 0, i' = 1, j' = 1. 
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Table B-3 
Values of r and s in the Function F = uv 

Parameters in v 

B' 0 Bl_ B' 2 Bll Bb Bb 

Values of i' in u 

0 1 0 2 1 0 

Values of j' in v 

0 0 1 0 1 2 

0 (0, 0)'' (1, 0) (0, 1) (2, 0)~' ( 1' 1) (0, 2)'' 

> 0 (1, 0) (2, 0)'' (1' 1) (3' 0) (2' 1) (1' 2) 
s:: . ... 
·~ 1 
'H 

(0' 1) (1' 1) (0, 2)* (2, 1) (1' 2) (0, 3) 
0 
rn 0 (2' 0) * (3' 0) (2, 1) (4, 0)* (3' 1) (2, 2)'' <lJ 
::l .... 
~ 1 ( 1' 1) (2, 1) (1' 2) (3' 1) (2' 2) * (1, 3) 

2 (0, 2)'' (1' 2) (0' 3) (2, 2)'' (1, 3) (0, 4)~' 

The table entry is (r, s). 

Terms followed by an asterisk ('') do not vanish; that 
is, 8 = 8 = 1. 

r r 
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It follows that 

and 

r=2+1=3 ~ =0 , r 

s = 0 + 1 = 1, ~ = 1. 
s 

Since G(3, 1) = (1/4)(1/2)(0)(1) = 0, the term in question does not enter 
into the product of u and v, 

Using 3, the average of F over the working box is readily 
seen to be 

9. 
2 

FORM F=u 

(B. 13) 

The form F=u
2 

can be treated as a special case of F=uv by 

letting v=u. The formula for F is 

10. 

- 2 2 2 
F = B

0 
+ (1/3) [2B

0
(B

11 
+ B

22
J + B

1 
+ B

2
] 

+ (1/5) (B~ 1 + B;2 ) 

2 2 
FORM F=u + v 

The formula for F is 

(B. 14) 
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F = B~ + (1/3) [2B
0

(B 11 + B 22 ) + B~ + B~] 

2 2 
+ (1/5) [B

11 
+ B

22
] 

+ (1/9)(2B
11

B 22 + B~2 ) 

+ (B' )
2 

+ (1/3) [2B 1 (B' + B' ) + (B' )2 + (B' )
2

] 
0 0 11 22 1 2 

+ (1/5) [(B]_/ + (B2/l 

+ (1/9) [2B' B' + (B' )
2

] 11 22 12 . (B. 15) 

11. 

The function F reduces to 

The mean over the working box is 

F = B + B' 
1 2 

12. ESTIMATES AND VARIANCES OF ESTIMATES 

F is estimated by substituting estimates of the B's that are 
derived from data. The observations used in estimating the B's 
may not all occur at the same time. Since the scalar may vary as 
a function of time, a decision must be made as to the manner of 
handling the effects of time differences in the observations. If the 
time differences are small, then it should be satisfactory to simply 
treat all observations as if they occurred at the same time. Another 
method is to include time terms in the linear model for the observations. 
This would effectively adjust the estimates of the B's to di~count the 
effects of time variations. Estimates of the B's should be accompanied 
by estimates of their variances and covariances. 
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F has the form F ='""'DOT 0 L..J 1 1 

i 

(Bo1 7) 

where D 0 is the coefficient of a term T 0 that is some function of the 
. 1 1 

B' s. The variance ofF is 

vF = l:n~vi + 22:L 
i i i 

i 1> i 

where Vo =the variance ofT 0 

1 1 

and Cov (TO, To,)= the covariance of To and To,. 
1 1 1 1 ' 

13. VARIANCE OF F=u OVER A WORKING BOX 

The variance of the function F over the working box was 
defined as 

1 1 

VF = (1/4)1 /[F(u,v)- F(u,v)]
2 

dx
1
dx

2 
-1 -1 

This equation can also be written in the form 
1 1 

VF = (1/4)/ /[F(u,v)]
2 

dx
1
dx

2
- [F(u,v)t 

-1 -1 

For F=u, the square ofF is 

(Bo18) 

:F 2 
= B~ + (2/3) B

0 
(B

11 
+ B

22
) + (1/9)(B~ 1 + 2B

11
B

22 
+ B;

2
) 

Using equation (B.14), the variance of the function F over the working 
box is derived as 

(B:19) 

' 



14. VARIANCE OF F = au + 
ax1 
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av OVER A WORKING BOX 
ax2 

The function F-F can be written as 

The variance over the working box is 

+ 2(2B
11 

+ Bl_
2

)(B
12 

+ 2B2
2

) G(1, 1) 

+ (B 12 + 2Bb)
2 

G(O, 2) 

= (1/3) [(2B
11 

+ BJ.zl
2 

+ (B
12 

+ 2B
22

l
2

]. 
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III. OTHER RESEARCH TOPICS 

Although the principal research effort of the contract was 
associated with the statistical methodology for the budget computations, 
research was also directed to two additional areas: 

Confidence limits for divergence using aircraft data 
Solution of nonlinear equations. 

1. CONFIDENCE LIMITS FOR DIVERGENCE USING AIRCRAFT 
DATA 

During four closely- spaced nights of the BOMEX experiment, 
an aircraft flew the perimeter of the BOMEX box collecting data on 
the normal component of the wind. These data were employed to 
compute rough preliminary estimates of divergence of a working box 
at the level at which the aircraft flew. The estimation procedure 
was corrected for bias in the normal wind component by making 
use of calibration data taken at seven heights on each side. At each 
height, a difference in velocity was computed by subtracting the 
normal velocity in the clockwise direction from the velocity in the 
counterclockwise direction. One-half of the average of these 
differences over the several heights for a side was used as a 
correction to the average normal velocity for the side. 

A methodology for computing confidence limits for estimates 
of the divergence was developed. The estimate of divergence for a 
given night was calculated from the formula 

4 

:0 = (1/L) "'(v.- (1/2) ct.> L.J 1 1 

i= 1 
A 

where D = the divergence estimate 

L =the length of a side of the BOMEX box 



APPENDIX B(23) 

v. = the average of the observed normal velocities 
1 f "d . or s1 e 1 

d. = the average difference between the normal 
1 

velocities in the clockwise and counterclockwise 
directions for the calibration legs of side i. 

D was treated as a normal deviate in computing 95-percent confidence 
limits. The standard error of D was derived as 

where s_ and s-d are the estimated standard errors of v. and d., 
v. . 1 1 

1 1 

respectively. 

2. SOLUTION OF NONLINEAR EQUATIONS 

Wind-velocity data collected as an aircraft flew around the 
perimeter of the BOMEX (box) require certain bias corrections, 
and each side of the box required a different set of corrections. The 
corrections are calculated from data obtained by flying a small square 
at each corner of the BOMEX box. The square was always flown in 
a counterclockwise direction. 

The four sides of the square give rise to eight equations for 
computing corrections. The two equations on a given side are 
associated respectively with east-west and north-south wind velocity. 
Since the eight equations have eight unknowns, a unique solution for 
the unknowns exists. This solution, however, is complicated by 
the nonlinearity of the equations in the parameters. 

Since a separate set of corrections is required for each side 
of the BOMEX box on each flight, and since there were many such 
flights, a large number of solutions will be required. For this 
reason, it is worthwhile to develop a rapid and efficient method of 
solution that would lend itself to computerization. 
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On the i-th side (i = 1, 2, 3, 4) of each square, the following 
quantities were measured: 

GSM. = measured groundspeed 
1 

TASM. = measured true airspeed 
1 

hdgM. = measured aircraft heading 
1 

oM. = measured drift angle 
1 

The eight unknown variables were: 

GE = groundspeed error 

TE = true airspeed error 

oE. - drift-angle error (heading-dependent), 
1 

i=l, 2, 3, 4 

VXA = wind velocity west 

VYA = wind velocity south 

The equations relating the observables to the unknowns, as 
prepared by Robert W. Reeves of the BOMAP staff, are set out 
below. 

VXA = GSM. sin (hdgM. +oM.)- TASM. sin (hdgM.) 
1 1 1 1 1 

(B. 20) 

+ GE sin (hdgM. + oM.) - TE sin (hdgM.) 
1 1 1 

+ oE. GSM. cos (hdgM. +oM.)+ oE. GE cos (hdgM. +oM.) 
11 1 1 1 1 1 

VYA = GSM. cos (hdgM. + BM.)- TASM. cos (hdgM.) 
1 1 1 1 1 

(B.21) 

+ GE cos (hdgM. + BM.)- TE cos (hdgM.) 
1 1 1 

- BE. GSM. sin (hdgM. + BM.)- BE. GE sin (hdgM. + BM.) 
11 11 1 1 1 

'd 
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A solution to these equations was developed by a process of 
transforming variables and searching for the value of a parameter 
that reduces a least squares error sum of squares to zero. The 
methodology lends itself to computerization and a computer program 
has been written that reflects the methodology. 
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IV. CONCLUSIONS 

During the interim period covered by this report, a number of 
conclusions were developed with respect to statistical treatment of 
the BOMEX data. These conclusions are given below. 

(1) The quantities required for budget calculations are 
quantities associated with working boxes. These quantities 
are horizontal slices of the BOMEX box with a thickness of 
a 25-millibar pressure differential. Estimation of budget 
quantities can be accomplished by combining estimates asso­
ciated with working boxes. 

(2) Two types of estimates are required for the working 
boxes: 

The average of a quantity defined at every point 
in the working box, for example, the average 
temperature. 

The average over all points of the four vertical 
sides of the working box; for example, the product 
of wind velocity normal to the face and relative 
humidity. 

(3) The nature of the errors, to which the estimates of the 
working box statistics are subject, is amenable to statistical 
analysis and can be expressed in the form of confidence limits 
for the estimated parameters. 

(4) Before BOMEX data can be employed for scientific 
computations, substantial editing, corrections, and adjust­
ments must be made. 

(5) The nature of the BOMEX data dictates a cyclic approach 
to data analysis, since computations must be performed, 
summarized, displayed, interpreted, and used as a basis 
for planning subsequent computations. 

· ... 
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(6} The most effective method of rapidly cycling computations 
that reflect statistical analysis of the data is the formation of 
scientific building blocks. These blocks will contain the 
summary statistics in the form of numbers of observations, 
means, variances, and covariances. The blocks will permit 
rapid combination of the foregoing statistics in alternative 
patterns, thereby permitting the selection of an optimum 
pattern based on the characteristics of the data. 

(7) The BOMEX data contain information useful for budget 
computations that can be extracted by appropriate statistical 
analysis; that is, the "noise" in the data is not so excessive 
that the "signal" will be completely obscured. The signal­
to-noise ratio is sufficiently low, however, to require sub­
stantial effort to elicit the informational content. 
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