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NOTATION 

Averaging of any quantity 

(-)=± jj ( 
A 

) dA = area average, where A is the horizontal area of the 
BOMEX box 

( )" = ( ) - (-) = deviation from area average 

[ ( )] line integral average, where-€ is the perimeter of 
the BOMEX box 

( ) ' = ( ) - [ ( )] = deviation from line integral average 

Basic quantities (cgs) 

( )0 = quantity at sea surface 

( )T = quantity at top of box 

X = general scalar quantity 

A horizontal area of the box 

-€ = perimeter of the box 

g = acceleration of gravity 

a = radius of the earth 

A = longitude 

cp = latitude 

n = angular velocity of the earth 

f = 2 n sincp; the Coriolis parameter 
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z = height above sea surface 

gz = geopotential 

p pressure 

p* = 
pressure differential (atmospheric pressure at sea level 

- p = minus atmospheric pressure at height of observation) 

p = density of moist air 

a = specific volume of moist air 

T temperature 

H = specific enthalpy, c T 
p 

L latent heat of change of phase 

FRAD = magnitude of vertical component of net radiation flux 

FH = magnitude of vertical component of microscale enthalpy flux 

QF frictional heating rate 

c specific heat at constant pressure 
p 

q = specific humidity 

q1 = mixing ratio for water in liquid and solid form 

D vertical diffusion of water vapor 

e = rate of evaporation (per unit mass) within the atmosphere 

E = rate of evaporation (per unit area) from the sea surface 

c rate of condensation (per unit mass) within the atmosphere 

P = rate of precipitation (per unit area) at the sea surface 
0 

PT = rate of precipitation (per unit area) at the top of the box 

-1-
l = unit vector directed eastward 

j = unit vector directed northward 

+ 
n = unit vector normal to the perimeter, directed outward 

u = a cos$ dA/dt = eastward component 

v a d$/dt = northward component along perimeter 

v 



v ; outward normal wind component 
n 

+ -T -T v ; 1U + JV ; horizontal wind velocity 

w ; dz/dt ; vertical velocity 

w* ; dp*/dt 

K ; kinetic energy ; (u2 + v2)/2 

+ -T 7 
T ; 1TA + JT <j> 

; the microscale stress 

vi 



MASS, MOMENTUM, AND ENERGY BUDGET EQUATIONS 
FOR BOMAP COMPUTATIONS 

Eugene M. Rasmusson 

Abstract: Atmospheric budget equations for mass, momentum, 
and energy are derived for an x, y, p* coordinate system, 
where p* is the pressure differential relative to sea level. 
These basic equations are then modified for use in computing 
.the budgets of mass', momentum, and energy for the atmospher­
ic part of the BOMEX volume, as related to the Barbados Oce­
anqgraphic and Meteorological Experiment (BOMEX), May-July, 
1969. 

I. INTRODUCTION 

Observations made during the Barbados Oceanographic and Meteorological 
Experiment (BOMEX) were planned to permit estimation of total transfer of 
water vapor, sensible heat, and momentum from sea to air over a 500- by 
500;km square. It was contemplated (Davidson, 1968; Kuettner and Holland, 
1969) that this would be done by measuring the quantities entering into the 
continuity or conservation equation for each property, with sufficient time 
and space resolution to allow the integrals over the 500-km square, through 
approximately the lower 6 km of the atmosphere, and over a time period of 
the order of 1 day, to be evaluated with acceptable accuracy. These inte­
grated conservation equations are called the "budget equations." 

A major objective of the Barbados Oceanographic and Meteorological 
Analysis Project (BOMAP) is the evaluation of these integrals. Observations 
used in the computations consist of: 

1. Fixed-ship observations at the four corners and center 
of the 500-km square, including: 

(a) continuously recorded surface pressure, temperature, 
humidity, wind direction, wind speed, net radiation, 
and precipitation and 



(b) rawinsonde temperature, humidity, wind direction, 
wind speed, and height as a function of pressure 
up to a pressure of 400 mb at 1~-hour intervals. 

2. Dropsonde observations, centered around midday and 
midnight, of temperature and humidity as functions 
of pressure from a height of 6 km to sea level at 
eight points above the diagonals of the square. 

3. Aircraft line-integral data on radar altitude, pressure, 
temperature, humidity, wind direction, and wind speed 
at selected nominal flight altitudes along the boundary 
of the square. 

4. Precipitation estimates based on surface and airborne 
radar coverage of the square, supported by extensive 
satellite coverage and high-altitude aircraft photo­
graphy, and calibrated by means of ship and island 
rain gages. 

5. Radiative flux divergence estimates based on: 

(a) radiometersonde ascents once daily at the three 
fixed-ship stations and from Barbados, and 

(b) radiation models employing meteorological input 
data and validated by several aircraft radiation 
measurement experiments conducted as part of BOMEX. 

6. Direct measurements of microscale vertical eddy fluxes of 
heat, water vapor, and momentum by means of fast-responding 
sensors mounted on buoys and aircraft, sampled over various 
time and space intervals. 

The equations developed here are meant to apply to observations with time 
and space resolutions insufficient to account explicitly for cumulus- and 
smaller-scale variations (horizontal scale less than, very roughly, 10-30 km). 
Thus the "microscale" (including molecular) contributions to fluxes, flux 
divergences, and kinetic energy dissipation rates are represented by separate 
symbols in the equations. It is presumed that values for these variables will 
be developed by appropriate statistical analysis of observations of the type 
described in item 6. More details on the experiment are given by Kuettner 
and Holland (1969) and in BOMEX Bulletins Nos. 4, 5, and 6 .. 
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II. PRESSURE DIFFERENTIAL COORDINATE SYSTEM 

Tha basic mass and energy budget relationships on which the BOMAP analyses 
are based are formulated in the pressure differential coordinate system x, y, 
p*, t, where x and y are horizontal coordinates, p* is the position on the 
vertical axis specified by pressure differential relative to sea level, and t 
is time. In this system, p* is the difference in atmospheric pressure between 
the sea surface (p 0 ) and any height of observation (p) -- that is, p* is equal 
to p 0 - p and is 0 at the sea surface (fig. 1). The hydrostatic equation be­
comes 

dp* gp(z)dz, 

where p(z) is air density as a function of height z. 

The analyses here will be concerned with defining the independently meas­
urable terms of the conservation equations for mass, water vapor, latent heat, 
sensible heat, mechanical energy, and momentum, integrated over the "BOMEX 
atmospheric volume." The sides of this volume are vertical surfaces passing 
through the nominal positions of the corner ships of the fixed-ship array. 
The bottom surface is sea level and the top is a p* surface designated P~· 

The total mass contained in the vertical atmospheric column of unit cross 
section extending from sea level up to a p~ surface, at which the height 
z = zT would be 

zT 

1 p (z)dz 

0 

If variations of g are neglected, this mass is equal to p*/g and is constant 
in space and time. Even if variations of g are considerea, the mass contained 
in the column is constant with respect to time at any fixed latitude and longi­
tude. Hence, the mass contained in the "BOMEX atmospheric volume" is constant 
for any given value of p~; the volume, however, is not constant. 
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P* ,........p ,_.z 
600mb 413mb 6.8km 

500mb 513mb 5.2 km 

400mb 613mb 3.9km 

300mb 713mb 2.8km 

200mb 813mb 1.8km 

100mb 913mb 0.9km 

Omb 1013mb Sea Sfc. 

Figure !.--Illustration of pressure differential (p*) concept 
where p* = p0 - p (the atmospheric pressure at sea level 
minus the atmospheric pressure at the height of observa­
tion). 
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Observation schedules for the BOMEX field observations of May 3 through 
July 2, 1969, in support of the Sea-Air Interaction Program (described by 
Kuettner and Holland, 1969) were predicated on a choice of p~ in the neigh­
borhood of 500 mb. Rawinsonde observations were terminated normally at a 
pressure of 400 mb (p*""" 613 mb). Dropsondes were released from 20,000 ft 
(6 km, or p* .::o 550mb). 

Conversion from the x, y, z, t system of Cartesian coordinates, where z 
is the vertical coordinate, to the x, y, p*, t system is accomplished through 
the following relationships: 

a a 
az = pg ap* 

a 
ap* 

a 
ap* 

This type of coordinate transformation is discussed by Hess (1959, pp. 
259-264). In the above relationships, xis measured positively eastward, 
y positively northward; thus, 

dx = a coset> di-, 

dy = adcp, 

where a is the radius of the earth, A the longitude measured eastward, and 
cf> the latitude measured northward. 
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III. BASIC EQUATIONS FOR MASS, MOMENTUM, AND ENERGY 

In this section, the basic equations for mass continuity, momentum, and 
energy are written in A, ~. z, t, and A, ~. p*, t coordinates. The relation­
ships are discussed by Lorenz (1967). Among the assumptions inherent in 
deriving these relationships are: 

The acceleration of gravity, 
g, is a constant. 

There is no variation in the 
heat of condensation, L. 

Lateral boundaries are fixed 
and vertical. 

The effects of these assumptions are reviewed in appendices A, B, and C, 
respectively. 

The "del" operator (V) is used to denote the two-dimensional gradient: 
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III.1. Mass Continuity, Equation (1) 

(a) x, y, z, t 

(b) x, y, p*, t 

- 2£. - V· V + apw 
at - P az 

+ ow* 
V·V + -* = 0 • ap 

III.2. Momentum, Equations (2) - (3) 

(a) x, y, z, t 

du fv + uv tanp 
dt = a 

a lE_ + 
a cos<jl a:< 

dv -fu _ u2 tanp _ £lE + 
dt = a a aq, 

(b) x, y, p*, t 

du fv + uv tanp g (az +a apoJ 
h,_ 

dt = a a cos<P a:< g .a·:< + g ap* 

dv -fu -
u2 tanp _.& [~ + £ apo] dT<P 

dt = +g-a a a.p g aq, ap* 
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III.3. Energy, Equations (4) - (8) 

(a) x, y, z, t 

+ + 
dK + a(V•T) • 
dt = - aV•Vp + et az - QF 

dH -= 
dt 

a aaFH d 
a -;;-z (FRAD) +--+ QF + L(C-e) + a~ 

a az dt 

d(Lg) = - L(C-e) + aL aD 
dt az 

(b) x, y, p*, t 

++ 
dK + + a(V•T) 
- - - V•ViJ! - aV•V p + g - Q dt - o ap* F 

(4) 

dill ail! + 
- = - + V•ViJ! + aw* 
dt at 

(5) 

d(Lg) aD 
dt -L(C-e) + Lg ap* (7) 

d(K + iJi + H + Lg) 
dt . 

+-+ 
+ Lg ~Dp* +a apo + 2.!_ +a(V•T) 

a at at !; ap* 
(8) 



IV. BASIC FORMULATION OF BUDGET EQUATIONS 

IV.l. Operations Performed on Equations (1)-(7) 

(a) Expand substantial derivatives and use mass continuity equation to obtain 

(9) 

(b) Integrate over the volume of the box, expressing the results as averages 
per unit horizontal area by: 

using the Gauss Theorem to transform the second term on the 
right side of (9) to 

±f I 
A 

using the operators 

(V • XV) dA = ± f 
-€ 

X' = X - [X), 

to transform (10) to 

XV 
n 

d€· 
' 

.. d xv d€ = "§. { [x] 
A J n A 

[V ] + [X'V ']} 
n n 

-€ 

9 
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transforming the third term on the right side of (9) to 
a boundary term (in which w* = 0 at p* = 0 and micro­
scale fluxes are not included) 

JP~ axw* d * = 
op* P 

using the operators 

X" = X - X 

to transform (12) to 

1 I I (X *) dA = X w* + (X"w*") A w T T T T 
A 

and using the first and third steps under (b) above to trans­
form those additional terms that can be transformed to bound­
ary terms and for which such a transformation appears to be 
convenient. 

IV.2. Relationships Derived From Operations on Equations (1) - (7) 

(12) 

(13) 

By performing the above operations on equations (1) - (7), the following 
relationships are derived. 
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Mass Continuity 

Momentum 

(a) Zonal: 

J

p* 
_L T~ ~ = 
at g 

0 

dp* = - w* 
T 

+ Jp~ [ uv tan~_)~ + Jp~ fv ~ _ JPi [ 1 ~) dp* 
a J g g a cos<f> aA 

0 0 0 

J

p* 
T a apo 

- [a cos</> a;:-] 
0 

(b) Meridional: 

J

P* Jp* ..1.. rvdp*=~ r{[v] 
at g A 

0 ·0 

[v] + [v'v ']} n n 

J
p* JP*-T_ dp* T .!_~ d * 

fu g - a aq, p 

0 0 

11 
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Energy 

(a) Mechanical Energy: 

p* 
a J T - dp* ---- K -at g 

[K] [V ] + [K'V '] 
n n 

0 

---------=- - JP*r ctV 
(K"w*") 

T 
g 

dp* 
Vp -

0 g fp~ -..,. - d * 
V • ViJ? ~ 

g 
0 

f
p~ -

• d * + - Q~+-r ·V 
F g T T 

0 

(b) Enthalpy: 

f
p* fp* .L T H dp* = - -:§. T { 

at g A 
0 0 

H * (H"•·•*"). T00T ~ T - -- - ----------=- + g g 

0 

_,. 
- T 

0 
v 

0 

dp* 
g 

J
P~ ap JP~ _,. 

+ ct ___.£ dp* + ctV 
at g 

0 0 

dp* 
Vp -

0 g 

12 

r~ 
0 

~ 
g 

(17) 
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(c) Latent energy: 

P* 

a I T - dn* - Lq =-; 
at g 

0 

p* 

L(q"w*") I T 
----=-T - L(C-e) 

g 
0 

where D = E. 
0 

(d) Total energy: 

p* 

...2_ f T (K + ~ + H + Lq) dp* = 
at g 

0 

P* -~ r [(K' + '' +H' H<'l'•' ';' -
0 

} 
w*" 

{K" +iii"+ H" + Lq" ~ + {<FRAD)o 

dp* + LE- LD 
g T 

+ [H] + L[q]} [V ] dp* 
n g 

+ ~P~" -ap-o ~ + ~P~ oil> dp* + LE- LD + tr·Vr - to.vo 
at g at g r 

0 0 

13 
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V. MODIFICATION OF BASIC BUDGET EQUATIONS 

To take further advantage of the concentration of observations on the 
boundary, it appears desirable to modify the basic form of the budget equa­
tions. Furthermore, the pressure gradient on a p* surface is merely the sur­
face pressure gradient, Vp0 , and therefore not a function of p*. This sim­
plifies the computation of certain terms and should be reflected in the for­
mulation of the equations. 

V.l. Modification of the Momentum Equations 

Pressure gradient terms 

(a) Vertical integration: 

Consider the term 

from the meridional momentum equation. 
function of p*, we can write 

Since a. az = g ap* ' and 

ap IP~ = 0 az dp* = 
~ 8p* 

zT apo ---
a acp 

Similarly, 

a apo dp* 
coscf> a:>- g 

14 

0 

a coscf> 

ap 
0 

aA 

is not a 

(21) 

(22) 



(b) Transformation to boundary terms: 

Since 

it follows that 

..,. 

l]p 
0 

-t 1 ap o -r _.=1 __ ap o 
= J a -a-~- + 1 a cos~ ~ 

1 ap o -t 
-- = J • 'Vp 
a a~ o 

Evaluation of 17 • j gives 

Similarly, 

1 
a cos~ 

Referring to (21) we can write 

Substitution from (23) gives 

ap 
0 
~= 

1 apo - {--7- Po 
z - -- = z V·p J + 

T a a~ T o 

ap " 

+ z~ {aa;} 

15 
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Similarly, (22) and (24) give 

v • p t 
0 

+ z" { T a 

ap 
0 

cos~ 

Finally, application of the Gauss theorem to the divergence terms of 
(25) and (26) gives 

+ z" { T a 

Geopotential gradient terms 

ap " 
+ z~ [aa;) 

ap 
0 

cos~ 

Using arguments similar to those expressed by equations (23), (24), 
(25), (26), and application of the Gauss theorem to divergence terms, 
leads to the following formulation for the geopotential gradient terms 
in the momentum equations: 

l ~ dA} dp* 
cos~ oA 

16 

P* 

dp* + f T z 

0 

-;- _._ 
[z~ • n] dp* 

tanp dp* 
8. 

(26) 

(27) 

(28) 

(29) 

(30) 



(a) 

V.2. Modification of the Energy Equations 

->­
r:J.V Vp term: 

0 

This term can be written 

->- ->-->-
rJ.V • Vp 

0 
v • ap V - p V • aV 

0 0 
(31) 

horizontal averaging and application of the Gauss theorem yields 

->-
rJ.V • Vp 

0 

=~A { [p] [av] + [p'(aV )'] 
o n o n 

p "Cv • aV)" 
0 

p"(v • aV)" 
0 

=-.§_ { [p"] [av] + [p' (aV )'] } - p"(V • aV)" . 
A o n o n o 

Integrating vertically, and noting that p
0 

is not a function of p*, we obtain 

ri ->- ~~J ri[avnJ 
dp* ..(J dp* aV Vp =-

o g A g 
0 0 

~~ ri 

. * 

+-§. (aV ) ' dr J -{po" rT (V • aV)" dr } • (32) 
A n 

0 0 

17 



(b) 
_,. 
V • V<P term: 

This term can be written 

v . V<P = v • V<P - <PV • v 

Horizontal averaging and application of the Gauss theorem yields 

(c) a (ap (at) term: 
0 

This term can be written 

ap 
0 a--= 

at 

(33) 

Integrating vertically, and noting that p
0 

is not a function of p*, we have 

J

p! apo dp* = apo Jp~ ~ dp* = 
at g at ap* 

0 0 

Averaging horizontally yields 

ap 
0 dA= z --+ r at 

18 
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VI. PROPOSED BUDGET EQUATIONS FOR BOMAP COMPUTATIONS 

In this section we shall write a set of budget equations that are be­
lieved to be a satisfactory framework for the basic BOMAP budget computa­
tions. These equations are based on the equations in section III but are 
modified as follows: 

1. The modifications in section IV are incorporated into 
the set of equations, 

2. The top of the box can be varied, but is assumed to 
be above the level at which the microscale stress, 
the microscale enthalpy transfer, and the diffusion 
of water vapor can be neglected. That is, 

Terms are partitioned into mean and covariance contributions, primarily for 
two reasons: (1) to gain additional insight into the processes by which the 
balances are satisfied, and (2) to partition the various terms into a portion 
that can in principle be evaluated from the aerological data and a portion 
which cannot be adequately evaluated from these data alone. For example, the 
mean vertical transport w* X can, in theorv, be computed while onl1 the lar­
ger scale eddy vertical transport w* 11X11 cah be evaluated from the available 
aerological data. 

1 a 
gat 

+..h 
ag 

P* 

r dp* u 

VI.l Mass Continuity 

p* 

f I T[VnJ dp* 

0 

VI.2. Zonal Momentum 

p* T 

-W* 
T 

£ t { [u] [VnJ -1' [u'Vn'l Ag } dp* -

jp~ ----:---;- d * 1 !p~ - * -£_ [ _,_ _,_] " 
uv tan<j> p + g fvdp - .A"T p

0
i•n - zT 

0 * 0 

! (T [ z1:. "Ii] dn* - (r) 
0 

0 

19 

uTw~ 
g 

(u"w* 11
) 

g 

(36) 

(37) 



VI.3. Meridional Momentum 
p* p* 

1 a 
LTvdp* ~ J T{ [v] } VT(JJT (v"w*") 

[Vnl + [v'Vn'l dp* T gat = ---
g g 

0 

p* P.f 
- J.._ J T_u_2 _t_a_n_<j> dp* - l 

ag g I fu dp* 

0 

- z" 
T [

ap 0 )" 

aaq, 
0 

-€ JP.f -T _._ 
- A [zJ •n] 

0 

p* 

dp* - ~ J T:z; tan<j> dp* - (T'<P) 
0 

0 

VI.4. Mechanical Energy 

p* -:; r { ,,, . , .. , } 
p* 

~ J T {[K'Vn'l + 

0 

p* 

K w* (k"w*") I T 
[4>'V ']}dp*-2.1_ ____ .c...T -t: [p"] [cxVnJ dp* 

n g g - Ag o 

-€ p t - Ag o 

L a 
g at 

p" 
0 

+-
g 

+ + 
- T • V 

0 0 

VI.S. Latent Energy 

P.f t q dp• 

p* 

. -H r{ ,,, ''"' 
L (q" w*") - L JPr --g (C-e) g T 

20 ° 

0 

dp* 

dp* + LE 

(38) 

(39) 

(40) 



+·{ 
p* • ~ r [C-o) dp* 

p* 

VI. 6. Enthalpy 

- ap 
+ z 0 

T-+ at 
ap " 

z" _..£. 
T at 

c 
+ - [ "] 

Ag Po 
dp* 

0 

(H"w*") 
T 

g 

• ;:'g r; l ',,,,,,,,. -.~· )Pi ... 1 JP.f{ _ _ -} 
_ ~o ('l·aV)"dp* - g a w + a"w" dp*. 

0 0 
0 

VI.7. Total Energy 

Pi Pi 
;t ~ J {H + ~ + Lq + K}dp*=- ~g J {[H] + [~] + L[q] + [K]} [VnJ dp* 

0 0 

Pi 
- :g J {[H'Vn'J + [~'Vn'J + L[q'Vn'J + [K'Vn'J} dp* 

0 

21 
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VI.B, Water Budget 

As a companion to equation (40), we can write a budget equation for 
the water substance in liquid and solid form: 

J.- .!_ JP.f q dp * = 
dt g L 

0 

.£ JP.f 
Ag [qLVn] 

0 

dp* 

Solving for 

1 JP.f _ 
g (C-e)dp* 

0 

(43) 

from equation (40) and substituting for this term in (43) gives the budget 
equation for water vapor: 

J

P.f JP.f 
a 1 - .£ 
-- qdp*=-- {[q] at g Ag 

0 0 

[V] + [q'V ']} n n dp* -

p* 

.:£. j T[q V ]dp* 
Ag L n 

0 

qTwT (q"w*")r ---- ___ .:_ 

g g dp* + E + PT p 
0 (44) 
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APPENDIX A 

Effect of Assuming g Constant 

Effect of ignoring the vertical variation of g 

Typical values of g in the latitudes of the BOMEX array vary from around 
978 em sec-2 at 1000mb to 976 em sec-2 at 500mb. 

Consider the bias introduced in w(the vertical "p" velocity) if the 
vertical variation of g is ignored. From the mass continuity equation, we 
have 

!
Po~ !!E_ = 

ap g 

500 mb !Po V • V 

500 mb 

The left side of this equation can be written 

.!h? 
g 

= [i) - w I
P

0 

a(l/g) dp 
ap 

500 500 

a(l/g) dp 
ap 

(A-1) 

The second term represents the error in (w/g)
500 

resulting from the neglect 
of the vertical variation of g. 

To compute an order of magnitude estimate for this second term, a rough 
estimate of the mean values of w as a function of p is needed.. Assume a pro­
file which is approximated by the relationship 

where k, and k2 are constants for any given profile. (A-2) 
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This relationship allows one to specify a mean w profile that is reasonable 
because w may be set equal to zero at p0 and its maximum (or minimum) value 
can be set at 500 mb. This particular relationship was chosen in order to 
conveniently integrate the last term of (A-1). Using this relationship, 
we have 

acl/g) _ k a(l/g) +_£__ t~2 (1/g)~ w ap - 1 ap ap 

ro 
a(l/g) 

k ~ 1 
' 1 j k2 

[(gc!)2 
500w 

dp = +-ap 1 g(po) g(SOO) 2 

Using the typical values of g previously stated gives 

1/g = .0010225 
0 

l/g
500 

= .oo10246 

-6 2 -1 
l/g

0 
- l/g500 ~ -2.1 x 10 sec em 

2 2 -9 4 -2 
(l/g

0
) - (l/g

500
) ~ -4.3 x 10 sec em 

+ 

[ 1 ) J (A-3) g(SOO) 

For the average value of V 
typical 24-hour mean value 
a surface pressure of 1000 

V between the surface and 500mb, assume a 
of 10-6 sec-1 for the BOMEX array scale. Assuming 
mb, we obtain 

4 -1 
w

500 
= 5 x 10- mb sec 

== o.o 
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Using these values of w, we can solve for k1 and "2 in (A-2), giving 

k1 = -000.243 mb 

238.000 em mb 

-1 
sec 

-3 sec 

Note that the signs of k1 and k2 depend on the assumption of mean convergence 
or divergence. Substitution in (A-3) gives 

k [ 1 1 
glOOO 

-7 2 -1 
5.103 x 10 gm (em sec) 

II[ 1 ]

2

- [-1 ]J2l = _5 . 117 x 
Ug1000 gSOO 

-7 2 -1 
10 gm (em sec) 

J
1000 w 

50 0 

In summary, the assumed mean flux through the top of the BOMEX cube is 

-7 2 -1 
~ 5 x 10 gm (em sec) 

-2 2 -1 
~ 5 x 10 gm (em day) 

The computed error in the mean flux through the top of the BOMEX cube is 

-9 2 -1 
~ 10 gm (em sec) , 

-4 2 -1 
~ 10 gm (em day) 

Thus, it appears that the vertical variation of g can be neglected. In 
any event, the above analysis can be repeated after the mean w profile has 
been computed from the actual data, and, if necessary, minor adjustments can 
be applied to the computed values. 
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Effect of ignoring the horizontal variation of g 

In the absence of longitudinal variations in g, this approximation will 
only affect the evaluation of the meridional flux component. The following 
analyses are therefore for a north-south strip 1 em wide and 500 km long. 
Following Hess (1959), we assume a typical variation of g between 978.53 and 
978.69 em sec-2. 

(a) Water vapor: 

Assume 

p* = 500mb 

J Tqv dr -;:=.lo3 

0 

-1 
gm (em sec) • 

This value for the vertically integrated meridional flux is probably an order 
of magnitude larger than the mean value that will be found in the BOMEX array. 

Using this figure, we can compute the error in flux divergence arising 
from neglect of the horizontal variation of g as 

Divergence Error in flux through the boundary = Error 
5 X 107 em 

103 978.53 
- 10

3 
978,69 = 

5 X 107 

0.3 gm (em -1 
= 

sec) 

5 X 107 
em 

~6 X 10-9 (em 2 -1 
gm sec) 

~ 6 X 10-4 (em 2 -1 gm day) 
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-1 A comparison of this value with typical evaporation rates (0.2- 0.6 em day ), 
indicates the error to be negligible. 

(b) Enthalpy: 

Repeating the above analysis, using 

p* = 500 

I T dp* 7 -1 
vH = 10 joules (em sec) 

g 
0 

as a reasonable value for the meridional enthalpy flux, gives 

-'+ 2 -1 Error ~ 10 joules (em sec) 

-2 -1 
~ 2.5 cal em day 

In terms of average heating rate this amounts to around 5 x 10-S OK day-! and 
thus appears negligible. 

28 



APPENDIX B 

Effect of Assuming L Constant 

From Hess (1959, p. 46), we have 

At 0°C, 

dL (evaporation) = 
dT 

- 0.566 cal gm- 1 

L evaporation 

L sublimation 

L melting 

-1 
= 597.3 cal gm 

-1 
= 677.0 cal gm 

= 79.7 cal gm- 1 

Assuming T rv 30°C, L at the surface will be 
0 

L = 597.3- 0.566(30) = 580.3, 
0 

0 -1 c . 

Assuming temperatures in the upper portions of the box of around -5°C gives 
a variation in L of 

t:.L 20 T"' 600 ''-' 4 percent. 

Since our ability to determine condensation as a function of 
it seems consistent to ignore this 4-percent variation in L. 
we may assume a constant, but slightly different, value of L 
evaporation and for atmosphere condensation. 
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APPENDIX C 

Effect of Assuming Fixed Lateral Boundaries 

For purposes of discussion, consider the following figure, which repre­
sents the lateral boundaries of the BOMEX box: 

y 

oy 

--~x 

We assume a basic area ~ 2 . We assume observations at 0,0; O,~+oy; ~+ox, 
~+oy; and ~+ox,O. In the computation of divergence, the observations are 
assumed to be taken at 0,0; 0,~; ~.~; and ~.o. 

Assume a linear variation in the wind components, that is, 

Also, assume 

av -- c2,· ay -
au av 
ay = ax = 0 

u(~+ox,O) = u(~+ox,x+oy) u(~,O) + c1 Sx = u(~.~) + c2 ox, 

v(O,H&y) = v(Hox,Hoy) = v(O,~) + c2 oy = v(~.n + c2 oy. 

The divergence error would then be 
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Let us consider the error arising from two combinations of c1, C2, 8x, and 8y. 

First, 

Error 

8y = 8x 

8x (C1 + C2) 
~ 

Typical values of 8x are 10 km. Thus, typical percentage errors in divergence 
will be (10/500) x 100 = 2 percent. 

Second, 

8y = -8x 

-C 1 ~ 10 
-5 

This situation will arise if the wind field has a substantial deformation 
component, and 8y and 8x are of opposite sign. Under these conditions, 

28x 10-5 
Divergence ~ T 

Error~ 4 x 10-7 

This figure can be considered as an estimate of the order of magnitude of 
the maximum error arising from the approximation of fixed lateral boundaries. 
Thus, under circumstances where (1) the wind field has a large deformation 
component, (2) the error in the fixed-ship positions is of opposite sign for 
the two components, and (3) the magnitude of the errors in fixed-ship posi­
tions exceeds 20 km, the divergence error could conceivably approach lo-6 . 
Consequently, it would be well to generate as part of the computations a first­
order estimate of this error, based on observed values of 8x and 8y, and on 
values of c1 and C2 derived from the computations. If cases arise in which 
the error introduced by this approximation is deemed unacceptable, a slight 
correction based on computed gradients of the wind components over the area 
can be applied to the shipboard observations to arrive at better estimates of 
the parameters at the corners of the array. 
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APPENDIX D 

Computational Requirements 

A list of those quantities in the proposed budget equations (36) - (44) 
that can be computed from aerological observations of u, v, p, T, z, q, and 
qL follows. 

Quantity Budget 
equation 

ii 37 
v 38 
w* 37, 38, 
K 39, 42 
r 41, 42 
q 40, 42, 
z 37, 38, 

Po 39, 41, 

u" 37 
v" 38 
w*" 37, 38, 
K" 39, 42 
T" 41, 42 
q" 40, 42, 
z" 37, 38, 

p " 
0 

37, 38, 

[u] 37 
[v] 38 
[v J n 36, 37, 

[K] 39, 42 
[T] 41, 42 
[q] 40, 44 
[z] 39, 42 

u' 37 
v' 38 
v ' 37' 38, n 

39. 42 K' 
T' 41, 42 

q' 40, 42, 

z' 39, 42 

39, 40, 41, 42, 44 

44 
42 

42 

39, 40, 41, 42, 44 

43 
39, 41, 42 

39, 41, 42 

38, 39, 40, 41, 42, 44 

39. 40' 41' 42' 44 

44 
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These quantities 
to be computed 
as functions 
of p*. 

These quantities 
to be computed, 
to the extent 
possible, as 
functions of 
A, <j>, and p*. 

·computed as a func­
tion of A, <j>. 

These quantities 
to be computed 
as functions 
of p*. 

These quantities 
to be computed 
as functions of 
p* and position 
on the boundary. 
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