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Abstract

The note uses the idealized single-mode complex-frequency response analysis to investigate
(subject to the limitations inherent in this idealization) the stability and robustness of some time
integration schemes that might be considered candidates for incorporation within a model where
both long time steps and a high order of formal accuracy are desired. Generally, we would expect
that such models would be formulated in the semi-Lagrangian style, although this is not strictly
necessary. The family of schemes we consider can broadly be categorized as “implicit Runge-
Kutta” (of which the trapezoidal, and decentered generalizations are relatively trivial examples).
The numerical robustness of these implicit schemes under simplified conditions depends upon
the number of applications of the imperfect corrector iterations, and the amounts of decentering
at each stage. The idealized experiments we describe shed light on this dependency and narrow
down the choices we might wish to consider in formulating a formally accurate numerical model
with a fuller degree of implicitness than is customarily adopted within the semi-Lagrangian
paradigm.

1. Introduction

Implicit methods of time dicretization have the well-known benefit of allowing longer critical
time steps, and therefore offer the prospect of more efficient numerical integrations, than are
possible with purely explicit methods. Implementing a fully implicit time integration in the
context of atmospheric modeling involves solving several challenging numerical problems. The
fully implicit approach in a semi-Lagrangian numerical modeling context was suggested, and
some of its implications outlined, by Purser (1983) at about the time when, largely owing to
the influence and inspiration of Robert (1981, 1982), there began to be a concerted resurgence
of interest in the semi-Lagrangian paradigm. As reported in the review of Staniforth and Côté
(1991), Lagrangian ideas were a part of the development of numerical weather prediction mod-
els even from the early 1950s, but Robert’s key step, which provoked the intense renewal of
activity throughout the 1980s and since, was to combine the semi-Lagrangian advection with
a semi-implicit treatment of the ‘fast’ modes which then allowed stable time steps to break
the barrier hitherto set by the advective Courant-Friedrichs-Lewy (CFL) criterion (Simmons
and Temperton, 1997). Recent years have witnessed a wider interest in the more fully implicit
formulations at operational forecasting centers as nonhydrostatic dynamics have gained in im-
portance. Consideration has been given to the more fully implicit approach at the ECMWF
(see Cullen et al. 2000) and at Environment Canada (Yeh et al., 2002; Clancy and Pudykiewicz,
2013). Here at the National Centers for Environmental Prediction (NCEP) Kar has pioneered
the incorporation of the fully implicit approach into a semi-Lagrangian nonhydrostatic model
(Kar et al. 2004, Kar 2005) and has more recently examined an explicit scheme, combining an
Adams-Bashforth predictor with a trapezoidal corrector, which also has implications for a fully
implicit formulation (Kar 2012).

With a more fully implicit approach, an attempt must be made to incorporate the advective
terms and, if feasible, even the physics terms within the set treated implicitly. With regard
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to advection, it is important to distinguish the case in which this is dealt with in an Eulerian
manner on the one hand, and in semi-Lagrangian manner on the other hand. Although it has
been argued by Bartello and Thomas (1996) that the semi-Lagrangian paradigm becomes less
attractive at the smaller scales, where a shallower energy spectrum is more typical, Côté et
al. (1998) have disputed this controversial claim and, in fact, the semi-Lagrangian approach
continues to be enthusiastically adopted by ever more operational centers, and seems justified
by the evident computational cost savings that the method makes possible. Nevertheless, in
cases where it is known a priori that the time step chosen will not be violating the advective
CFL criterion, and where therefore the fully implicit approach is adopted as much for reasons of
numerical accuracy as for reasons of numerical efficiency, then the formulation of a fully implicit
scheme in a model possessing an Eulerian advection treatment is perfectly reasonable and has,
in fact, been pioneered and demonstrated successfully by Reisner et al. (2005) for hurricane
simulations and by Dijkstra et al. (2001) and Weijer et al. (2003) for an ocean model.

The option of using the undoubtedly simpler Eulerian advection framework is essentially
eliminated when the dynamical grid adopted is one with widely varying resolution from place
to place if one insists that the common time step must not be dictated by the unreasonably
restrictive advective CFL limits imposed by the dynamics occurring in the regions where the
grid is very fine. It is precisely this situation that pertains in the case of the recently proposed
adaptive ‘Generalized Fibonacci’ grid of Purser (2008). This grid is designed to allow a broad
degree of freedom to specify a variable spatial resolution (in space and time) able to adapt to
the anticipated movement of highly active dynamical features (e.g., storms). In such situations,
an especially high local spatial resolution might be expected to improve the overall simulation.
Because the lines of the Fibonacci grid tend to be moderately curved, and because it is also
necessary, in this grid, to smoothly blend together alternative ways of formulating the horizontal
finite differences in order to preserve dynamical consistency across the domain and consequently
it is desirable to adopt high-order spatial differencing formulae to keep the truncation errors
of all the resolved scales in check. This is discussed in Swinbank and Purser (2006). When
one already has a strong incentive to employ high-order spatial differencing in such a grid, an
obvious question to ask is whether it is possible to preserve in the discretization a correspondly
accurate temporal numerical treatment in a practical and reliable way, and if so, what are the
methods that allow this to be done robustly? It is largely questions of this type that have
motivated the present study.

Of course, even when the fully implicit scheme is found to be robust with respect to errors
in the solution of the resulting generalized elliptic-type equations that specify the appropriate
mutually-consistent adjustments to all the prognostic variables at each time step, in order to
guarantee stability over a long period of integration there still remains the need to control or
prevent the growth of nonlinear dynamical instability. This is particularly problematic with
either the Fibonacci grid (even in Eulerian form) or with most semi-Lagrangian models where it
is certainly impractical (if not impossible) to formulate the advective finite-differences in ways
that bring about automatic conservation of the quadratic measures of energy (and perhaps,
enstrophy) as has been done in simpler situations through the ingenious schemes of Arakawa
(1966), Arakawa and Lamb (1977), for example. In the absence of adequate control of the
energy cascade between scales in the spatial discretization, nonlinear instability will generally
occur regardless of the choice of temporal discretization and, indeed, would occur even without
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discretizing the time variable. However, provided safeguards in the spatial discretization are in
place to ensure that nonlinear instability can be kept in check, the preliminary linear stability
analyses that we illustrate for some idealized fully implicit methods suggest that we should be
permitted to enjoy not just relatively long common time steps in our adaptive grid model, but
we should also be able to benefit from having a high formal order of accuracy apply to the
integrations done at such time steps. As we discussed in Purser (2007), a high formal order
of accuracy in the time integration scheme seemingly achieved in a purely linear oscillatory
stability analysis can be a misleading guide to the formal accuracy actually attained when
nonlinearities are taken into account. Properly formulated Runge-Kutta schemes do attain the
intended high-order of accuracy, and we shall consequently give such schemes prominence here.

We restrict the scope of the present note to an examination only of the robustness of certain
implicit schemes and we simplify the problem by only considering here the robustness with
respect to mis-specification of the complex frequency of the single representative mode of the
system. This is, of course, a very drastic simplification, given that the actual time truncation
errors in a complex simulation can occur from many other causes. Nevertheless, we often find
that the robustness (or not) suggested by such simple analyses carries over to the more complete
multivariate models.

Section 2 reviews the more familiar two-time-level implicit schemes with three different
choices of a ‘predictor’ step and from one to three iterations of an imperfect ‘corrector’ step.
The main focus, and the chief novelty, of the present study is the preliminary examination of
what can be regarded as high-order multi-stage generalizations of the two-time-level schemes,
which then take the form of ‘Implicit Runge-Kutta’ (IRK) schemes. These have been extensively
described (but in the context of ordinary differential equation) by Ehle (1968), Butcher (1987),
Lambert (1992) and by Hairer and Wanner (1996). Here we exemplify their adoption only
in the shape of their two-stage versions, which we analyze in Section 3. The other numerical
challenges mentioned above also need to be dealt with, but lie outside the scope of this note,
except for a brief discussion of them in the concluding Section 4.

2. Adaptations of the trapezoidal scheme

The simplest family of fully implicit methods are the two-time-level schemes, of which the
second-order ‘trapezoidal’ method is the most celebrated. In this scheme the earlier and later
levels’ forcing terms are weighted equally:

1

δt
(Pn+1 − Pn) =

1

2
(Fn+1 + Fn), (2.1)

where Fn ≡F(Pn) denotes the forcing associated with state Pn for any time level n, and δt is
the time step. In terms of the ideal linear system equation,

dP

dt
= νP, (2.2)

the trapezoidal scheme, (2.1), is known to possess a stability region comprising the left half
plane of complex ν, just as the actual dynamical system does. When the stability region of the
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numerical scheme includes the whole of the complex left half-plane, the scheme is said to be ‘A-
stable’, a terminology coined by Dahlquist (1963) who also showed that, for multistep schemes
that possess this property, the highest possible order is two and that, among these schemes, the
trapezoidal scheme is the one with the smallest coefficient of error (see also Gear 1971). But in
the context of a multivariate nonlinear dynamical system such as a model of the atmosphere it
is never easy to isolate the individual linearized modes and, even after iterating, the practical
forcing terms, Fn+1, at the new time level are never going to be exactly equal to what we would
obtain by evaluating F(Pn+1) at the final iteration of Pn+1. We therefore need to ensure that,
in spite of this inevitable mismatch (which plagues all practical implementations of implicit
schemes) we still have a numerical finite difference scheme that does not become unstable when
the corresponding differential scheme is stable.

In the practical, and inevitably approximate, implementation of an intended ideal implicit
scheme (such as the trapezoidal) we would normally begin the new time step with some crude
explicit estimate for the new state, Pn+1. For example, if the final estimate of the state at time
level n is denoted simply Pn, and the final estimate of the forcing at level n is denoted Fn (but
now without any requirement that Fn = F(Pn) exactly), then we shall denote this preliminary
guess for the next level’s state, Pn+1

0 . For example, it might be obtained by the zeroth-order
‘null’, or ‘persistence’ predictor:

Pn+1
0 = Pn, (’predictor 0’), (2.3)

or by a first-order ‘Euler forward’ predictor:

Pn+1
0 = Pn + Fnδt, (’predictor 1’), (2.4)

or, if an earlier time level of P is also stored, by a second-order ‘leapfrog’ predictor:

Pn+1
0 = Pn−1 + 2Fnδt, (’predictor 2’). (2.5)

Given an estimate Pn+1
a where a is an iteration index, we need to apply a ‘corrector’ iteration

to establish the improved estimate, Pn+1
a+1 , and the generic approach we take to accomplish this

is first to compute the actual exact forcing through a so-called ‘function evaluation’: Fn+1
a =

F(Pn+1
a ), and thus determine the degree of mismatch, or ‘residual’, which, for the trapezoidal

scheme, becomes:

Ra = Pn+1
a − Pn −

δt

2
(Fn + Fn+1

a ). (2.6)

We assume an approximate model for the Jacobian of this R with respect to Pn+1:

δR ≈ J δPn+1 (2.7)

where

J = I −
δt

2
ν0 ≈

∂R

∂Pn+1
. (2.8)

The complex frequency, ν0, here represents an approximation to the actual system frequency
of the perturbed mode about the present state. The Newton-Raphson ‘corrector’ step, which
involves updating both Pn+1 and Fn+1, is

Pn+1
a+1 = Pn+1

a − J−1Ra, (2.9)

Fn+1
a+1 = Fn+1

a − ν0J
−1Ra. (2.10)
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Alternatively, and sometimes more conveniently, we can write

Fn+1
a+1 = 2(Pn+1

a+1 − Pn)/δt − Fn. (2.11)

In order to alleviate the well-known fragility of this scheme when the actual frequency,
ν, differs for the assumed frequency, ν0, we have recourse to the modification of the relative
weighting of the two F contributions by what is referred to as ‘decentering’. The idea is to
make a small modification to the pure trapezoidal scheme to give a slightly larger proportion
of the weight to the later forcing; that is, to try to satisfy:

Pn+1 − Pn =
δt

2
((1 − γ)F(Pn) + (1 + γ)F(Pn+1)). (2.12)

Here the decentering parameter γ vanishes in the pure trapezoidal scheme and γ = 1 implies a
fully forward-weighted ‘Euler-backward’ implicit scheme. In general we shall allow the decen-
tering to change with iteration index, which means that we must also allow the Jacobian to
change:

Ja = I −
δt

2
(1 + γa) (2.13)

for each a ≥ 1 in the corrector step,

Pn+1
a = Pn+1

a−1 − J−1
a Ra−1. (2.14)

We shall also allow a distinct implicit decentering in the definition of the final evaluation of
the forcing, which, since it is only ever used to apply to the following time interval, we refer to
unambiguously as γ0 and apply in defining (unsubscripted) Fn:

Fn =
[

2(Pn − Pn−1)/δt − (1 − γ0)F
n−1

]

/(1 + γ0). (2.15)

With this convention, the M -times corrected scheme in general needs the specification of the
M + 1 decentering parameters, γ0, . . . , γM .

The stability of schemes is examined under the assumption that the true modal (complex)
frequency, ν, is an unknown quantity, but is estimated to be ν0 (which is used in the def-
initions of the Jacobians, Ja). In the complex ν-plane we plot the loci of points at which
that numerical modal amplification has unit magnitude, and is therefore on the verge of in-
stability. The simplest example is the centered scheme (γ0 = γ1 = 0) for a null predictor and
single corrector, which is displayed in Fig. 1. In this, and other stability plots, panel (a)
shows the limiting-stability curves for assumed frequencies non-dimensionalized with a δt = 1,
at ν0 = 0, 0.2i, 0.4i, 0.6i, 0.8i, 1.0i. (These values are marked by asterisks along the positive
imaginary axis.) It is also revealing to see how the stability curve evolves at frequencies |ν0| ≫ 1
so we show this curve in panel (b) at the relatively large value, ν0 = 5i. We see that any un-
derestimation of the magnitude of a pure-imaginary frequency leads to numerical instability, as
the stable region for small frequencies can be identified as the region contiguous with small real
negative ν, and the evolution of this region as ν0 gradually increases. Matters are somewhat
improved with a second corrector iteration (Fig. 2) since, with the second corrector, at least
the bounding stability curve makes tangential contact with the imaginary axis where it cuts
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through its reference frequency, ν0. A third corrector iteration in the centered approximation
to the trapezoidal scheme (Fig. 3) allows stability when imaginary ν is underestimated by ν0,
but leads to a very weak instability when ν is overestimated.

None of the centered schemes we have shown are robust – an arbitrarily small error in
the estimated frequency ν0 in cases where ν is imaginary can, if the error is in the adverse
direction, put the numerical scheme into an unstable configuration. But at least the twice- and
thrice-corrected schemes offer hope that a small degree of decentering might recover the desired
feature of robustness, making the method lenient with respect to small errors in the frequency
estimation.

[a] [b]

2-level implicit scheme.
Null predictor.
1 corrector iteration.
gamma0 =   0.0000
gamma1 =   0.0000

-2.0 -1.5 -1.0 -0.5  0
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Figure 1. Stability plots for null-predictor, single corrector, two-level trapezoidal implicit scheme (no decenter-
ing). The asterisks along the imaginary axis of panel (a) locate the presumed modal complex frequency, ν0, while
the corresponding red curves through each of these locations show the loci of the actual complex frequencies, ν,
at which the numerical behavior is neutrally stable, generally oscillating without the amplitude either growing or
decaying. Panel (b) in this and the following figures shows the same kind of stability curve, but for a relatively

large nominal frequency, ν0 = 5i, providing a glimpse of the asymptotic behavior as ν0 →∞.

[a] [b]
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Null predictor.
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gamma1 =   0.0000
gamma2 =   0.0000
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Figure 2. Like Fig. 1 but showing the stability plots for null-predictor, twice corrected, two-level trapezoidal
implicit scheme (no decentering).
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[a] [b]

2-level implicit scheme.
Null predictor.
3 corrector iterations.
gamma0 =   0.0000
gamma1 =   0.0000
gamma2 =   0.0000
gamma3 =   0.0000
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Figure 3. Stability plots for null-predictor, thrice corrected, two-level trapezoidal implicit scheme (no decenter-
ing).

Figure 4 shows the robust modification to the scheme of Fig. 2 obtained when all the gamma
coefficients are set to 0.1. A generous stretch of the imaginary axis straddling each corresponding
ν0 confirms the robustness of this scheme, although a decentering of this magnitude will degrade
the now first-order accuracy of the scheme significantly. A similar robustifying effect is observed
when the thrice-corrected scheme is decentered with all gamma parameters set to 0.1, as shown
in Fig. 5 .

We might ask whether it is necessary that all of the decentering parameters be made positive
in order to achieve robustness. If only γ0 > 0, as shown in Fig. 6, the scheme is actually
destabilized (this is true for both the twice- and thrice-corrected schemes). It is actually enough
to set only the final gamma to a small positive value. The desired robustness is seen for the
twice-corrected scheme in Fig. 7. However, it is also important to note that the decentering of
this last corrector step will also have the dominant effect upon the overall accuracy, which is
therefore only first-order again.

The next question we investigate is whether a higher-order of predictor allows robustness
to be achieve with less damage to the accuracy. Therefore, instead of the null ’predictor 0’, we
apply the Euler forward ’predictor 1’, to obtain the once-corrected scheme shown in Fig. 8, the
twice-corrected scheme shown in Fig. 9 and the thrice-corrected scheme shown in Fig. 10, where
all the decentering parameters in these three schemes are set to zero. The once-corrected scheme
remains inadequate without quite drastic measures taken to make it significantly robust, but
the twice corrected scheme, even without any decentering, appears to have excellent stability
characteristics, and is fully second-order accurate. The thrice corrected scheme with the Euler
predictor is less robust than the scheme with two corrector stages.

We can further robustify the scheme shown in Fig. 9, if desired, with the gamma coefficients
set to very small positive values. For example, Fig. 11 shows the stability plot obtained when
γ0 = γ1 = γ2 = 0.01.

There does not appear to be any advantage, as far as stability is concerned, in choosing a
more accurate predictor. The leapfrog second-order ’predictor 2’ is used in the once-, twice-
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Figure 4. Stability plot for null-predictor, twice corrected, two-level implicit scheme with equal decentering at
each stage.
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Null predictor.
3 corrector iterations.
gamma0 =   0.1000
gamma1 =   0.1000
gamma2 =   0.1000
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Figure 5. Stability plot for null-predictor, thrice corrected, two-level implicit scheme with equal decentering at
each stage.

and thrice-corrected schemes shown respectively in Figs. 12, 13 and 14, in all of which the
gamma coefficients are zero. As before, the schemes with one or three corrector stages are not
robust as imaginary ν0 becomes large, while the scheme of Fig. 13 with two corrector stages
continues to show robustness with respect to small errors in the magnitude of ν0 compared with
ν. However, this scheme is clearly not as robust as the corresponding scheme of Fig. 9 which
used the Euler forward predictor.

The two-level schemes we have examined are second-order accurate provided the last gamma
coefficient vanishes. However, as we have shown, it is this same last gamma coefficient that
predominantly controls each scheme’s robustness and, by invoking this control, the positive
coefficient causes the formal accuracy to decrease to only first-order. Of course, the effect is
still small provided that the size of this controlling gamma coefficient remains small enough. We
have found that the most robust scheme out of all those tested is the one whose predictor is the
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2-level implicit scheme.
Null predictor.
2 corrector iterations.
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gamma2 =   0.0000

-2.0 -1.5 -1.0 -0.5  0 0.5
0

0.5

1.0

1.5

2.0

2.5

3.0

-5 -4 -3 -2 -1 0 1 2 3
-1

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 6. Stability plot for null-predictor, twice corrected, two-level implicit scheme with decentering at only
stage zero, showing a destabilizing effect in the case of the small frequencies of panel (a).
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Figure 7. Stability plot for null-predictor, twice corrected, two-level implicit scheme with decentering at only
the last stage, which achieves robustness, but at the expense of accuracy.

Eulerian forward step, and that has two corrector steps. This scheme (and the corresponding one
using the leapfrog predictor) hardly needs the invocation of the gamma coefficients to achieve
robustness, and is therefore the one to be recommended among these two-level schemes.

In cases, such as the adaptive-resolution Fibonacci grid, where it is desirable that the fully
implicit methods possess a high formal order of accuracy in both space and time (to reduce
spurious reflection or refraction effects at zones of changing resolution) then we need to look
beyond the simple implicit two-level schemes we have considered. This brings us to their high-
order generalizations, the implicit Runge-Kutta schemes, which we examine in the next section.

3. Implicit Runge-Kutta schemes based on Gaussian quadrature

The implicit Runge-Kutta (IRK) schemes were pioneered mainly by Butcher (1964, 1987)
and are based on the various Gaussian quadrature formulae for the uniformly-weighted time-
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[a] [b]

2-level implicit scheme.
Euler predictor.
1 corrector iteration.
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gamma1 =   0.0000

-1.5 -1.0 -0.5  0 0.5
0

0.5

1.0

1.5

2.0

-3 -2 -1 0 1

-1

0

1

2

3

4

5

6

7

Figure 8. Stability plot for Euler ’predictor 1’, once corrected, two-level implicit scheme without decentering.
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Figure 9. Like Fig. 8 except twice corrected.

step interval. The trapezoidal scheme can be thought of as one of these – the Gauss-Lobatto
quadrature with just two nodes. In the theory of Gaussian quadrature over an interval, the
Lobatto scheme differs from the better known Legendre quadrature in having two of its nodes
at the end points themselves – but sacrifices formal accuracy since the Lobatto scheme of
m points is guaranteed true up to polynomials only of degree two less than those for which
the corresponding Legendre scheme of m points is guaranteed true. Another quadrature we
encounter, the Gauss-Radau scheme, has just one of its nodes an end point, and attains an
intermediate accuracy between the Legendre and Lobatto variants. The Gauss-Lobatto scheme
of m nodes leads to a scheme of a formal accuracy of order 2m − 2, but unfortunately the
higher order time integration schemes based upon the Gauss-Lobatto quadrature in their most
straight-forward implementations are not A-stable. (Butcher’s book describes the A-stable
‘Lobatto IIIC’ schemes, but they necessitate an additional copy of the state variable and its
associated function evaluation at the start of the time interval.) The schemes based on Gauss-
Legendre quadrature with m nodes are A-stable and have a formal order of accuracy of 2m.
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2-level implicit scheme.
Euler predictor.
3 corrector iterations.
gamma0 =   0.0000
gamma1 =   0.0000
gamma2 =   0.0000
gamma3 =   0.0000
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Figure 10. Like Fig. 8 except twice corrected.
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2-level implicit scheme.
Euler predictor.
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Figure 11. Like Fig. 9 except very small positive decentering coefficients.

Their nodes, where the function evaluations must occur, are all properly interior to the time
step interval. We shall only consider the 2-node versions of the implicit Runge-Kutta schemes
so, in the case of the Gauss-Legendre scheme, its formal accuracy is of order four.

The two-stage implicit Runge-Kutta scheme attempts to satisfy:

P1 = Pn + (a1,1F1 + a1,2F2)δt, (3.1a)

P2 = Pn + (a2,1F1 + a2,2F2)δt, (3.1b)

Pn+1 = Pn + (b1F1 + b2F2)δt, (3.1c)

where F1 = F(P1) and F2 = F(P2) and where P1 and P2 are assumed to occupy interior time
levels, t1 = (n + c1)δt and t2 = (n + c2)δt. As before, the practical implementation requires
iterative stages to approach a solution of these equations. A second subscript on the two
intermediate P values, and on the corresponding forcing terms, denotes this iteration index. As
before, there are different strategies to initializing these iterations with a ‘predictor’. The null
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2-level implicit scheme.
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Figure 12. Stability plot for leapfrog ’predictor 2’), once corrected, two-level implicit scheme without decenter-
ing.
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2-level implicit scheme.
Leapfrog predictor.
2 corrector iterations.
gamma0 =   0.0000
gamma1 =   0.0000
gamma2 =   0.0000
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Figure 13. Like Fig. 12 but with two corrector stages.

predictor just sets P1,0 = Pn and P2,0 = Pn. Since all the information determining the next time
step is contained in the single state variable, Pn, this means that, for a scalar representation
of this scheme, the ‘transfer matrix’ is trivially of order one. If we use just the additional
information in an estimate of the forcing, Fn, at the start of the new time step interval, we
will have a transfer matrix of order two. In this latter case it is natural to again use the
Euler forward predictor to the two intermediate times (n + c1)δt and (n + c2)δt. (Consistency
requirements for these schemes are discussed in the appendix.) The Euler predictor steps are:

P1,0 = Pn + c1F
nδt, (3.2a)

P2,0 = Pn + c2Fnδt. (3.2b)

The residual at iteration a for the two-stage process is now a 2-vector, Ra.
[

R1,a

R2,a

]

=

[

P1,a − Pn

P2,a − Pn

]

−

[

a1,1, a1,2

a2,1, a2,2

] [

F1,a

F2,a

]

δt, (3.3)
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2-level implicit scheme.
Leapfrog predictor.
3 corrector iterations.
gamma0 =   0.0000
gamma1 =   0.0000
gamma2 =   0.0000
gamma3 =   0.0000

-2.0 -1.5 -1.0 -0.5  0
0

0.5

1.0

1.5

2.0

-6 -5 -4 -3 -2 -1 0 1 2 3

-1

0

1

2

3

4

5

6

7

8

9

10

Figure 14. Like Fig. 12 but with three corrector stages.

The Jacobian J for the corrector step is now a 2 × 2 matrix:

J = I − aν0δt, (3.4)

where a is the matrix formed by the four a-weight coefficients. The two-vector P = [P1, P2]
T

of intermediate states is updated,

P a+1 = P a − J
−1

Ra (3.5)

The final updated state, Pn+1, is obtained by applying (3.1c) to the last available iteration of
the intermediate forcings. In the case where the Euler predictor is used, the forcing, Fn+1, that
we use for the next Euler predictor step is obtained by linearly extrapolating the last available
intermediate forcings:

Fn+1 = d1F1 + d2F2, (3.6)

with

d1 =
1 − c2

c1 − c2
, (3.7a)

d2 =
1 − c1

c2 − c1
. (3.7b)

The conventional way of exhibiting the Runge-Kutta coefficients is by presenting them in
the “Butcher tableau”,

c1 a1,1 a1,2

c2 a2,1 a2,2

b1 b2

(3.8)
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In the case of the fourth-order two-stage Gauss-Legendre scheme, with the numerical values
substituted, this tableau becomes:

3−
√

3

6

1

4

3−2
√

3

12

3+
√

3

6

3+2
√

3

12

1

4

1

2

1

2

(3.9)

With null predictor and one corrector iteration, the stability graphs are shown, in the same
format used for the simple two-level schemes, in Fig. 15 and, clearly the scheme is not robust
for either small or large imaginary ν0. Matters are made even worse when the Euler predictor
is used, as we see in Fig. 16. A considerable improvement occurs with a second corrector
iteration; in the case of the null predictor, the result is shown in Fig. 17, and in the case of the
Euler predictor, in Fig. 18.

[a] [b]

2-stage Gauss-Legendre IRK scheme
Transfer matrix order = 1
Number of corrections = 1

-2.0 -1.5 -1.0 -0.5  0 0.5
0
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0
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2

3

4

5

6

Figure 15. Stability curves for the Gauss-Legendre two-stage IRK scheme with null predictor and once corrected.

If we require greater robustness, we can opt for the corresponding modifications of these
Gauss-Legendre quadratures that are associated with alternative, formally less accurate, Gaus-
sian quadratures. The most drastic alternative is to use the Radau scheme that shifts the
nodes forward so that the second occurs at the end of the time step, that is, with c2 = 1, while
preserving the formal accuracy of order three. The resulting scheme possesses the tableau,

1

3

5

12
−

1

12

1 3

4

1

4

3

4

1

4

(3.10)

The scheme with null predictor, single corrector (Fig. 19), is hardly improved since the results
at small ν0 still show a serious lack of robustness (at large ν0 the results are much better).
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Number of corrections = 1
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Figure 16. Stability curves for the Gauss-Legendre two-stage IRK scheme with Euler predictor and once cor-
rected.
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Number of corrections = 2
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Figure 17. Stability curves for the Gauss-Legendre two-stage IRK scheme with null predictor and twice cor-
rected.

Use of the Euler predictor (Fig. 20) substantially improves the single-corrector Radau scheme’s
robustness at large and small frequencies. If it is important to not repeat the costly corrector
iteration, this scheme would probably be the recommended one that maintains the high order
of accuracy in time. If we are prepared to perform the corrector iteration twice, we obtain the
stability results of Fig. 21 with the null predictor, and those of Fig. 22 with the Euler predictor
– both of these schemes are very robust.

The Radau tableau is just the first of an infinite sequence of schemes of order three with
rational coefficients, whose principal error coefficients become progressively smaller and with
the Gauss-Legendre scheme as their limit, as we outline in the appendix. Given that the
twice-corrected Radau schemes are probably more robust than we would normally require, it is
informative to see whether we can use the next member of the sequence to achieve a formally
slightly more accurate scheme while maintaining an adequate degree of robustness. The next
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Figure 18. Stability curves for the Gauss-Legendre two-stage IRK scheme with Euler predictor and twice cor-
rected.
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Figure 19. Stability curves for the Gauss-Radau two-stage IRK scheme with null predictor and once corrected.

member of the sequence of rational-coefficient schemes is what we shall refer to as the ‘hybrid
Legendre-Radau’, or briefly, ‘Radau’ scheme, and has the tableau:

1

4

17

56
−

3

56

5

6

25

42

5

21

4

7

3

7

(3.11)

The hybrid scheme with only a single corrector step does not look sufficiently robust, even
when the Euler predictor is used (Fig. 23). But with two corrector iterations, both with the
null predictor (Fig. 24) or with the presumably more accurate but less robust Euler predictor
(Fig. 25) we still appear to have schemes that are sufficiently robust for practical purposes. Of
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Figure 20. Stability curves for the Gauss-Radau two-stage IRK scheme with Euler predictor and once corrected.
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Figure 21. Stability curves for the Gauss-Radau two-stage IRK scheme with null predictor and twice corrected.

course, there is no compelling reason why we must restrict attention to schemes with rational
weighting coefficients, so the best practical scheme at third order might be another of this
continuum of implicit Runge-Kutta schemes that generalize the Gaussian quadrature.

To conclude, our idealized experiments suggest that:
• The Euler-forward predictor, followed by the two corrector iterations leads to the most

stable practical implementation for the trapezoidal-based methods;
• If in future it is desired to achieve a higher order (third or fourth) of accuracy and A-

stable schemes, those schemes based on implicit Runge-Kutta of the Gauss quadrature type are
recommended;

• For those Gaussian-quadrature-based IRK schemes employing Euler proedictors, satisfac-
tory levels of stability and robustness are best achieved using two corrector iterations;

• Greater robustness in the high order schemes is achieved by abandoning strict fourth-
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Figure 22. Stability curves for the Gauss-Radau two-stage IRK scheme with Euler predictor and twice corrected.
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2-stage hybrid Legendre-Radau IRK scheme
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Number of corrections = 1
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Figure 23. Stability curves for the hybrid two-stage IRK scheme with Euler predictor and once corrected.

order accuracy of the centered schemes and adopting the decentered schemes either of Radau,
or hybrid Lengendre-Radau type.

4. discussion

With a reasonably smooth spatial grid it is quite straightforward to formulate a finite
difference atmospheric simulation model with a formally high order or accuracy in space and,
while it is legitimate to question the desirability of doing this, it is surely more consistent
to take this approach if the accuracy of the time integration is also chosen to be of high
order. Several well-known and easily-coded explicit time integration schemes of high order
accuracy are available but, in order to take advantage of potentially long time steps for greater
numerical efficiency, we face considerable difficulties in identifying practical and robust implicit
time integration schemes whose formal accuracy is even as much as second order. Dahlquist
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Figure 24. Stability curves for the hybrid two-stage IRK scheme with null predictor and twice corrected.
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Figure 25. Stability curves for the hybrid two-stage IRK scheme with Euler predictor and twice corrected.

(1963) showed that the trapezoidal scheme is the best of the A-stable implicit multistep schemes
but, as we have seen, it is not a trivial matter to choose a practical implementation strategy for
this scheme that is sufficiently robust when there is some uncertainty about the actual modal
frequencies. A small forward-weighted decentering is a great help in recovering robustness, but
at the cost of a formal loss of second-order accuracy. Two iterations of the implicit corrector
iteration are confirmed to be dramatically effective at recovering robustness in many cases, even
when three iterations lead back to a situation of non-robustness (especially for the very high
frequency components). The present experiments suggest that the Euler-forward predictor,
followed by two corrector iterations, yields the best (most robust) practical implementation for
the trapezoidal method out of those we have tested.

If it is desirable to secure an even higher order of accuracy – third or fourth-order, for
example, then, if we want to have A-stable schemes, we need to consider the fully implicit
Runge-Kutta schemes based upon the various classical Gauss quadrature methods. We have
restricted this study to the two-stage methods of this kind, which already provide us with
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schemes of third- or fourth-order accuracy. The analogue of the centered scheme is the formally
fourth-order Gauss-Legendre-based IRK scheme. Once again, it is only by performing two
corrector iterations that we obtain anything resembling robustness for this scheme and, in
practice, errors of adverse sign in the estimated system frequency for these schemes would
lead to a weak instability. A safer approach is to abandon strict fourth-order accuracy and
decenter the Gauss-Legendre quadrature either to the fully decentered Gauss-Radau scheme,
for which the twice-corrected implementations are shown to be more than adequately robust,
or an intermediate ‘hybrid Legendre-Radau’ scheme which is only very slightly decentered (and
therefore becomes, in practice, almost fourth-order accurate again). This can retain an adequate
degree of robustness (though much less than is possessed by the Radau scheme).

One attractive feature of the Gaussian-quadrature-based IRK schemes is that they can be
generalized to A-stable schemes of arbitrary formal orders of accuracy. A particularly convenient
family of such schemes, possessing rational coefficients derived from a so-called “Pell” series,
is provided and discussed in the appendix. The techniques we need to consider for solving the
implicit equations (that is, inverting the system whose operator contains our Jacobian, J) for
the two-stage IRK schemes would in principle apply to implementations at even higher formal
order. However, having said that, we must admit that this inversion is far from trivial for the
case of any fully implicit atmospheric simulation model, even in the relatively straightforward
case of the two-time-level schemes since, if we are expecting to take full advantage of the large
time steps that the implicit approach allows, we must also incorporate the highly variable
advective terms within that Jacobian operator, and assume that the framework used for these
terms is a semi-Lagrangian one. The real challenge is therefore the inversion of the equations
for the ‘residual’, R, when, for a full atmospheric model, the components of this quantity are
as numerous as (and in direct correspondence with) the prognostic variable components of
the model, and when the equations defining increments to R are linearized not about some
simple basic rest state, but about the best available approximation to the presently relevant
dynamically evolving actual state. Since this linearization is almost precisely what is required
in a four-dimensional variational (4D-Var) assimilation schemes, it is evidently at least not
beyond the bounds of feasibility. Symbolically, we might express the vector R of the linearized
components of the residuals in terms of the vector of linearized ‘errors’ of the new time-interval’s
state variables, P , through a generic linear spatially-localized operator, D:

R ≡DP . (4.1)

Then, in order to estimate the unkown increment, −P , needed to nullify the residual, R,
we might consider adapting another tool of 4DVar – namely the operator that is formally the
adjoint (with respect to a suitable inner-product norm – typically an approximate energy norm)
of D, which we denote D†, and constructing the generalized ‘elliptic’ equation:

D†DP = D†
R. (4.2)

The self-adjoint and normally positive-definite operator, D†D leads to a much easier inversion
problem than that using just D by itself, even though, in this very general form, the full set of
dynamical variables are involved in a coupled way. Nevertheless, multigrid solution methods
are well-adapted to solving problems of this kind where the operators involved are essentially
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spatially localized. This should remain true despite the fact that the operator D will now contain
not just in-situ derivatives, but derivatives of the interpolation operators comprising the semi-
Lagrangian advection machinery that we are linearizing when, for example, we estimate the
residuals along our initial Euler-forward-projected trajectory.

Another essential challenge that must be met concerns the need to massively parallelize the
computations involved in solving the implicit scheme’s elliptic problem. The difficulty stems
from the long-range influence implied by solving any forced elliptic problem. Multigrid proce-
dures for such problems are moderately well adapted to parallel computing environments. It is
also possible that compact-support kernels that adequately approximate the Green’s function
in the inversion of the elliptic operator would enable solutions to this inversion to be obtained,
to a sufficient approximation, without the great amount of costly data motion that the unap-
proximated elliptic problem would seem to require. This is an option deserving further study.
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Appendix A

Some identities relating to 2-stage Implicit Runge-Kutta (IRK) schemes

It is well-known that, in order for an n-point numerical quadrature over the unit interval,
t ∈ [0, 1] to possess at least (2p − 1)th-order accuracy, the p nodes must reside at the zeroes of
a polynomial of the form,

f(t) = Lp(t) − λLp−1(t) (A.1)

where Lp(t) and Lp−1(t) are the Legendre polynomials of degree p and p − 1 respectively that
are scaled to be orthogonal in this interval and that are normalized to Lp(1) = Lp−1(1) = 1.
When p = 2 we find,

L1(t) = 1 − 2t, (A.2a)

L2(t) = 1 − 6t + 6t2, (A.2b)

so that the zeroes occur at:

c1 =
1

6

[

3 + λ − (λ2 + 3)1/2
]

, (A.3a)

c2 =
1

6

[

3 + λ + (λ2 + 3)1/2
]

(A.3b)

In order that the numerical scheme be exact for linear and quadratic evolution of solution P
throughout the time step it is required that:







a1,1, a1,2

a2,1, a2,2

b1, b2







[

1, 2c1

1, 2c2

]

=







c1, c2
1

c2, c2
2

1, 1






, (A.4)
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or,






a1,1, a1,2

a2,1, a2,2

b1, b2






=











c1 +
c2
1

2(c2−c1) , −
c2
1

2(c2−c1)
c2
2

2(c2−c1) , c2 −
c2
2

2(c2−c1)
1
2 − 1−(c1+c2)

2(c2−c1) , 1
2 + 1−(c1+c2)

2(c2−c1)











. (A.5)

TABLE 1. Coefficients of the 2-stage Implicit Runge-Kutta
schemes associated with the solutions to a Pell equation.

n Cn Sn c1 c2 a1,1 a1,2 a2,1 a2,2 b1 b2

1 2 1 1

3
1 5

12

−1

12

3

4

1

4

3

4

1

4

2 7 4 1

4

5

6

17

56

−3

56

25

42

5

21

4

7

3

7

3 26 15 2

9

4

5

31

117

−5

117

36

65

16

65

27

52

25

52

4 97 56 3

14

19

24

345

1358

−27

679

2527

4656

1159

4656

49

97

48

97

There is no compelling reason to insist on solutions with rational weights other than the
numerical convenience of tabulating them. Nevertheless, we observe that such solutions exist
with,

λ = 1/S, (A.6)

for positive integers, S, that satisfy the Diophantine (integer solution) ‘Pell’ equation,

C2 − 3S2 = 1. (A.7)

All integer pairs, (C, S), satisfying this equation can be located in an infinite sequence generated
(in either direction) from any two consecutive solutions, such as,

(C0, S0) = (1, 0), (A.8a)

(C1, S1) = (2, 1), (A.8b)

by the simple three-term recurrence:

(Cn−1, Sn−1) − 4(Cn, Sn) + (Cn+1, Sn+1) = (0, 0). (A.9)

We recognize the Radau scheme in the choice λ = 1/S1 = 1 and our ‘hybrid’ scheme of (3.11)
as the second member of the sequence, λ = 1/S2 = 1/4. For the generic mth member of this
family, with λ = 1/Sm, we find that resulting rational c1 and c2 can also be evaluated as:

c1 =

√

1

6

(

Cm−1 + 1

Cm + 1

)

, (A.10)
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c2 =

√

1

6

(

Cm+1 − 1

Cm − 1

)

, (A.11)

while the weights, b1 and b2, become:

b1 =
1

2
−

1

2Cm
, (A.12a)

b2 =
1

2
+

1

2Cm
. (A.12b)

The coefficients for the first few of these schemes are provided in Table 1. As m →∞ the
tableau for the IRK scheme of this family converges to that of the Gauss-Legendre scheme.
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